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Abstract: Understanding the final fate of nanomaterials (NMs) in the liver is crucial for their safer
application. As a representative two-dimensional (2D) soft nanomaterial, graphene oxide (GO) has
shown to have high potential for applications in the biomedical field, including in biosensing, drug
delivery, tissue engineering, therapeutics, etc. GO has been shown to accumulate in the liver after
entering the body, and thus, understanding the GO–liver interaction will facilitate the development
of safer bio-applications. In this study, the hepatic clearance of two types of PEGylated GOs with
different lateral sizes (s-GOs: ~70 nm and l-GOs: ~300 nm) was carefully investigated. We found
that GO sheets across the hepatic sinusoidal endothelium, which then may be taken up by the
hepatocytes via the Disse space. The hepatocytes may degrade GO into dot-like particles, which may
be excreted via the hepatobiliary route. In combination with ICP-MS, LA-ICP-MS, and synchrotron
radiation FTIR techniques, we found that more s-GO sheets in the liver were prone to be cleared via
hepatobiliary excretion than l-GO sheets. A Raman imaging analysis of ID/IG ratios further indicated
that both s-GO and l-GO generated more defects in the liver. The liver microsomes may contribute to
GO biotransformation into O-containing functional groups, which plays an important role in GO
degradation and excretion. In particular, more small-sized GO sheets in the liver were more likely to
be cleared via hepatobiliary excretion than l-GO sheets, and a greater clearance of s-GO will mitigate
their hepatotoxicity. These results provide a better understanding of the hepatic clearance of soft
NMs, which is important in the safer-by-design of GO.

Keywords: graphene oxide; hepatic clearance; multifaceted characterization

1. Introduction

Understanding the final fate of nanomaterials (NMs) in the liver is crucial for their
safer application. NMs have been widely used in commercial and medical products, such
as cosmetics, vaccines, diagnostics, and drug carriers. Most studies have reported that
exposure to NMs via various routes, such as dermal, inhalation, and ingestion, tends to
result in accumulation in the liver after gaining access to the systemic circulation [1,2]. For
instance, Fischer et al. found that the liver took up about 40–99% of quantum dots after
administration into Sprague Dawley rats [3]. So far, most in vivo studies have focused
on NMs’ accumulation at the organ level, their effects on liver structure and functions,
cell-type-specific uptake, and responses [4–6]. However, there is still a lack of in-depth
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understanding of how some NMs are effectively eliminated from the liver while others
achieve long-term accumulation.

The physicochemical properties of NMs determine their accumulation and clearance
patterns in the liver, including their size, shape, surface coating, chemical composition,
deformation, degradation, etc. [7–9]. For example, Chan et al. used hard NMs as a model,
including quantum dots, gold nanoparticles (NPs), and silica NPs, to investigate the impact
of size, composition, and surface chemistry on NMs’ sequestration and clearance [8]. This
study showed that both primary rat Kupffer cells and immortalized murine macrophages
preferentially uptake larger-sized NPs than smaller-sized NPs. Our previous study also
demonstrated that the surface chemistry of NMs governs their sub-organ biodistribution,
transfer, and clearance profiles in the liver [9]. Understanding the hepatic clearance of
soft NMs (such as liposomes, micelles, and polymers) remains challenging due to their
degradation properties and the lack of a simple and accessible method for their quantitative
analysis [10]. Thus, multi-aspect information on the biological behavior of soft NMs in vivo
is needed to understand their hepatic clearance feature.

Graphene oxide (GO) is a typical two-dimensional (2D) soft material that has shown
promising applications in sensing/imaging, gene/drug delivery, cancer therapy/diagnosis,
and tissue engineering/regenerative medicine [11,12]. In particular, GO NMs are among the
most popular drug delivery vehicles for treating liver diseases due to their tunable chemi-
cal/physical properties [13]. The liver has a different cellular phenotype, including Kupffer
cells (KCs), liver sinusoidal endothelial cells (LSECs), hepatocytes, etc., which play important
roles in the uptake and clearance of NMs [8]. Previous studies have demonstrated that highly
dispersed GO nanosheets may undergo biodegradation via the catalysis of myeloperoxidase
secreted by phagocytic cells [14–16]. Our previous work has demonstrated that thin GO
nanosheets, after injection, may cross the endothelial/epithelial barrier, entering the lung,
liver, and renal parenchyma, and subsequently be taken up by parenchymal cells (such as
alveolar macrophages, hepatocytes, renal tubular epithelial cells, etc.) [17]. The effects of the
physicochemical properties of GO on the transport and clearance of GO in the lung and kidney
have been systematically investigated in our previous work and by others [17–19]. Understand-
ing the hepatic clearance of graphene oxide is crucial for its safe medical application [2,20].
However, so far, the final fate of GO in the liver is not yet fully understood.

