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Abstract: A novel Lycopodium alkaloid, lycocasine A (1), and seven known Lycopodium alkaloids (2–8),
were isolated from Lycopodiastrum casuarinoides. Their structures were determined through NMR,
HRESIMS, and X-ray diffraction analysis. Compound 1 features an unprecedented 5/6/6 tricyclic
skeleton, highlighted by a 5-aza-tricyclic[6,3,1,02,6]dodecane motif. In bioactivity assays, compound 1
demonstrated weak inhibitory activity against acid-sensing ion channel 1a.

Keywords: Lycopodiastrum casuarinoides; Lycopodiaceae; Lycopodium alkaloid; acid-sensing ion
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1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by the immune
system’s attack on the synovial membrane of joints, leading to inflammation and, in severe
cases, permanent damage and disability [1]. Epidemiological studies indicate that around
1% of the global population is afflicted with rheumatoid arthritis. The primary treatment
strategy focuses on controlling synovitis, though long-term medication use does not cure
the disease and often results in serious side effects [2].

Recent studies showed that acid-sensing ion channel 1a (ASIC1a) was a new thera-
peutic target for rheumatoid arthritis [2,3]. The ASIC1a, part of the degenerin/epithelial
sodium channel family, is activated under acidic conditions and plays a crucial role in man-
aging physiological and pathological states, including inflammation, acidosis, ischemia,
and hypoxia [3]. Despite the existence of compounds with notable ASIC1a inhibitory
activity, few are derived from plant sources [4], highlighting the significance of exploring
plant-based natural products as ASIC1a inhibitors.

Given the long-established connection between rheumatoid arthritis and palindromic
rheumatism [5], and the effectiveness of numerous traditional Chinese medicines in treating
rheumatism [6], our research aimed at identifying ASIC1a inhibitors from herbal sources
for rheumatoid arthritis therapy. Lycopodiastrum casuarinoides is a perennial evergreen
herb traditionally used for rheumatism treatment [7]. L. casuarinoides produces Lycopodium
alkaloids, the characteristic metabolites of the Lycopodiaceae family [8–10], known for their
diverse structures and unique skeletons [9,11–14]. Studies have indicated that L. casuari-
noides is particularly rich in lycodine-type Lycopodium alkaloids [15–20], some exhibiting
significant anti-cholinesterase [21,22], neuroprotective [23], and cytotoxic activities [21].

Our research team has been engaged in the discovery of structurally novel and bio-
logically active Lycopodium alkaloids. Previously, we reported fourteen new Lycopodium
alkaloids from L. casuarinoides and their Cav3.1 channel inhibitory activity [24]. Further
study on the chemical constituents of L. casuarinoides led to the isolation of a new Ly-
copodium alkaloid, lycocasine A (1) (Figure 1), and seven known Lycopodium alkaloids
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(2–8). Lycocasine A (1) exhibits a novel 5/6/6 tricyclic skeleton, characterized by a 5-aza-
tricyclic[6,3,1,02,6]dodecane motif. Owing to the traditional utilization of L. casuarinoides
described above, compounds 1–8 were evaluated for ASIC1a inhibitory activity and 1
displayed a weak inhibitory effect. This paper elaborates on the isolation, structural eluci-
dation, possible biosynthetic pathway, and ASIC1a inhibitory activity of these compounds.
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Figure 1. Structures of compounds 1–8.

