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Abstract: Stabilizing LiCoO2 (LCO) at 4.5 V rather than the common 4.2 V is important for the high
specific capacity. In this study, we developed a simple and efficient way to improve the stability
of LiCoO2 at high voltages. After a simple sol–gel method, we introduced trifluoroacetic acid (TA)
to the surface of LCO via an afterwards calcination. Meanwhile, the TA reacted with residual
lithium on the surface of LCO, further leading to the formation of uniform LiF nanoshells. The
LiF nanoshells could effectively restrict the interfacial side reaction, hinder the transition metal
dissolution and thus achieve a stable cathode–electrolyte interface at high working-voltages. As a
result, the LCO@LiF demonstrated a much superior cycling stability with a capacity retention ratio
of 83.54% after 100 cycles compared with the bare ones (43.3% for capacity retention), as well as
high rate performances. Notably, LiF coating layers endow LCO with excellent high-temperature
performances and outstanding full-cell performances. This work provides a simple and effective way
to prepare stable LCO materials working at a high voltage.
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1. Introduction

With the development of clean energy, lithium-ion batteries, as a power storage
device, have attracted a lot of attention due to their relatively high energy densities,
low self-discharge properties and long service life. During the past few decades, the
cathode materials in lithium-ion batteries (LIBs), such as LiNi1/3Mn1/3Co1/3O2 (NMC),
LiNi0.8Co0.15Al0.05O2 (NCA) and LiFePO4 (LFP), have made significant progress and are
widely applied in the electric vehicle sectors and energy storage devices [1–4]. Typically,
LiCoO2 (denoted as LCO) has a high compacted density, resulting in a higher volumetric
energy density compared to the above cathode materials [5–7]. Therefore, it has been
extensively utilized in consumer electronics. However, LCO has a limited theoretical
specific capacity of 274 mAh·g−1, which is much smaller than that of graphite anodes
(372 mAh·g−1) [8–10]. Worse still, LCO usually works with a limited cut-off voltage,
typically under 4.2 V (vs. Li/Li+), and thus demonstrates a low specific capacity of
~140 mAh·g−1 [11–13]. This situation indicates that it is crucial to enhance the energy
density of lithium cobalt oxide. It would open up possibilities for lighter, thinner and
longer-lasting consumer electronic products.

It is well known that raising the working voltage could effectively increase the energy
density of LCO materials. However, there is the risk of structural degradation as well
as more unstable cathode surfaces [14–16]. Under high pressure, lithium cobalt oxide
is often accompanied by irreversible and detrimental phase transitions starting from the
surface. The internal stress changes caused hinder the lithium-ion transport in the materials,
showing poor cycling performances and rate capabilities [17–20]. Furthermore, the higher
delithiated LiCoO2 (more than 0.5 Li removed at a cut-off voltage above 4.2 V) is highly oxi-
dized, which could increase the likelihood of side reactions between the electrode materials
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and the electrolyte [21–23]. The resulting Co metal dissolution, electrolyte decomposition
and surface phase degradation lead to poor cycling stability and safety problems [24–26].
Based on the above points, developing an effective strategy for stabilizing LCO, especially
the surface stability of materials at high voltage windows, is crucial to achieve high cycling
stability and enhance the specific capacity.

Coating and doping are regarded as two major modification methods to enhance
the electrochemical performance of electrode materials. Doping can alter the microstruc-
ture and suppress the phase transition in electrode materials. Also, it carries the risk
of reducing the specific capacity of electrode materials due to the introduction of non-
electrochemically active cations [27,28]. Constructing coating layers has been demonstrated
as an effective strategy to obtain excellent electrochemical properties of LCO at high work-
ing voltages [29,30]. Specifically, coating layers could prevent the contact between LCO and
electrolytes, thereby suppressing surface side reactions and promoting a stable surface struc-
ture, achieving excellent stability [31,32]. The past few decades have witnessed enormous
progress in coating layers, such as metal oxides, metal fluorides and polymers [28,33–37].
However, many surface problems needing to be resolved still exist. Typically, some oxide
coatings cannot resist the erosion of hydrofluoric acid originating from the decomposi-
tion of electrolytes during the battery cycling process. In other words, oxides react with
hydrofluoric acid, leading to the destruction of the coating [38]. Metal fluorides, able to
resist HF, are a better choice for coating layers. Some metal fluorides, such as AlF3, MgF2
and other species, are also used as coating layers [39–43]. However, many metal fluorides
cannot conduct lithium ions and electrons, thus adversely affecting the battery’s kinetic
performance. Based on the excellent lithium-ion conductivity, LiF is considered the most
promising coating material. Many efforts have been made to construct lithium fluoride coat-
ing layers [37,44–47]. Unfortunately, the usual utilizations of solid-phase precursors make
it difficult to achieve uniform coating. Furthermore, many aqueous synthesis schemes have
no consideration of the surface residue formation between LCO and water, such as LiOH
and Li2CO3 [48,49], which could degrade the electrochemical performance. Therefore, it is
necessary to develop a new method to construct a uniform lithium fluoride coating layer
and eliminate the influence of residual lithium on the surface.

