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Abstract: The combination of Al nanoparticles (ANPs) as fuel and H2O2 as oxidizer is a potential
green space propellant. In this research, reactive force field molecular dynamics (ReaxFF-MD)
simulations were used to study the influence of water addition on the combustion of Al/H2O2. The
MD results showed that as the percentage of H2O increased from 0 to 30%, the number of Al-O bonds
on the ANPs decreased, the number of Al-H bonds increased, and the adiabatic flame temperature of
the system decreased from 4612 K to 4380 K. Since the Al-O bond is more stable, as the simulation
proceeds, the number of Al-O bonds will be significantly higher than that of Al-H and Al-OH bonds,
and the Al oxides (Al[O]x) will be transformed from low to high coordination. Subsequently, the
combustion mechanism of the Al/H2O2/H2O system was elaborated from an atomic perspective.
Both H2O2 and H2O were adsorbed and chemically activated on the surface of ANPs, resulting in
molecular decomposition into free radicals, which were then captured by ANPs. H2 molecules could
be released from the ANPs, while O2 could not be released through this pathway. Finally, it was
found that the coverage of the oxide layer reduced the rate of H2O2 consumption and H2 production
significantly, simultaneously preventing the deformation of the Al clusters’ morphology.

Keywords: Al nanoparticles; ReaxFF; combustion; hydrogen peroxide

1. Introduction

In recent years, with the development of missiles and aerospace technologies, it
has become essential to develop a green and high-efficiency propulsion system [1–4].
Conventional propellant fuels are primarily consisting of hydrazine (N2H4) and methylated
derivatives of hydrazine, etc. However, their disadvantages, such as extremely high toxicity,
carcinogenicity, high volatility, and risk of explosion, increase the cost and environmental
impact of these propellants during production, storage, and transportation [5,6]. Therefore,
the development of a more eco-friendly, lower-cost, and higher-performance propellant
composition has been a topical issue in space science.

H2O2 has been used as a monopropellant and a non-volatile oxidizer for rockets
since the 1940s [7–9]. Its complete decomposition releases only water vapor, oxygen,
and heat, with minimal environmental impact. This propellant offers the aerospace in-
dustry an attractive approach to using green propellants with greatly reduced toxicity
and low storage and disposal costs [10,11]. In monopropellant rocket systems, the de-
composition and combustion efficiency of H2O2 can be improved by using multiphase
catalysts [12]. In bipropellant rocket systems, high concentrations of hydrogen perox-
ide are used as oxidizers for different fuels (hydrocarbons, kerosene, alcohols, etc.) to
increase specific impulse and develop high-energy, environmentally friendly propellant
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formulations [13–18]. For example, Okninski reported a 3.5% improvement in specific
impulse and a 70% gain in density-specific impulse by using 98% H2O2, compared to
motors using N2O as an oxidizer [19].

On the other hand, as the third most abundant element in the earth’s crust, aluminum
has a very high energy density (30.5 kJ/g), low application costs, and environmentally
friendly and non-polluting use. For this reason, it is widely applied in various techno-
logical fields, including aerospace technology, automobiles, airplanes, and high-energy
materials [20–22]. Among the composite propellants, Al powder is often used as a metal
fuel to enhance the energy characteristics of propellants. The combination of ANPs with
conventional oxidizers, such as ammonium perchlorate (AP), 1,3,5-trinitro-1,3,5-triazinane
(RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX), 2,4,6-trinitrotoluene (TNT), etc. is also
very widely used in application research [23–27].

By contrast, solid–liquid hybrid propellants with Al as the fuel and H2O2 as the
oxidizer have been studied relatively little. Above all, solid–liquid hybrid systems are
safer for transportation, storage, and operation than solid systems and liquid systems.
Meanwhile, their specific impulse is generally higher than that of solid rockets, and the
density-specific impulse is higher than that of liquid rockets. Moreover, ANPs can obtain a
high exotherm (25.8 kJ/g) as well as yield only clean oxidation products (H2O, H2, O2, and
Al2O3) in the reaction with H2O2, which is why Al/H2O2 is a promising bipropellant for
development [28–30].