In this study, we prepared two sizes of PEGylated graphene oxide (GO) sheets, namely
small (s-GO: ~70 nm) and large (l-GO: ~300 nm), utilizing our developed rare-earth labeling
method. The hepatic accumulation and clearance of s-GO and l-GO sheets were investigated
using a combination of ICP-MS, LA-ICP-MS, and synchrotron radiation FTIR techniques
(Scheme 1). Furthermore, the biotransformation of GO in the liver was investigated through
Raman imaging analysis of GO in the liver tissue and SRXPS analysis of the chemical
speciation of GO in the liver microenvironment. Here, we present a chemical explanation
for the degradation and clearance of GO in the liver.
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2. Results and Discussion
2.1. Physicochemical Properties of Graphene Oxide Nanosheets (GOs)

The atomic force microscope (AFM) analysis reveals that the average lateral dimen-
sions of s-GOs and l-GOs are approximately 70 nm and 300 nm, respectively, with a
thickness of approximately 1 nm, corresponding to the mono-layer lamellar structure of
GO (Figure 1A). Both s-GOs and l-GOs exhibit negative zeta potentials of −16.1 mV and
−15.5 mV, respectively, indicating a lower absolute value of zeta potential compared to
non-PEGylated GOs (−31.6 mV), which is similar to a previous study [19]. This suggests
that the amine groups in PEG have neutralized some of the negatively charged carboxylic
acid groups in the GOs (Figure 1B). Furthermore, the FTIR peaks of GO indicate the pres-
ence of oxygen-containing groups, such as strong bands at approximately 3378 cm−1 (-OH),
1616 cm−1 (C=O), and 1116 cm−1 (C-O-C), indicating that NH2-PEG-NH2 is successfully
coated on the GO (Figure 1C) [20]. The typical Raman spectra of s-GOs and l-GOs are char-
acterized by a D band at approximately 1328 cm−1 and a G band at about 1600 cm−1, with
ID/IG ratios of 1.48 and 1.52, respectively, indicating that s-GOs have a similar oxidation
degree to l-GOs (Figure 1D).
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Figure 1. Physicochemical characterization of GOs. (A) AFM images of s-GOs and l-GOs. The insert
figures show the thickness of GOs along the black line and the distribution of lateral dimensions of
GOs. (B) Zeta potentials of s-GOs and l-GOs in deionized water. nGOs: non-pegylated GOs. (C) FTIR
spectra of PEG, GO, s-GOs, and l-GOs. (D) Raman spectra of s-GOs and l-GOs.

To monitor the hepatic clearance of GO, a rare-earth labeling method has been em-
ployed for the analysis of GO concentration in the liver, as previously reported in a
study [18]. The labeling efficiency (35.8 and 42.3 mg/g for s-GOs and l-GOs, respec-
tively) and stability of Yb3+ on s-GOs and l-GOs have also been reported in a previous
study [20].
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2.2. Size-Dependent Hepatic Clearance Patterns of GO

Understanding the hepatic clearance of nanomaterials (NMs) is crucial for the de-
velopment of safer NMs in the biomedical field [2]. Previous studies have reported that
the unique structures and blood flow features of the liver facilitate the sequestration and
accumulation of NMs, potentially leading to adverse effects in the liver [21]. The clearance
patterns of hard NMs, such as Au, Ag, and QDs, have been carefully investigated [8]. In the
liver, Kupffer cells, hepatic B cells, and liver sinusoidal endothelial cells may uptake these
NMs. Phagocytic Kupffer cells and hepatocytes represent the two major cellular pheno-
types involved in the hepatic clearance of NMs [22]. Additionally, size, as one of the most
important physicochemical parameters of NMs, plays an important role in regulating target
cell types and degradation pathways that interact with the liver [23]. Generally, NMs larger
than approximately 200 nm are effectively cleared by Kupffer cells due to the slow blood
flow in liver sinusoids, allowing sufficient time for NM uptake. The endothelium of the
hepatic sinusoids is discontinuous, interspersed with pores of approximately 100–200 nm
in diameter, providing an opportunity for NMs smaller than the fenestrations to cross the
endothelium into the Disse space, then enter the lymphatic circulation or be taken up by
hepatocytes [22].