Herein, uniform LiF coating layers are constructed on the surface of LCO through a
simple and efficient way. Specifically, trifluoroacetic acid was introduced to the LCO with
residual lithium through the sol–gel method. High temperatures facilitated the reaction
between the trifluoroacetic acid and residual lithium to form LiF coating layers, which not
only remove the harmful residual lithium on the surface, but also ensure the uniformity
of the lithium fluoride coating layer due to the uniform surface residual lithium. As a
consequence, benefiting from high Li+ conductivity and the protection of LiF coating layers,
the LCO@LiF exhibited greatly enhanced cycling stabilities and higher rate performances.
More importantly, the LiF coating layers endowed LCO with a high cycling stability even
charged to 4.5 V. Specifically, the capacity retention of LCO@LiF was 83.54% after 100 cycles,
while the bare LCO only maintained 43.3% of the initial capacity. The LCO@LiF could
deliver 140.2 mAh·g−1 at 5 C, which is much higher than bare LCO (108.5 mAh·g−1).
Moreover, the LCO@LiF exhibited favorable high-temperature properties and achieved
excellent cycling stabilities in full-cell scenarios. In addition, we identified that excessive
LiF on the surface could cause poor electrochemical properties in LCO. Above all, our
method provides a facile way to construct LiF coating layers on LCO surfaces, which
exhibits a great potential in high-voltage LCO materials.

2. Results and Discussion

The construction of LiF coating layers includes three steps (Scheme 1). Firstly, the
LCO was synthesized according to the reported literature [50]. During the synthesis
process, the lithium-containing precursor was excessive to ensure the generation of residual
lithium on the surface, which could be verified by the XPS data later. Secondly, TFA was
introduced to the surface of LCO through a typical sol–gel method. Finally, the LCO with
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TFA species was calcinated in air to prepare LCO with 1 wt% LiF (denoted LCO@LiF). The
F-containing TFA released F element and reacted with the residual lithium on the surface
to generate LiF nanoshells in the calcination process [51]. A scanning electron microscope
(SEM) was utilized to characterize the samples during the synthesized process. As shown
in Figure 1a, the synthesized LCO exhibits irregular spheres with primary particles of
around 2 µm. After coating LiF, the LCO samples still have almost the same morphology
(Figure 1b), which indicates that the coating process did not cause an adverse effect to the
samples’ morphology. Compared with the particle size and specific surface area of the
above two samples (Table S1), the size of the coating layer is almost negligible, indicating
that the change in the specific surface area of the material due to coating is extremely
small. To further reveal the difference before and after LiF coating, a transmission electron
microscope (TEM) was applied to observe the samples. As shown in Figure 1c, the bare
LCO exhibits a smooth surface, indicating no surface modification. The high-resolution
transmission electron microscope (TEM) reveals that the lattice spacing of the material is
2.34 Å (Figure 1d), matching the interplanar spacing of the (106) plane in lithium cobalt
oxide. The selected area electron diffraction (SAED) image (Figure 1e) reveals the crystal
planes, (111), (102), and (235), of lithium cobalt oxide, which suggests the existence of
crystal grains with varied orientations within the material. This further confirms that the
synthesized material is lithium cobalt oxide. The aforementioned findings will be verified
through XRD patterns in the subsequent discussion.