Zaseck et al. showed that the size of the aluminum particles was the most dominant
factor driving the combustion rate of the bipropellant, with the combustion rate exponent
increasing from ∼0.5 to ∼1.0 as the diameter of the Al particles decreased from 12 µm to
3 µm. Furthermore, the concentration of H2O2 had an important effect on the combustion
rate and combustion temperature, compared to the mixing ratio (O/F), which had the
least effect on the combustion rate [29]. The effect of H2O2 on the combustion properties
of aluminum-water mixtures was investigated by Sabourin et al. The linear combustion
rate increased from 9.6 cm/s to 58 cm/s at 3.65 MPa as the mass fraction of H2O2 was
increased from 0 to 32%, and the flame temperature increased by 600 K as the mass fraction
of H2O2 was increased from 0 to 35% under chemically proportioned conditions [30].
According to research, H2O2 usually undergoes spontaneous decomposition, and the main
product of decomposition is water. Hence, its concentration decreases over time, which
has a great impact on the combustion efficiency of the propellant [12]. In addition, ANPs
have a higher surface area relative to micron-sized Al particles, which contributes to faster
oxidation, while ANPs rapidly form an oxide shell on the surface in the presence of an
oxidizing agent, and the core-shell structure (Al@Al2O3) ultimately influences the adiabatic
flame temperature and reaction mechanism of the Al/H2O2 reaction [31,32]. As a result,
understanding the basic combustion mechanism of ANPs with H2O2 and the influence
of the percentage of water content on the reaction is crucial for enhancing propulsion
performance and energy efficiency.

Experimentally revealing the aforementioned combustion pathways, particularly at
the molecular/atomic level, is still quite difficult. Yet ReaxFF-MD simulations provide
much richer molecular/atomic details and have been widely used as an alternative to
combustion and pyrolysis experiments, etc. [33–38]. For example, ReaxFF-MD simulations
have successfully captured the atomic-level mass transfer and the reactive processes of
the oxidation of ANPs under high-temperature and high-pressure oxygen atmospheres,
which reveal the detailed mechanism of the oxidation of ANPs [39]. Zhao et al. revealed
the reaction mechanism of molten Al nano-droplets (ANDP) with H2O vapor at high tem-
peratures from an atomic perspective using ReaxFF. The influence of temperature, ANDP
particle size, and water vapor concentration on ANDP combustion was also considered [40].
Recently, the influence of ANPs as additives on the thermal decay mechanism of energetic
materials (EMs) and the evolution of ANPs during the thermal decomposition of EMs have
also been explored through reactive molecular dynamics simulations [41,42].
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Here, this work will use ReaxFF-MD simulations to investigate the influence of adding
different proportions of H2O on the combustion of Al/H2O2 by analyzing the number of
bonds, reaction products, intermediates, morphology of ANPs, and reaction trajectories of
the whole reaction process. In addition, it aims to explore the combustion mechanism of
Al/H2O2/H2O from the atomic perspective. The findings of this study will help to provide
a theoretical basis for an in-depth study of Al/H2O2 combustion and guide the design of
subsequent development of binary propulsion systems.

2. Results
2.1. Reactive Force Field (ReaxFF) Molecular Dynamics

ReaxFF is a molecular dynamics simulation method for chemical reactions, first pro-
posed in 2001 by van Duin et al. [43]. In the model of the reactive force field, the concept of
atom type in the classical force field no longer exists, and there is no connectivity between
the atoms in the system; instead, at the current moment, connectivity is determined by
calculating the bond order (BO) between any two atoms. As chemical bonds are broken
and created, the list of atomic connectivity is updated. Thus, it is a molecular force field
based on bond order [44,45]. The strength of the ReaxFF force field lies in its ability to
handle chemical reaction processes in larger systems on longer time scales and with an
accuracy approaching that of quantum chemical calculations. As a result, ReaxFF has been
widely used in the field of materials science for more than two decades, in areas such as
development and design.

2.2. Model Construction

All of the ReaxFF-MD simulations in this paper were performed in the large-scale
atomic/molecular massively parallel simulator (LAMMPS) package [46,47]. This work uses
the Al/C/H/O force field parameter set developed by Hong et al. [48]. The force field has
been successfully used to reveal the influence of carbon coatings on the oxidation of ANPs
and the combustion reaction of ANPs with oxidizing agents (O2, H2O, H2O2, etc.) [49,50].
First, an Al particle with a diameter of 2.8 nm and 675 atoms was constructed. The ANPs
were then placed in periodic boxes of 10.0 nm × 10.0 nm × 10.0 nm by Packmol, which
were surrounded by a random distribution of a predetermined amount of H2O2/H2O
molecules in different ratios [51]. The thickness of the vacuum layer between ANPs and
H2O2/H2O was set to 1.1 nm to prevent the initial chemisorption of molecules on the Al
surface. The model construction process and specific parameters are shown in Table 1 and
Figure 1, respectively.