The clearance pattern of s-GOs and l-GOs was analyzed by detecting labeled Yb via
ICP-MS. The data show that the content of s-GOs (54 µg/g) in the liver of s-GO-treated
mice was slightly higher than that in l-GO-treated mice (49 µg/g) after 4 h of intravenous
injection (Figure 2A). Both s-GO and l-GO contents in the liver show a gradual increase
from 4 h to 24 h post-injection, reaching a maximum (80 µg/g for s-GOs and 67 µg/g
for l-GOs) at 24 h post-injection, then gradually decreasing within 7 days after injection
(34 µg/g and 36 µg/g for s-GOs and l-GOs, respectively), indicating that both s-GO and
l-GO might be cleared from the liver.

Furthermore, we used LA-ICP-MS elemental imaging technology to clearly reveal
the distribution and clearance pattern of GOs in the hepatic parenchyma (Figure 2B). A
comparison of the signal intensities in the tissue sections of mice 24 h after GO injection
revealed that the distribution of s-GO in the liver was significantly higher than that of l-GO.
At 7 d post-injection, the signals of s-GOs notably decreased in the hepatic parenchyma,
indicating the hepatic clearance of s-GOs (Figure 2C).

Similarly, synchrotron FTIR images (SR-FTIR) also demonstrated the hepatic clearance
of s-GO and l-GO. The synchrotron FTIR images of the liver at 24 h and 7 d post-injection
of s-GO and l-GO are shown in Figure 2D. In our previous work, the characteristic IR
bands of biological tissues untreated with GO, GO material, and PEG were analyzed [18],
which showed obviously distinct peaks between PEG-GO and biological tissues (including
O-H stretching and C-O-C stretching); thus, the different bands of biological tissue treated
with GO were rationally assigned. Specifically, the absorption features at 1437 cm−1 (-CH2
stretching) are attributed to the PEG polymer; the absorption band at 1291 cm−1 (C-O-C
stretching) is assigned to the PEG polymer or GO; the band at 3439 cm−1 (O-H stretching)
is assigned to GO. The quantitative analysis showed that the intensity of C-O-C and
CH2 peaks in the liver of s-GO- and l-GO-treated mice and O-H intensity in l-GO-treated
mice significantly decreased at 7 d post-injection compared to that at 24 h post-injection,
indicating the hepatic clearance of GO, which was consistent with the results of ICP-MS
and LA-ICP-MS.

2.3. Hepatobiliary Excretion of s-GO and l-GO

The excretion pattern of NMs is closely related to their efficacy, circulation time,
and potential side effects. It is well known that NMs are primarily excreted via the liver
and kidneys [1]. Extensive urinary excretion of GO has been reported in several studies
following intravenous (i.v.) injection of functionalized GO sheets in mice [20,24]. It has
been observed that thin, well-dispersed GO can be excreted via the kidneys through
glomerular filtration or proximal tubular secretion [20,24]. The hepatobiliary system serves
as another primary route for the elimination of NMs that have not been cleared through the
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kidneys [25]. Compared with renal clearance, hepatobiliary excretion is generally slower,
occurring over a period of hours to months [1]. In the liver, NMs that escape phagocytosis
or are degraded by Kupffer cells can subsequently enter hepatocytes and potentially be
excreted through bile.
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Figure 2. Quantitative and image analysis of deposited GOs in the liver. (A) Quantitative results of
GOs in mice liver measured by ICP-MS. (B) LA-ICP-MS images of the Yb labeled GOs (s-GOs/Yb
and l-GOs/Yb) in liver distribution at 24 h and 7 d post-injection. (C) SR-FTIR image of mouse liver
tissue after treatment with s-GOs and l-GOs at 24 h and 7 d post-injection. (D) Quantitative analysis
of the mouse liver after i.v. injection of s-GOs and l-GOs at 24 h i.v. post-injection. ** p < 0.01.