2. Results and Discussion
2.1. Structure Elucidation

Lycocasine A (1) was isolated as colorless needle-shaped crystals. Its molecular
formula was established as C18H24N2O4 through HRESIMS m/z 333.1812 ([M + H]+; calcu-
lated for C18H25N2O4

+, 333.1809), indicating the presence of eight double-bond equivalents
(DBEs). The IR spectrum displayed the presence of one OH/NH (3429 cm−1) [25,26], one
unsaturated lactam (1694 cm−1) [27], and one carbonyl group (1735 cm−1) [28]. The 1H
NMR data (Table 1) revealed an ABX spin system associated with one monosubstituted
double bond at δH 6.10 (ddd, J = 17.5, 10.7, 7.1 Hz, 1H), 5.15 (br d, J = 17.5 Hz, 1H), and
5.11 (br d, J = 10.7 Hz, 1H), one vinylic proton at δH 5.48 (br d, J = 6.3 Hz, 1H), one vinylic
methyl at δH 1.59 (s, 3H), one methoxy group at δH 3.66 (s, 3H), and two N-methyls at δH
2.04 (s, 3H) and 2.03 (s, 3H). The 13C NMR and DEPT data (Table 1) revealed the presence
of eighteen carbon atoms within the molecule, as follows: four methyls (two N-methyls at
δC 41.5 and 36.2, one methoxy group at δC 51.4), three methylenes (one olefinic at δC 116.5),
four methines (two olefinic at δC 138.5 and 124.3), and seven nonprotonated carbons (three
olefinic at δC 160.2, 133.4, and 126.9, two carbonyls characteristic of amides or esters at
δC 166.0 and 165.3, one carbinolamine moiety at δC 87.0, and one nitrogen-bearing at
δC 62.5). The count of six olefinic carbons and two carbonyl groups contributed to five
DBEs, suggesting that compound 1 features a tricyclic framework.

Table 1. 1H (800 MHz) and 13C (200 MHz) NMR data of compound 1 (δH in ppm, J in Hz).

No.
1

δH δC

1 166.0
2 165.3
3 126.9
4 160.2
5 87.0
6a 2.03, br d (13.7) 40.7
6b 1.54, br dd (13.7, 5.2)
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Table 1. Cont.

No.
1

δH δC

7 2.31, m 38.7
8 5.48, br d (6.3) 124.3

10a 5.15, br d (17.5) 116.5
10b 5.11, br d (10.7)
11 6.10, ddd (17.5, 10.7, 7.1) 138.5
12 2.66, br d (7.1) 49.1
13 62.5

14a 2.10, d (17.9) 30.6
14b 2.06, d (17.9)
15 133.4
16 1.59, s 22.2

N-Me(a) 2.04, s 41.5
N-Me(b) 2.03, s 36.2

OMe 3.66, s 51.4
NH 8.76, s
OH 5.74, br s

The planar structure of 1 was determined through 2D NMR correlations (Figure 2).
The 1H−1H COSY correlations identified a single spin system as follows: H2-10/H-11/H-
12/H-7(H-6b)/H-8. The HMBC correlations from N-Me(a) to C-13 and N-Me(b) and from
N-Me(b) to C-13 demonstrated their linkage via the Nβ atom. The HMBC cross-peaks from
H-11 to C-13, from H-12 to C-13 and C-4, from H-6a to C-5 and C-4, and from H-6b to C-5,
along with the 1H−1H COSY correlations of H-12/H-7/H-6b, constructed the ring B. The
monosubstituted ∆10(11) double bond was connected to ring B through C-12, as revealed
by the 1H−1H COSY cross-peaks of H2-10/H-11/H-12. The ring D was established by the
HMBC cross-peaks from H3-16 to C-15, C-14, and C-8, and from H2-14 to C-13 and C-4,
together with the 1H−1H COSY cross-peaks of H-12/H-7/H-8. The HMBC correlations
from 5-OH (δH 5.74) to C-6, C-5, and C-4 and from the NαH proton (δH 8.76) to C-4 and C-5,
along with the chemical shift of C-5 (δC 87.0), fixed 5-OH and NαH at C-5, which further
confirmed the presence of a carbinolamine moiety. Subsequently, the HMBC correlations
from the NαH proton (δH 8.76) to C-1 (δC 166.0), C-3, and C-4 not only indicated the
presence of the amide group and ∆3(4) double bond but also constructed the five-membered
ring A. The unplaced fragment was attributable to a methyl formate group by the HMBC
cross-peak from the OMe (δH 3.66) to C-2 (δC 165.3) and positioned at C-3. Therefore, the
planar structure of 1 with a novel 5/6/6 tricyclic skeleton was delineated.
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The relative configuration of 1 was elucidated using ROESY analysis (Figure 2). The
correlation of H-11/H-6b indicated the β-oriented H-12. The β-orientation of 5-OH was
defined via the ROESY correlation of 5-OH/H-14a. Single-crystal X-ray diffraction, employ-
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ing Cu Kα radiation, conclusively established the structure and determined the absolute
configuration as 5R,7R,12R,13R [Flack parameter = −0.02(10)] (Figure 3).
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Biogenetically, compound 1 is hypothesized to originate from huperzinine (2) [29,30],
a co-isolated, well-known Lycopodium alkaloid (Scheme 1). The initial step was the epoxida-
tion [31] of the ∆2(3) double bond of 2 to yield intermediate i. Key semipinacol rearrange-
ment [31,32] in i led to ii with a rearranged five-membered ring A. Finally, oxidation [33]
and esterification [33] of the intermediate ii was followed by epoxidation [34], epoxide
cleavage [34], dehydration [35], and the formation of 1.
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Scheme 1. Plausible biosynthetic pathway for 1.