Table 1. Model parameters of the simulation cells.

Molar Ratio (H2O) System Component Size (Angstrom3) Total Atoms

0 1000H2O2 + 675Al 100 × 100 × 100 4675
10% 900H2O2 + 100H2O + 675Al 100 × 100 × 100 4575
20% 800H2O2 + 200H2O + 675Al 100 × 100 × 100 4475
30% 700H2O2 + 300H2O + 675Al 100 × 100 × 100 4375
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2.3. Computational Details and Post-Processing

For the sake of optimizing the system structure, the system was first simulated at
1 K for 10 ps, heated up to 3000 K at a rate of 30 K/ps, and then simulated at 3000 K for
200 ps. The simulations were performed under the canonical ensemble (NVT, where N,
V, and T represent the total number of particles, the system volume, and the temperature,
respectively), and the temperature of the system was controlled using a Nosé-Hoover
thermostat, with a combined time for all simulations of 310 ps. In addition, a microcanonical
ensemble (NVE) was performed for each system to simulate the change in temperature of
the system in an adiabatic state with 250 ps. The time step for all simulated processes was
set to 0.2 fs. Bond breakage and formation were determined by the method of the bond
order cutoffs, where the cutoff value was set to 0.3.

According to the previous literature, the set values of the above parameters are reli-
able [44,48]. High temperature only affects the reaction rate and has little influence on the
reaction mechanism in ReaxFF-MD simulations [52]. Hence, we used high-temperature
simulations during the combustion process. Since the experimental time is much longer
than the simulation time, the number of interatomic collisions is increased by increasing the
temperature, which improves the combustion efficiency and reduces the simulation cost.
Meanwhile, the evolution of chemical species and the number of bonds in the simulations
were post-processed by using a Python program, and the simulation results were visualized
with OVITO [53].

3. Discussion
3.1. Influence of the Addition of H2O on the Combustion of ANPs in H2O2

Propulsion grade H2O2 has a long history of safe production and application in
power and propulsion units, and optimum performance is obtained by using the highest
concentration (i.e., 100% H2O2). Nevertheless, the experimental H2O2 contains a little water
in a reduced concentration due to the compromise between the production cost and the
performance obtained and the spontaneous decomposition of H2O2 over time. Therefore,
we established four systems of Al/H2O2/H2O with different percentages, containing 0,
10%, 20%, and 30% of water, respectively, and carried out combustion simulations at 310 ps
for the four systems.

Al-O bonds and Al-H bonds are prevalent in the combustion of Al/H2O2, and the
rate of its formation reflects the rate of production of aluminum oxide and aluminum
hydride. Figure 2 shows the comparative analysis of the number of Al-O, and Al-H bonds
in different systems, and it suggests that the generation curves of Al/H2O2/H2O systems
with different proportions are significant differences. As shown in Figure 2a, the number
of Al-O bonds reaches an extreme value later, as the water content increases. In addition,
the final amount of Al-O bonds produced decreases with increasing water. The growth
curve of the Al-H bond is somewhat different in that it peaks first and then declines after
reaching the maximum value (Figure 2b). This indicates that the intermediate product of
the reaction is the Al-H bond, which breaks after reaching a maximum value to form other
products. When the time exceeds 200 ps, the number of Al-H bonds levels off, and the
reaction essentially reaches equilibrium. In contrast to the evolution in the number of Al-O
bonds, there is a delay in reaching the maximum value of Al-H bonds as the proportion
of H2O to the reactants increases, and the final Al-H bonds produced increase with the
water content.

H2O2 is more oxidizing than H2O, and the addition of water changes the reaction
mechanism of the Al/H2O2 mixture. The evolution of the number of major chemical
bonds in the Al/H2O2/H2O system with different water contents is shown in Figure S1
(Supplementary Materials). In the initial stage of the process, the decrease in the O-O bonds
implies the consumption of H2O2, and the decrease followed by a slow rise in the H-O
bonds implies the decomposition of H2O2 and H2O, with subsequent regeneration of water.
We also found that, as water increased, H-H bonds became more numerous, whereas O-O
bonds became less. The H-H bond is mainly associated with the formation of the product
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H2, and the source of H2 is formed due to the breaking of the Al-H bond. It suggests that
the increase in water content increases the production of the product H2 by influencing the
number of Al-H bonds while hindering the production of O2.
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Analyzing the evolution of the number of products is helpful in understanding the
reaction mechanism of the Al/H2O2/H2O system. Al and its oxides are usually found in
the form of clusters. Therefore, we count them by the number of chemical bonds. Here
are the equations derived from the relationship between the number of molecules and the
number of bonds.