In the study, transmission electron microscopy (TEM) analysis revealed that s-GO
sheets were observed in the cytosol of hepatocytes and bile ducts at day 7 post-injection
(Figure 3A,B), while l-GO sheets were observed in the cytosol of Kupffer cells (Figure 3D).
Notably, s-GO sheets in the bile duct appeared as dot-like particles, suggesting possible
degradation of s-GO within the hepatocyte. Additionally, hepatic sinusoidal dilatation
(Figure 3(C1)) and enlargement of fat-storing cells (Figure 3(C2)) were observed in mice
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treated with s-GO sheets. Enlargement of the hepatic sinusoid (Figure 3(E1)) and deposi-
tion of collagen fibrils in the Disse space were also observed in mice treated with l-GOs
(Figure 3(E2)). These findings indicate that both s-GO and l-GO may induce damage to the
sinusoidal endothelium, allowing the NMs to cross the endothelium, enter the Disse space,
and subsequently be taken up by hepatocytes.
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Figure 3. TEM images of mouse liver at 7 d after i.v. injection of s-GOs and l-GOs. A small amount of
s-GOs (red arrows) was deposited in the cytosol of hepatocytes (A) and bile ducts (B); s-GOs induced
sinusoidal dilation (C1) and enlargement of fat-storing cells, which was indicated by yellow dotted line
(C2) (C); (D) l-GOs were observed in cytosol of Kupffer cells. (E) l-GOs induced sinusoidal dilation
(E1) and collagen fibril deposition in the Disse space, which was indicated by yellow dotted line (E2).
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Previous studies have reported that graphene-based materials can be bio-degraded
by peroxidases (such as horseradish peroxidase (HRP), myeloperoxidase, and eosinophil
peroxidase) catalysis in the presence of hydrogen peroxide [14–16]. To demonstrate the
hepatobiliary excretion process of GO, the chemical transformation of GO in the liver
tissue and liver microenvironment was further investigated by Raman spectroscopy and
synchrotron radiation X-ray photoelectron spectroscopy (XPS), respectively. Confocal
Raman mapping (WITec, alpha 300 R, Ulm, Germany) was utilized to examine the structure
of injected GO sheets in the liver sections. It was confirmed that the observed brown
material in the liver (at day 7 after administration) had typical Raman fingerprints of GO
(Figure 4A). Furthermore, the peak intensity ratio for the characteristic D vs. G bands
(D band at ~1340 cm−1; G band at ~1590 cm−1) was calculated. The ID/IG ratios in the
liver sections of s-GO-treated (ID/IG ≈ 1.53) and l-GO-treated (ID/IG ≈ 1.59) mice slightly
increased compared to the initial values (s-GO: 1.48; l-GO: 1.52), indicating the increased
defects of GO in the liver tissue. Additionally, the chemical speciation transformation of s-
GO and l-GO in the hepatocyte microenvironment was analyzed by SRXPS. Microsomes are
typically used for the metabolite study because they express the major drug-metabolizing
enzymes cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) [26]. The high-
resolution XPS spectrum of C 1s shows s-GOs and l-GOs present a dominant peak at
284.6 eV, assigned to graphitic C=C species, and the other three peaks at 285.3 eV, 286.4 eV,
and 288.6 eV, corresponding to C-OH, C-O-C/C=O, and O=C-OH, respectively (Figure 4B).
Further quantitative analysis indicated that the C=C content of s-GO decreased from
the initial 43.7% to 29.2% and 32.9% after 60 min and 120 min microsome treatments,
respectively, and the content of C-OH increased from 31.0% to 44.8% and 41.6%, respectively,
after 60 min and 120 min treatments (Figure 4C). Similarly, the C=C content of l-GO
decreased from the initial 38.0% to 29.4% and 18.7% after 60 min and 120 min microsome
treatments, respectively, and the content of C-OH increased from 33.0% to 40.5% and
38.4%, respectively. In addition, the content of O=C-OH of l-GO obviously increased
from 14.5% to 31.4% after 120 min of treatment. A previous theoretical calculation study
suggested that HRP was preferentially bound to the basal plane of GO rather than the
edge, which facilitates the closer proximity of the HRP heme active site (FeO3+) to GO
and the oxidation of the basal plane of GO [27]. Cytochrome P450 (P450, CYP) enzymes,
a main component of the microsome, are adept at C=C oxygenation via hydroxylation,
epoxidation, or carboxylation reactions by the formation of the active compound (FeO3+

or FeIII-O2
−) involving the use of molecular oxygen [28]. Thus, the increased content of

C-OH or O=C-OH in s-GO or l-GO may be related to P450-catalyzed oxidations of the GO
basal plane; however, further investigation is needed. Combined with the Raman spectrum
and the XPS spectrum, the defects of s-GO and l-GO in the liver section might be derived
from the modification or oxidation of GO, which will facilitate the degradation of GO [16].
During this process, the graphene material may cause the dysfunction of CYP450 and
trigger potential toxicity [29].