After the coating process, the morphology of the material is shown in Figure 1f–h. It
can be observed that the surface of lithium cobalt oxide is covered with a lithium fluoride
coating layer. High-resolution transmission electron microscopy was employed to analyze
the physicochemical properties of the material. As shown in Figure 1, the lattice spacing in
the electrode material is 2 Å, corresponding to the (104) crystal plane of the LCO materials.
Within the coating layer, it is observable that the crystal plane has a lattice spacing of 2.32 Å,
aligning with the (111) crystal plane of lithium fluoride. This serves as evidence for the
existence of lithium fluoride. Evidence for the presence of lithium fluoride via XRD and
XPS will be provided in the later discussion.

An Energy Dispersive Spectrometer (EDS) was utilized to explore the distribution of
LiF coating layers. As shown in Figure 2a−d, the O and F elements distribute evenly on
the surface of LCO, which agrees with the location of Co elements. This demonstrates the
uniformity of the LiF nanoshells. The Energy Dispersive X−ray Spectroscopy (EDX) result
indicates that the contents of F reach about 0.76% (Figure S1). Also, X-ray diffraction (XRD)
was conducted to further explore the LCO change before and after the coating treatment.
As shown in Figure 2e, the XRD patterns of LCO and LCO@LiF exhibit almost the same
peaks, and they both match well with LiCoO2 (JCPDS No. 77-1370). The result further
proves that our method did not cause adverse effects on LCO. The characteristic XRD
peaks of LiF were not observed in the LCO@LiF patterns, which is probably due to the tiny
amount of LiF. To further demonstrate the existence of LiF species, the LCO materials with
more LiF species (2 wt% and 4 wt%) were characterized (Figure 2f). It was found that the
XRD results of LCO@LiF (2%) and LCO@LiF (4%) exhibit the characteristic peaks of LCO
and LiF, indicating the presence of LiF originating from the reaction between LCO and TFA.
Also, as the amount of trifluoroacetic acid (TFA) increases, the intensity of the characteristic
peaks of lithium fluoride rises. This is attributed to the reaction between more TFA and
lithium cobalt oxide, which leads to the generation of more LiF.
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To further reveal the influence of the LiF coating on the cell parameters of LiCoO2,
the Rietveld refinement was applied to the LCO and LCO@LiF (Figure 3a,b). The refined
XRD results are presented in Table 1. It is evident that the refined wR values are 2.585%
and 2.147%, respectively, suggesting that the refined outcomes are reasonable and within
acceptable limits. The I(003)/I(104) value and (I(006) + I(102))/I(101) value of LCO are
almost the same as those of LCO@LiF, indicating the nearly identical Li/Co anti-site and
hexagonal order. The c/a ratio of the electrode material remains around 4.993 before and
after coating. Moreover, the unit cell parameters of lithium cobalt oxide and lithium cobalt
oxide coated with lithium fluoride are nearly identical, indicating that the LiF coating
treatment did not impose any detrimental effects on the lattice structure. For example, the
c lattice parameter in the LCO cell is 14.062 Å, while the c lattice parameter of LCO@LiF is
14.056 Å. And the values in the unit cells of lithium cobalt oxide and lithium cobalt oxide
coated with lithium fluoride are both around 2.81 Å, indicating no significant changes. All
the results suggest the LiF coating process did not cause detrimental effects on the crystal
structure of the LCO material.

Table 1. Lattice parameters of LCO@LiF and LCO obtained from Rietveld refinements.

Atom Site x y z Occupancy

LCO@LiF (wR = 2.147% GOF = 1.11) Space group: R-3m
Lattice parameters: a = b = 2.81492 Å, c = 14.05559 Å, V = 96.452 Å3

Li 3a 0.00000 0.00000 0.50000 1
Co 3b 0.00000 0.00000 0.00000 1
O 6c 0.00000 0.00000 0.26997 1

LCO (wR = 2.585% GOF = 1.22) Space group: R-3m
Lattice parameters: a = b = 2.81608 Å, c = 14.06196 Å, V = 96.575 Å3