N(Al (OH)3) ≈ (Nbond(O-H) − 2N(H2O2) − 2N(H2O) − N(•OH) − N(•OOH))/3 (1)

N(AlH3) = (Nbond(Al-H))/3 (2)

In this equation, N(Al (OH)3), N(H2O2), N(H2O), N(•OH), N(•OOH), and N(AlH3) de-
note the number of molecules of Al(OH)3, H2O2, H2O, •OH, •OOH, and AlH3. Meanwhile
Nbond(O-H) and Nbond(Al-H) represent the number of O-H and Al-H bonds, respectively.
There are very few molecules (e.g., H4O2) on the right-hand side of Equation (1), which
can be ignored, so Equation (1) uses “≈”. To investigate the influence of water addition on
the Al/H2O2 reaction mechanism, we calculated the number of products of the Al/H2O2
system containing 30% H2O as a function of time through codes and equations.

As shown in Figure 3, we can simply divide the whole reaction process into two stages.
In the early stage of the reaction, H2O and H2O2 were adsorbed onto the surface of the
ANPs and reacted to form AlH3, Al (OH)3, and differently coordinated Al oxides (Al[O]1,
Al[O]2, Al[O]3, Al[O]4, Al[O]5). However, over time, as the adsorption sites on ANPs
gradually decreased, Al-O, Al-H, and Al-OH bonds started to compete for the adsorption
sites. Since the bond energy of Al-O (501.9 ± 10.6 kJ mol−1) is far higher than that of
Al-H (288.0 ± 13.0 kJ mol−1), the bonding of Al-O bonds is more stable [54]. Thus, the H
atoms began to be extruded from the ANPs at about 75 ps. The gradual decrease in the
amount of AlH3 and the steady increase in the number of Al-O bonds were accompanied
by the transformation of the lower-coordinated Al oxides (Al[O]0 and Al[O]1) into higher-
coordinated Al[O]3, Al[O]4, and Al[O]5. With sufficient simulation time, it can be predicted
that, eventually, the coordination number of the majority of Al oxides will become six,
consistent with the coordination number of Al in the stable oxidation product Al2O3.
Figure 3b reveals that H2O2 starts to decrease from around 20 ps until it is completely
consumed at around 175 ps, while H2O starts to decrease from around 23 ps until it reaches
a minimal value at around 68 ps. This indicates that a bit of H2O is also involved in the
combustion reaction with Al, whereas the reactivity of H2O is much lower than that of
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H2O2, and more energy has to be absorbed to reach the reaction barrier of Al/H2O, so the
onset of the consumption of H2O is slightly delayed compared to that of H2O2.
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Interestingly, we compared the H2O2 consumption, H2O, H2, and O2 formation curves
for systems with different water contents. As seen in Figure 4, in the early stage of the
reaction, the temperature was not too high for water to have much influence on the
consumption of H2O2, but after about 50 ps, there was a difference in the rate of H2O2
consumption. The higher the proportion of H2O, the lower the rate of consumption of
H2O2. There was a slight decrease in the amount of water early on and a rapid increase in
the number of water molecules after 55 ps, until it stabilized after about 200 ps (Figure 4b).
It could be assumed that Al reacted with H2O at the beginning of the reaction. As the
reaction progressed, the system began to produce more H2O than the number of H2O
molecules consumed, and the final yield of H2O decreased as the concentration of H2O2
decreased. Figure 4c,d correspond to the analysis of the number of bonds in Figure S1,
indicating that the increase in water content increases the production of the final product
H2 while hindering the production of O2.

3.2. Atomic Perspective of the Reaction Mechanism of ANPs/H2O2/H2O

We can observe the combustion of Al/H2O2 from an atomistic perspective by capturing
the microscopic trajectory of the reaction. Figure 5 presents a snapshot of the reaction of
H2O2 and H2O on the ANPs surface in the Al/H2O2 system with 30% water. We found
that both H2O2 and H2O molecules were constantly approaching the ANPs and then were
adsorbed on the surface. During this process, H2O2 and H2O molecules were chemically
activated, whereby the molecules decomposed into OH radicals and H radicals and were
captured by ANPs. The Al-OH bond was unstable and quickly broke to form an Al-H bond
with an Al-O bond. Hence, the number of Al-H and Al-O bonds was much higher than the
number of Al-OH bonds as the simulation time increased.