2.4. Size-Dependent Hepatic Toxic Effects of GO

The serum biochemical profiles showed a significant elevation of serum alkaline
phosphatase (ALP) at day 7 post-injection of s-GO, which returned to normal levels at day
28 post-injection (Figure 5A), indicating a stress response to the treatment. l-GO treatment
induced a significant elevation of ALP levels and the albumin to globulin ratio (A/G)
at day 7 post-injection, and the A/G ratio still remained significantly elevated at day
28, suggesting that liver function may be slightly disturbed after injection of l-GO. The
histological changes were consistent with the serum biochemical changes (Figure 5B). A
slight fatty degeneration of hepatocytes and proliferated Kupffer cells were observed at
day 7 and day 28 post-injection of s-GO, while focal necrosis of hepatocytes within a lobule
was also observed at day 7 and 28 post-injection of l-GO in addition to enlargement of
Kupffer cells.
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lines with different colors indicated different functional groups (C) quantitative SRXPS analysis of
functional groups of s-GOs and l-GOs.

Previous studies have shown that unmodified GOs could induce lipid peroxidation,
oxidative stress, and the secretion of proinflammatory cytokines IL-1β and TNF-α [30].
It has also been reported that tissue distribution and toxic effects are largely affected by
the lateral size of the GO sheet. Larger-sized material (about 1 µm) tends to accumulate
in the lungs after injection, while smaller materials accumulate mainly in the liver and
spleen [31]. Furthermore, size effects of GO on hepatic impact suggested that most smaller
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GO sheets (lateral size ~90 nm) could be visualized inside Kupffer cells (KCs), liver sinu-
soidal endothelial cells (LSECs), and hepatocytes, while most larger GO sheets (lateral size
~500 nm) showed adsorption on the plasma membrane with limited cellular uptake, which
elicited stronger plasma membrane lipid peroxidation, calcium flux, mitochondrial ROS
generation, and NLRP3 inflammasome activation [32]. Further studies have reported that
PEG modification of GO improves its biocompatibility compared to unmodified GO [33].
For instance, GO-PEG represses the progression of liver inflammation by regulating the
M1/M2 polarization of Kupffer cells by inhibiting the activation of TLR3 and TLR7 in
KCs [34]. In our study, s-GO and l-GO were modified by PEG; thus, s-GO and l-GO only
induced slight hepatic toxicity. The lower toxicity induced by s-GO sheets compared to
l-GO sheets may be closely related to hepatocyte uptake and subsequent excretion of GO.
Therefore, we suggested that biomedical applications of NMs should fully consider their
biological targeting, deposition, and ultimate fate.

Molecules 2024, 29, x FOR PEER REVIEW 10 of 14 
 

 

2.4. Size-Dependent Hepatic Toxic Effects of GO  
The serum biochemical profiles showed a significant elevation of serum alkaline 

phosphatase (ALP) at day 7 post-injection of s-GO, which returned to normal levels at day 
28 post-injection (Figure 5A), indicating a stress response to the treatment. l-GO treatment 
induced a significant elevation of ALP levels and the albumin to globulin ratio (A/G) at 
day 7 post-injection, and the A/G ratio still remained significantly elevated at day 28, sug-
gesting that liver function may be slightly disturbed after injection of l-GO. The histolog-
ical changes were consistent with the serum biochemical changes (Figure 5B). A slight 
fatty degeneration of hepatocytes and proliferated Kupffer cells were observed at day 7 
and day 28 post-injection of s-GO, while focal necrosis of hepatocytes within a lobule was 
also observed at day 7 and 28 post-injection of l-GO in addition to enlargement of Kupffer 
cells. 

 
Figure 5. (A) The serum levels of liver functional biomarkers after i.v. injection of 5 mg/kg s-GOs 
and l-GOs to mice at day 7 and day 28 post-injection (n = 6). The boxes mark the intervals between 
the 25th and 75th percentiles; the lines inside the boxes denote medians; the dots indicate a set of 
measured values. (B) H&E staining of liver in 5 mg/mL s-GO-treated and l-GOs-treated groups. * p 
< 0.05, ** p < 0.01. 