Li 3a 0.00000 0.00000 0.50000 0.991 (11)
Co 3b 0.00000 0.00000 0.00000 0.996 (9)
O 6c 0.00000 0.00000 0.26000 1
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X-ray photoelectron spectroscopy (XPS) of LiCoO2@LiF and LCO was also conducted
to investigate the valence of surface elements. As demonstrated in Figure S2, the survey scan
XPS spectra of LCO have signals of Li, Co, O and C, which come from the LiCoO2 materials
and absorbed carbon. The LCO@LiF exhibits the existence of Li, Co, O and F, proving the
existence of LiF nanoshells. High-resolution XPS spectra of Co 2p, F 1s, C 1s and O 2p were
also collected. As shown in Figure 3c, the LCO has almost the same Co 2p spectra as the
LCO@LiF, indicating that the coating process has almost no effect on the chemical bonding
of Co. Specifically, the Co spectra of LCO and LCO@LiF both have two main peaks relative
to Co 2p3/2 and Co 2p1/2 [37,52,53]. Furthermore, the two main peaks can be deconvoluted
into four subpeaks (Figure S3). Specifically, for LCO@LiF, the subpeaks around 779.8 eV and
794.6 eV are relative to Co3+, while the subpeaks around 781.32 eV and 796.15 eV correspond
to Co2+. For LCO, the subpeaks of Co3+ are located at 779.82 eV and 794.89 eV, while the
peaks of Co2+ appear at 780.76 and 796.24 eV [52,53]. The small binding energy shift between
the two samples should be ascribed to the changed chemical environment of Co in LCO
and LCO@LiF. As for the F element (Figure 3d), there exists a main peak at 685 eV in the
F 1s spectra of LCO@LiF, indicating the existence of LiF [53]. In addition, the C 1s spectra
exhibits two main peaks located at 289.6 eV and 284.5 eV (Figure 3e), corresponding to
carbonate species of Li2CO3 and adventitious carbon [51–54]. The LCO@LiF exhibits a low
peak intensity of carbonate species of Li2CO3, indicating that our method decreased the
residual lithium on the surface of LCO. The result implies that the lithium fluoride coating
layer is derived from the reaction between TFA and surface residual lithium on the surface
of LCO, confirming our speculation. The O 1s spectra shows two main peaks at 529.39 eV
and 531.24 eV (Figure 3f), corresponding to Co-O and absorbed OH− [55,56]. After the
coating treatment, the peak at 531.24 eV decreases slightly, which may be ascribed to the
reduced residual lithium, agreeing with the C 1s spectra. Above all, the XPS results further
demonstrate that our method has a positive effect on LCO when the LiF species exists on
the surface.
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It is well known that LiF could be regarded as a good protective coating layer with
high lithium-ion conductivity, which inspired us to explore its application in lithium-ion
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batteries. Figure 4a shows the first charge/discharge curves of the LCO and LCO@LiF
in half-cell scenarios between 3 and 4.5 V. The first discharge specific capacity of the
LCO@LiF and LCO was 170.1 mAh·g−1 and 170.9 mAh·g−1, respectively, indicating that
the LiF nanoshells did not have a negative impact on the capacity. The curve shapes
have nearly no difference between the two curves in the first cycle, indicating that the
LiF nanoshells have no adverse impact on the electrochemical properties. Notably, the
coulombic efficiency of the LCO@LiF (95.28%) is higher than that of the LCO (93.81%),
implying that the LiF nanoshells could hinder the side reaction. When the cycling number
increases, the LCO@LiF exhibits superior discharge specific capacity than the bare LCO.
For example, LCO exhibits the specific discharge capacity of 174.5 mAh·g−1 at the 20th
cycle, which is higher than the bare LCO (144.8 mAh·g−1) (Figure S4). At the 50th cycle,
the LCO@LiF (166.9 mAh·g−1) still exhibits advantages over bare LCO (107.2 mAh·g−1)
in the discharge specific capacity (Figure S5). After 100 cycles (Figure 4b), the bare LCO
exhibits severe voltage decay compared with the LCO@LiF, confirming the superiority of
LiF nanoshells. Figure 4c compares the cycling stability of LCO and LCO@LiF. Specifically,
the LCO@LiF exhibits 142.1 mAh·g−1, corresponding to 83.54% of the initial discharge
capacity, while LCO only retains 43.3% of the initial discharge capacity. In the dQ/dV curve
(Figures S6 and S7), during the cycling process, the peak shift of lithium cobalt oxide (LCO)
is noticeably larger than that of lithium cobalt oxide coated with lithium fluoride (LCO@LiF),
suggesting significant polarization and the occurrence of irreversible phase transitions and
energy losses in the lithium cobalt oxide material during the cycling process [57]. This
result strongly demonstrates the advantages of LiF coating layers. Compared with other
reported LCO-based samples, our LCO@LiF exhibits certain advantages in electrochemical
performance (Table S2).