ANPs and H2O2 are used as bipropellants mainly owing to the fact that the products
of the reaction are green and non-polluting, so we focus on analyzing the generation routes
of their products: H2O, H2, and O2. Figure 6 shows a snapshot of H2O generation from
the surface of ANPs. We could see that the reaction starts with the O and H atoms on the
ANPs, approaching each other to form Al-OH bonds, then combining with the H on the
nearby ANPs to form H2O, which is eventually desorbed from the surface of the ANPs.
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The two paths for producing H2 are shown in Figure 7. In the first pathway, the H
atoms on the surface of ANPs come close to each other, then form H-H bonds, and finally
release from the surface of ANPs to generate H2 molecules. The other mechanism is that
the free H radical approaches the H2O2 molecule in solution and then combines with an H
of the H2O2 molecule to form an H2 molecule and a peroxide hydroxyl radical (•OOH).
The reaction proceeds as in Equation (3).

H + H2O2 → H2 + HO2 (3)

Since the number of H radicals is relatively small, H2 is mainly generated by the
first pathway.

Similarly, Figure 8 shows the two pathways for generating O2. Nevertheless, unlike
the production of H2, O2 does not release from the surface of ANPs, which also indicates
that the Al-O bond is much more stable than the Al-H bond.

H2O2 + OH→ H2O + HO2 (4)

HO2 + OH→ H2O + O2 (5)

HO2 + H2O→ H3O + O2 (6)

Both mechanisms have the same reaction in the first stage, i.e., Equation (4), in which
OH radicals in solution attack the H2O2 molecule to form an H2O molecule and an OOH
radical. The difference is that in the first mechanism, i.e., Equation (5), the OH radical
attacks the OOH radical again followed by the generation of an H2O molecule and an O2
molecule. The second mechanism, Equation (6), involves the H2O molecule continually
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approaching the OOH radical and then seizing one of its H, eventually forming an H3O
radical with an O2 molecule.
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3.3. Adiabatic Combustion Processes in the ANPs/H2O2/H2O System

Under experimental conditions, H2O2 usually contains water in varying proportions,
so we wanted to investigate the influence of the addition of H2O on the temperature at
which Al/H2O2 burned. The simulation under the NVT ensemble and constant heating
rate cannot reflect the influence of H2O on combustion. To address this problem, we
simulated 250 ps with an NVE ensemble to obtain the adiabatic flame temperature of the
combustion. Figure 9a shows the evolution of temperature over time for systems containing
different proportions of H2O. We considered the equilibrium temperature at the end of
the simulation as the adiabatic flame temperature of the combustion system. Then, it was
found that the temperature of the systems all reached extreme values after 100 ps and
remained stable, while the temperature of the adiabatic flame decreased with the increase
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in the percentage of H2O. This means that the adiabatic flame temperature decreased from
4612 K to 4380 K as the percentage of water increased from 0 to 30%.
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3.4. Influence of the Heating Speed on the Combustion of the System

To obtain reliable results of the simulations, we simulated the Al/H2O2/H2O (30%)
system with 60 K/ps, 30 K/ps, and 15 K/ps heating speed. Figure 10 shows the comparative
analysis of the number of Al-H bonds, Al-O bonds, H2, and O2 in systems with different
heating speeds. As shown in Figure 10a,b, in the early stages of the reaction, the rate of
Al-O and Al-H bond formation is positively correlated with the heating speed. The peak of
the Al-H bonds is also delayed as the heating speed decreases. We also found a plateau in
Al-O bonds formation at a heating rate of 15 K/ps. It is not difficult to notice that the rate of
early Al-O bonds formation actually decreases briefly at 30 K/ps and 60 K/ps heating rates.
This may be due to the fact that the final number of Al-O bonds is close to each other at
temperatures of 750 K~1500 K, and the lower heating rate amplifies the appearance of this
plateau period. At the heating rate of 60 K/ps, the yield of H2 molecules is significantly
reduced. This is attributed to the fact that the system reaches high temperatures early,
prompting the reaction between H2 molecules and O2 molecules to form H2O.

3.5. Influence of the Oxide Layer on the Combustion of the System

Considering the passivation of Al in the natural environment, we coated the surface
of ANPs with an oxide layer in the simulation. Al particles with a diameter of 2.8 nm
were placed in a periodic box of size 10.0 nm × 10.0 nm × 10.0 nm containing 200 O2
molecules and then subjected to NVT simulations at 200 K for 50 ps, cycling six times.
The detailed process is shown in Figure S2. Eventually, the Al675O314/H2O2/H2O system
was obtained. The Al675O314/H2O2/H2O system was then simulated under the same
simulation conditions as the Al/H2O2/H2O system.