Previous studies have shown that unmodified GOs could induce lipid peroxidation, 
oxidative stress, and the secretion of proinflammatory cytokines IL-1β and TNF-α [30]. It 
has also been reported that tissue distribution and toxic effects are largely affected by the 
lateral size of the GO sheet. Larger-sized material (about 1 µm) tends to accumulate in the 
lungs after injection, while smaller materials accumulate mainly in the liver and spleen 
[31]. Furthermore, size effects of GO on hepatic impact suggested that most smaller GO 
sheets (lateral size ~90 nm) could be visualized inside Kupffer cells (KCs), liver sinusoidal 
endothelial cells (LSECs), and hepatocytes, while most larger GO sheets (lateral size ~500 
nm) showed adsorption on the plasma membrane with limited cellular uptake, which elic-
ited stronger plasma membrane lipid peroxidation, calcium flux, mitochondrial ROS gen-
eration, and NLRP3 inflammasome activation [32]. Further studies have reported that 
PEG modification of GO improves its biocompatibility compared to unmodified GO [33]. 
For instance, GO-PEG represses the progression of liver inflammation by regulating the 
M1/M2 polarization of Kupffer cells by inhibiting the activation of TLR3 and TLR7 in KCs 
[34]. In our study, s-GO and l-GO were modified by PEG; thus, s-GO and l-GO only in-
duced slight hepatic toxicity. The lower toxicity induced by s-GO sheets compared to l-
GO sheets may be closely related to hepatocyte uptake and subsequent excretion of GO. 

Figure 5. (A) The serum levels of liver functional biomarkers after i.v. injection of 5 mg/kg s-GOs
and l-GOs to mice at day 7 and day 28 post-injection (n = 6). The boxes mark the intervals between
the 25th and 75th percentiles; the lines inside the boxes denote medians; the dots indicate a set of
measured values. (B) H&E staining of liver in 5 mg/mL s-GO-treated and l-GOs-treated groups.
* p < 0.05, ** p < 0.01.

3. Experimental Methods
3.1. Chemicals and Materials

Graphene oxide nanosheets (purity > 99%) were obtained from Jiangsu XFNANO
Materials Tech. Co., Ltd., Nanjing, China. PEG-NH2 (molecular weight ~5 kDa) was
purchased from Beijing J&K Scientific Ltd. Beijing, China. The catalysts for the amide reac-
tion, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and n-hydroxysuccinimide
(NHS), were purchased from Aladdin Biochemicals Tech. Co., Ltd. (Shanghai, China). 2-(4-
isothiocyanatobenzyl)-1,4,7,10 tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NCS)
was purchased from Macrocyclics (Dallas, TX, USA). Ytterbium nitrate (Yb(NO3)3·5H2O,
99.9%) was bought from Strem Chemicals, Inc., Newburyport, MA, USA.

3.2. Preparation and Physicochemical Characterization of PEGylated s-GOs and l-GOs

The s-GO and l-GO were obtained via ultrasonication exfoliation of pristine GO for 10 h
and 10 min, respectively, in an ice-water bath. Next, polyethylene glycol-modified graphene
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oxide was obtained by an EDC/NHS-catalyzed amide reaction at room temperature. The
unreacted free PEG was removed by dialysis.

The thickness and lateral dimensions of graphene oxide were characterized by atomic
force microscopy (AFM, AFM5500, Bruker, Longwood, UK). The zeta potential of GOs in
deionized water was measured using Zetasizer Nano ZS90 (MALVERN, Whitnash, UK).
The characteristic Raman signals of graphene oxide were collected by a Raman spectrometer
(Alpha 300 R, WITec, Ulm, Germany) equipped with a 532 nm laser.

3.3. Animal Experiment

The 6-week-old male CD-1 (ICR) mice were purchased from Beijing Vital River Labo-
ratory Experimental Animal Technology Co., Ltd. (Beijing, China). They were housed in a
standard feeding environment and divided into three groups: (a) control group (100 µL
PBS), (b) 5 mg/kg s-GO-treated group, and (c) 5 mg/kg l-GO-treated group.