The known Lycopodium alkaloids were identified as huperzinine (2) [29,30], N-
demethylhuperzinine (3) [30], huperzine C (4) [29,36], huperzine D (5) [23], 8,15-
dihydrohuperzinine (6) [37], huperzine B (7) [38], and lycodine (8) [39] by comparing
their 1D NMR data with the literature.

2.2. ASIC1a Inhibitory Activity

Reflecting the traditional use of L. casuarinoides, compounds 1–8 were evaluated
for their ability to inhibit ASIC1a. Figure 4A shows that compound 1 and Amiloride
(positive control) at 50 µM inhibited ASIC1a currents (inhibition rates > 50%). In contrast,
compounds 2–8 displayed no obvious ASIC1a inhibitory effect (inhibition rates < 30%).
Figure 4B displays the statistical analysis of compound 1 (50 µM) and Amiloride (50 µM)
on ASIC1a based on the current ratio, indicating their inhibitory effects against ASIC1a
(*** p < 0.001 vs. control). Figure 5A,B show that compound 1 reduced ASIC1a currents in
a concentration-dependent manner, with an IC50 value of 48.74 ± 0.92 µM. Amiloride, the
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inhibitor of ASIC1a, was used as a positive control with an IC50 value of 16.15 ± 0.74 µM
(Figure 5C). Puerarin, a major compound isolated from the root of Pueraria lobata, inhibited
ASIC1a with an IC50 value of 9.31 µM [40]. Lindoldhamine, a plant bisbenzylisoquinoline
alkaloid from the leaves of Laurus nobilis, inhibited the ASIC1a with an IC50 value of
9 µM [41]. Sinomenine, a plant alkaloid from the roots of Sinomenium acutum, inhibits
ASIC1a (IC50~1 µM) [42]. Compared with Amiloride and these inhibitors of vegetal origin,
lycocasine A (1) showed a weak inhibitory effect on ASIC1a.
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Figure 4. The effects of compounds 1–8 and Amiloride on ASIC1a current. (A) Inhibition ratio of
compounds 1–8 (50 µM) and Amiloride (50 µM) on ASIC1a current. The data are presented as the mean
± SD (n ≥ 3). (B) Current ratio of compound 1 (50 µM) and Amiloride (50 µM) on ASIC1a. The data are
presented as the mean ± SD (n ≥ 3) and were analyzed by Student’s t-test; *** p < 0.001 vs. control.
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Figure 5. The effects of compound 1 and Amiloride on ASIC1a. (A) Illustrative complete-cell ASIC1a
currents caused by pH 6.0 with a consistent voltage of −60 mV without (blank control) and with
various levels of lycocasine A (1) and Amiloride. (B) Dose-response of the inhibitory action of
lycocasine A (1) on the peak current of ASIC1a. The data were fitted using a Hill equation and are
presented as the mean ± SD (n ≥ 3). (C) Dose–response curve of the inhibitory action of Amiloride
on the peak current of ASIC1a. The data were fitted using a Hill equation and are presented as the
mean ± SD (n ≥ 3).
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2.3. Molecular Docking