As shown in Figure 11, we found that the coverage of the oxide layer resulted in a
decrease in the reactive aluminum content of the ANPs, so the rate of H2O2 consumption
decreased. Due to the existence of the oxide layer and the fact that the Al-O bond is more
stable than the Al-H bond, the O atoms occupied the reaction site of the ANPs earlier,
resulting in the H atoms on the ANPs reaching a maximum value earlier, and the H content
on the Al was lower. Since the release of H2 from the surface of ANPs is the most dominant
source of H2 in the product, ANPs that have been passivated contain more O atoms. Hence,
the reaction favored the evolution of H2O from the surface of ANPs over the production of
H2. The yield of H2O increased in the systems with an oxide layer, while the yield of H2



Molecules 2024, 29, 1567 11 of 16

became poor. Understandably, due to the passivation of Al in the initial stage, the active
aluminum content of the ANPs was reduced, the Al675O314/H2O2/H2O system was less
energetic, the reaction released less energy (22% less compared to Al675/H2O2/H2O (30%)
system), and the adiabatic flame temperature decreased from 4357 K to 3256 K.
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The evolution of the morphology of ANPs with different molar ratios of Al/H2O2/H2O
systems and systems with oxide layer is shown in Figure 12. In connection with Figure 13,
we found that the violent combustion of ANPs in the H2O2/H2O system also changed
its morphology. The temperature of the system gradually increased with time, and the
epitaxial growth of the chain-like structure of ANPs became more apparent, accompanied
by an increase in the internal voids. When the temperature reached the melting point of
Al (about 933 K), many small fragments of Al clusters were also generated. However, as
the system temperature continued to increase, the chain-like structure of ANPs gradually
disappeared, the volume contracted, agglomeration occurred, and the number of Al clusters
gradually decreased. The addition of H2O also influences the morphological evolution of
ANPs. At 50 ps, the morphology of ANPs in the Al/H2O2/H2O system with 30% H2O was
only slightly deformed. As the H2O content decreased, the deformation of ANPs increased
and even cavities were formed. In addition, the ANPs would also separate to form more
and more small fragments. While the addition of the oxide layer reduced the reaction
energy release of the system, the ANPs deformed even less and basically did not rupture or
decompose into small fragments.
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4. Conclusions

In summary, we simulated the effect of H2O addition on Al/H2O2 combustion by
using the ReaxFF force field. Here are several significant findings and conclusions from
this paper:

(1) With the percentage of H2O increased from 0 to 30%, the number of Al-O bonds on
the ANPs decreases, and the number of Al-H bonds increases. Meanwhile, the increase in
the water content would increase the production of the final product H2 and hinder the
production of O2.

(2) The combustion mechanism of the Al/H2O2/H2O system was investigated from an
atomistic perspective. H2O2 molecules and H2O molecules were adsorbed on the surface of
ANPs, then chemically activated and decomposed into OH radicals and H radicals, which
were finally captured by ANPs. The Al-O bond is more stable than the Al-H bond, which
is why H2O and H2 could be generated and desorbed from the ANPs surface, while O2
could not be generated through this pathway. H and O would compete for the reaction
sites of ANPs, whereby the number of Al-O bonds would be far higher than that of Al-H
and Al-OH bonds as the simulation proceeds, and Al[O]x would be converted from low to
high coordination.

(3) The effect of the content of H2O on the adiabatic flame of the Al/H2O2/H2O system
was investigated. The results showed that the adiabatic flame temperature decreased from
4612 K to 4380 K as the percentage of water increased from 0 to 30%.

(4) In addition, the influence of different heating speed on the combustion of the
system was investigated. The simulation results indicated that the heating speed only
affected the early formation of Al-O and Al-H bonds, but not their final number. A high
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heating rate promoted the reaction between the H2 molecules and the O2 molecules to
form H2O.

(5) Finally, the combustion of passivated ANPs with H2O2/H2O was simulated. The
coating of the oxide layer would reduce the rate of H2O2 consumption and H2 production
significantly while preventing drastic deformation of the ANPs’ morphology.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29071567/s1. Figure S1: Evolution of the number
of H-H, H-O, Al-H, Al-O, O-O bonds for each system. Figure S2: Formation of oxide layer on the
surface of ANPs.
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