Serum samples were collected on day 7 and day 28 after injection for biochemical
analysis, including liver function. Liver tissue samples were collected at 4 h, 12 h, 24 h,
7 days, and 28 days after injection for ICP-MS analysis, LA-ICP-MS imaging, Raman
imaging, Fourier transform infrared spectrometer (FT-IR) imaging, transmission electron
microscopy (TEM) imaging, and hematoxylin–eosin staining (H&E).

3.4. Rare Earth Element Yb Label, ICP-MS Analysis, and LA-ICP-MS Elemental Imaging Analysis

Rare earth element Yb was labeled on GOs by DOTA coupling. The labeling method
may be referred to in our previous published work [17]. Yb in the liver samples was
quantitatively analyzed by ICP-MS (NeXION 300D, PerkinElmer, Waltham, MA, USA). The
deposition of GO in liver sections was obtained by laser ablation (NWR213 laser ablation
system, Elemental Scientific Lasers, Bozeman, USA) coupled to an ICP-MS system (LA-ICP-
MS). Frozen tissues were sliced into 10 µm thin slices at −20 ◦C. Tissue sections on glass
substrates were line scanned by LA-ICP-MS to obtain the distribution of GO (labeled Yb)
in the liver. The scanning speed was 60 µm/sec, and the imaging spot size was 60 µm. The
acquired data were analyzed with Igor Pro 6.0 software (Wavemetrics, Lake Oswego, OR,
USA). The intensity of the Yb signal was transformed into the GO signal via the labeling
efficiency and normalized using 13C as an internal standard.

3.5. Confocal Raman Spectroscopy Imaging

Raman signature signals of GOs in the liver were obtained using a WITec alpha
300 R confocal Raman microscope (WITec, Germany) (532 nm laser excitation source and
600 line/mm grating spectrograph). Raman images were obtained at 0.6 × 0.6 µm2 pixel
resolution at 500 ms/point integration time.

3.6. Synchrotron Radiation-Based FT-IR Imaging

Mice were perfused with 0.9% NaCl and 4% paraformaldehyde, then the liver tis-
sues were frozen, cut into 10 µm slices adhered to the surface of BaF2 slices, naturally
air-dried, and then imaged by synchrotron radiation-based Fourier transform infrared
(SR-FTIR) micro-spectroscopy (Shanghai Synchrotron Radiation Facility-SSRF, BL01B,
Shanghai, China).

The infrared spectra were collected using a Nicolet 6700 Fourier transform infrared
spectrometer (Nicolet 6700 FTIR, Thermo Fisher Scientific, Waltham, MA, USA) and a
Nicolet continuous infrared microscope between 4000~800 cm−1 in transmission mode.
Spectral imaging was performed by raster scanning of 20 × 20 µm2 liver sections with a
spectral resolution of 4 cm−1. All FT-IR profiles were processed using Omnic 9.0 (Thermo
Fisher Scientific Inc., Waltham, MA, USA). The presentation of test results is determined by
the signal strength per unit area.
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3.7. TEM Imaging

TEM (JEM-1400Flash, JEOL, Tokyo, Japan) was used to observe the deposition of GOs
in liver tissue and the ultrastructural changes in the liver. The liver tissues were fixed using
2.5% glutaraldehyde at 4 ◦C for more than 12 h and then proceeded to fixation with 1%
osmium tetroxide for 3 h. Next, the sample was dehydrated, resin-coated, and cut into
70 nm slices, then stained with uranyl acetate and lead citrate.

3.8. Statistical Analysis

All mentioned data were presented as mean ± standard deviation and statistically
tested by one-way ANOVA or Student’s t-test to compare direct differences across groups.
By comparison, a p-value of less than 0.5 was considered to be a significant difference
between different groups. Significant levels were set at * p < 0.05 and ** p < 0.01.

4. Conclusions

Overall, s-GO showed lower hepatotoxicity than l-GO. It is possible that GO sheets
may cross the hepatic sinusoidal endothelium and then be taken up by hepatocytes via the
Disse space. Hepatocytes may degrade GO into dot-like particles, which may be excreted
via the hepatobiliary route. Microsomes, which possess an abundance of phase I and phase
II drug-metabolizing enzymes, may catalyze oxidation, reduction, and hydrolysis reactions,
contributing to the transformation of GO into O-containing functional groups, which play
an important role in GO degradation and excretion. Particularly, it was observed that s-GO
sheets in the liver were more likely to be cleared via hepatobiliary excretion than larger GO
sheets, which may mitigate their hepatotoxicity.
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