The interactions of lycocasine A (1) with the ASIC1a were revealed by the molecular
docking. Given the lack of mammalian ASIC1a co-crystallized with potent small-molecule
inhibitors, a chicken ASIC1 protein [43] (cASIC1 protein, PDB code: 6X9H, a homolog
of mammalian ASIC1a protein) was selected as the receptor protein for molecular dock-
ing. In Figure 6A,B, the docking result shows one pi-alkyl interaction of OMe carbon
atom with TYR341, an amino acid with which JNJ-799760 interacts in the crystal of the
cASIC1/JNJ-799760 complex, as reported by Michael Maher’s research team [43]. Ad-
ditionally, hydrogen bond interactions with ASP238, GLU239, and ASP346 and an alkyl
interaction with LEU349 were also observed. Moreover, the LibDockscore (45.60) and bind-
ing energy (−35.62 Kcal/mol) in the active site indicates the weak interactions between
lycocasine A (1) and cASIC1 protein. These results may elucidate the weak inhibitory effect
of lycocasine A (1) on ASIC1a.
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3. Materials and Methods
3.1. General Experimental Procedures

The melting point was identified utilizing a WRX-4 micro melting point machine
(Shanghai Yice Apparatus & Equipments Co. Ltd., Shanghai, China). UV spectra were
characterized using a Chirascan V100 spectrophotometer (Applied Photophysics Ltd.,
Leatherhead, Surrey, UK). Optical activity was characterized using a Rudolph Autopol
VI polarimeter (Rudolph Research Analytical, Hackettstown, NJ, USA). IR spectra were
acquired with a Bruker VERTEX 70 spectrometer (Bruker, Karlsruhe, Germany) using KBr
pellets, while NMR data were obtained using Bruker AV-400 MHz apparatuse (Bruker, Karl-
sruhe, Germany), Bruker AV-600 MHz apparatuse (Bruker, Karlsruhe, Germany) or Bruker
AV-800 MHz apparatuse (Bruker, Karlsruhe, Germany) with 5 mm probe. The chemical
shift values were outlined utilizing the residual DMSO-d6 (δH 2.50 ppm), chloroform-d1
(δH 7.26 ppm), or methanol-d4 (δH 3.30 ppm) as an internal standard for the 1H NMR
spectrometry and DMSO-d6 (δC 39.5 ppm), chloroform-d1 (δC 77.0 ppm), or methanol-d4
(δC 49.0 ppm) for the 13C NMR spectrometry (see Supplementary Materials (Tables S1–S8)
for detailed NMR parameters). HRESIMS were acquired on an Agilent 1290 UPLC/6540
Q-TOF mass spectrometer (Agilent Technologies, Palo Alto, CA, USA). Preparative HPLC
was performed with an Agilent 1260 (Agilent Technologies, Palo Alto, CA, USA) using
a XBridge-C18 column (5 µm, 1 × 25 cm, Waters Corporation, Milford, MA, USA). The
column chromatography employed a C18-CE column (40 µm, 5 × 31 cm, Zhejiang Acchrom
Technology Co., Ltd., Wenling, China) or silica gel column (200–300 mesh). The TLC plates
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(GF254) were obtained from Haixiang Chemical Co., Ltd. (Linyi, China). The alkaloids on
the TLC plates were detected by spraying the plates with Dragendorff reagent.

3.2. Plant Material

L. casuarinoides was obtained from Fujian Province, China, in March 2021. It was
authenticated by Prof. Xiao Cheng (the Kunming Institute of Botany, KIB). The specific
sample (No. 202103009) was stored in the Kunming Institute of Botany.