To further reveal the mechanism behind the superior performance of LCO@LiF, the
transition metal dissolution of electrode materials after 100 cycles was tested through
inductively coupled plasma atomic emission spectroscopy (ICP-MS). It was found that the
LiF nanoshells greatly reduce the amount of Co3+ dissolved in the electrolyte (Table S4),
which explains the advantages of LiF nanoshells. Moreover, the TEM image (Figure S8)
shows that the cycled LCO@LiF still maintains a good surface coating layer after cycling.
In addition, the electrochemical performance of LCO with more LiF nanoshells was also
explored. As shown in Figure S9, the discharge specific capacity of LCO with 2 wt% LiF and
4 wt% LiF was reduced to 161.9 mAhg−1 and 107.6 mAhg−1, maybe due to the existence of
more inactive LiF species and the destruction of the LCO structure by excessive TFA [58,59].

The rate performance of the LCO@LiF and LCO was also investigated. As shown
in Figure 4d, LCO@LiF exhibited 140.2 mAh·g−1 at 5 C, while the LCO only delivered
108.5 mAh·g−1. This result confirms the elevated transportation dynamics of Li+. Moreover,
the charge-transfer impedance of the cathode samples was also tested before and after
cycling. As shown in Figure 4e,f, the LCO and LCO@LiF exhibit similar high-frequency
semicircles, demonstrating similar charge-transfer impedance before cycles. However,
after 100 cycles, the LCO@LiF exhibits much higher resistance than the bare LCO, which
hints that the high Li+ conductivity was brought by LiF and agrees with the result of
Figure 4d [60]. Figure S10 presents the corresponding equivalent circuit, depicting RCEI
as the resistance encountered by Li+ during its passage through the cathode–electrolyte
interphase, while Rct denotes the resistance associated with charge transfer. The sur-
face treatment resulted in a significant reduction in the values of both RCEI and Rct, as
compared to those exhibited by LCO (Table S3). All the above results clearly confirm
that the LiF nanoshells enhanced the Li+ conductivity and endowed LCO with enhanced
structural integrity for superior cycling stability at a high voltage of 4.5 V. Moreover, the
high-temperature performance tests demonstrate that the LiF coating can assist LCO in
maintaining excellent cyclic stability under harsh conditions (Figure 4g). Specifically, at a
1 C discharge rate, LCO@LiF can retain 83.29% of its initial specific capacity after 100 cycles,
while uncoated lithium cobalt oxide only retains 19.3%.
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Electrochemical performance of both pristine LCO and LCO@LiF in full−cell scenario: (h) cycling
stability at 1 C, (i) image of lighting an LED with a full cell. (j) Image of the LED light after 3 days of
operation with a full cell.

Moreover, the electrochemical performances of LCO@LiF obtained at 600 ◦C and
800 ◦C (referred to as LCO@LiF-600 and LCO@LiF-800, respectively) were also explored.
Relative to the first cycle, the LCO@LiF-600 sample exhibits a capacity retention rate of
68.46% after 100 cycles (Figure S11), which may be attributed to the unfavorable conditions
for the generation of the coating layer at this temperature [60,61]. As a comparison, the
LCO@LiF-800 exhibits a capacity retention rate of 78.21% after 100 cycles (Figure S11),
which is greater than that of LCO@LiF-600 (68.46%) but less than that of samples obtained
at 700 ◦C (83.54%), possibly due to the reduced coverage efficiency of the LiF coating layer
formation at higher temperatures [62]. Furthermore, we tested the rate performance of
the materials at 5 C (Figure S12). The results reveal that the discharge specific capacity of
LCO@LiF-600 (111.6 mAh·g−1) at 5 C is lower than that of LCO@LiF-800 (125.2 mAh·g−1),
both of which are lower than that of LCO@LiF (140.2 mAh·g−1). This suggests that 700 ◦C
is the optimal synthesis temperature for the LCO@LiF.

In addition, a full battery was tested with LCO as the positive electrode and prelithi-
ated graphite as the negative electrode under a positive-to-negative ratio of 1:1.1 (Figure 4h,
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Figures S13 and S14). The test results indicate that the capacity retention of lithium cobalt
oxide coated with lithium fluoride is 91.36% after 200 cycles at 1 C, which is significantly
higher than the uncoated electrode material (30.28%). Furthermore, the full LCO/graphite
battery can illuminate LED lights in children’s toys for a long time (Figure 4i,j), demonstrat-
ing the practicality of the LCO@LiF cathodes.

3. Experimental Section
3.1. Synthesis of LCO

LCO was synthesized through a sol–gel method from the reported literature [50].
Namely, lithium acetate and cobalt acetate were added to 30 mL water with a molar ratio
of Li: Co at 1.05:1. After stirring for 0.5 h, acrylic acid (AA) was added to the mixture with
the ratio of the total metallic ions charges/AA at 1:1. Afterwards, the system was heated at
75 ◦C until a purple gel was achieved. Finally, the gel was heated at 800 ◦C to obtain LCO.

3.2. Preparation of LCO @LiF

Two steps were needed for the preparation of LCO@LiF. Firstly, 7.31 µL trifluoroacetic
acid (TFA) was mixed with 0.5 g LCO under vigorous stirring conditions. Meanwhile,
the system was heated at 60 ◦C until the solvent was totally evaporated. Secondly, the
TFA-modified LCO was heated at 700 ◦C for 2 h with a heating rate of 5 ◦C/min to obtain
the final product, LCO@LiF, in which the weight percentage of lithium fluoride in the
material was 1%.

LCO with more LiF species was produced for comparison. Namely, 14.6 µL TFA was
utilized for the preparation of LCO@LiF (2 wt%) under the same other conditions as the
process for producing LCO@LiF, and 29.2 µL TFA was used for the LCO@LiF (4 wt%).

3.3. Characterization

Details are shown in the Supporting Information.

4. Conclusions

Above all, the cycling stability and rate performance of LCO were improved through a
surface engineering method. Specifically, a simple sol–gel approach followed by calcination
successfully converted the residual lithium to uniform LiF nanoshells on the surface of
LCO. Comparing the electrochemical measurement and material characterization results,
the improvement in LCO@LiF performance should be attributed to the following aspects.
First, the LiF coating layer can resist the erosion of substances such as hydrofluoric acid
in the electrolyte, stabilize the surface of the electrode material, and thereby improve the
cycling performance of the electrode material. Secondly, the coating layer can prevent
surface side reactions, suppress the leaching of transition metal ions, and maintain the
stability of the electrode material structure. Finally, the lithium fluoride coating layer has
good ion conductivity, which can improve the kinetic performance at the interface and
thereby enhance the rate performance of the electrode material. Our method underscores
the significance of surface engineering and paves the way for the development of highly
stable cathode materials for high-voltage applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29061414/s1, Figure S1. The EDX pattern of LCO@LiF.
Figure S2. XPS survey scan of LCO and LCO@LiF. Figure S3. High-resolution XPS spectrum of
Co in (a) LCO and (b) LCO@LiF. Figure S4. The charge/discharge curves of LCO@LiF at the 20th
cycle. Figure S5. The charge/discharge curves of LCO@LiF at the 50th cycle. Figure S6. The dQ/dV
curves of LCO@LiF in the voltage range of 3.0–4.5 V at 0.5 C and room temperature in half-cell
scenarios. Figure S7. The dQ/dV curves of LCO in the voltage range of 3.0–4.5 V at 0.5 C and room
temperature in half-cell scenarios. Figure S8. TEM image of the cycled LCO@LiF. Figure S9. The
cycling performance of LCO with 2 wt% and 4 wt% LiF. Figure S10. The equivalent circuit models
of the EIS fitting. Figure S11. Cycling stability of LCO@LiF-800 and LCO@LiF-600 at 0.5 C. Figure
S12. Charge/discharge curves of LCO@LiF-800 and LCO@LiF-600 at 5 C rate. Figure S13. The
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charge/discharge curves of LCO@LiF at the 1st cycle in a full cell. Figure S14. The charge/discharge
curves of LCO@LiF at the 200th cycle in a full cell. Table S1. The test results of basic physicochemical
data of the LCO and LCO@LiF samples. Table S2. The comparison of LCO@LiF with some reported
LCO materials. Table S3. Results of EIS fitting. Table S4. Co dissolution amount after cycling
measured by ICP-AES (based on the active material mass). References [34,63,63–70] are cite in the
Supplementary Materials.
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