3.3. Extraction and Isolation

All parts of the L. casuarinoides (80 kg) were powdered and percolated with methanol
at ambient temperature for six days (90 L × 3). Following solvent removal under reduced
pressure, the obtained sample was separated using 1‰ H2SO4 and EtOAc. The H2O
residue was modified to pH 9.0 using 1‰ NaOH and extracted using trichloromethane to
give a crude total alkaloid (45 g). This fraction underwent silica gel column chromatogra-
phy, eluted with gradients of petroleum ether/acetone (8:2–0:10) and acetone/methanol
(9:1–0:10), resulting in three portions (Fr.A to Fr.C). Fr.A (19.8 g) underwent recrystal-
lization to yield compound 2 (18 g). The mother solution was partitioned by a C18-CE
column (methanol/H2O/NH3·H2O, 1:9:0.005 to 10:0:0.005) to afford three subfractions
(Fr.A.1 to Fr.A.3). Compound 8 (53 mg) was obtained from Fr.A.1 through the silica gel
column employing petroleum ether/acetone (6:4) as the eluent. Fr.A.2 was purified by
the silica gel column using trichloromethane/methanol (9.7:0.3 to 0:10) to obtain com-
pound 6 (8 mg). Fr.A.3 was isolated by a silica gel column (EtOAc/methanol, 9.7:0.3
to 0:10) and purified via HPLC eluting using methanol/H2O/NH3·H2O (4.5:5.5:0.005,
3.6 mL/min) to yield compound 1 (1.6 mg, tR = 20.5 min). Fr.B (4.3 g) underwent a C18-
CE column (methanol/H2O/NH3·H2O, 1:9:0.005 to 10:0:0.005) and recrystallization to
afford compound 3 (2.9 g). Fr. C (12.8 g) was chromatographed over a C18-CE column
(methanol/H2O/NH3·H2O, 1:9:0.005 to 10:0:0.005), resulting in the isolation of three frac-
tions (Fr.C.1 to Fr.C.3). Fr.C.1 underwent recrystallization to furnish compound 4 (0.9 g).
Fr.C.2 was chromatographed using a silica gel column (trichloromethane/methanol, 9.5:0.5
to 0:10) to give compound 7 (93 mg). Compound 5 (18 mg) was isolated from Fr.C.3 by a
silica gel column (EtOAc/methanol, 9.5:0.5 to 0:10).

Lycocasine A (1)

For the lycocasine A (1), the following apply: colorless needle-shaped crystals; mp
187–189 ◦C; [α]19

D +51.0 (c 0.16, MeOH); IR (KBr) νmax 3429, 2947, 2925, 1735, 1694, 1648,
1635, 1436, 1384, 1102, and 1077 cm−1; 1H and 13C NMR data, see Table 1; and positive
HRESIMS m/z 333.1812 [M + H]+ (calculated for C18H25N2O4

+, 333.1809).

3.4. Crystallographic Data of Lycocasine A (1)

The colorless needle-shaped crystals of compound 1 were obtained from methanol
by slow evaporation at room temperature. X-ray crystallography was conducted with
a diffractometer (Bruker APEX DUO, Bruker, Karlsruhe, Germany) alongside Cu Kα ra-
diation. The data from compound 1 were placed in the Cambridge Crystallographic
Data Center (CCDC 2330436). The data are freely available at https://www.ccdc.cam.ac.
uk/structures/? (accessed on 7 February 2024) (or from the Cambridge Crystallographic
Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (+44)-1223-336033; e-mail:
data_request@ccdc.cam.ac.uk).

The crystal data for 1 were as follows: C18H24N2O4, M = 332.39, a = 7.4849(2) Å,
b = 26.1713(7) Å, c = 13.4238(3) Å, α = 90◦, β = 93.1000(10)◦, γ = 90◦, V = 2625.73(12) Å3,
T = 150.(2) K, space group P1211, Z = 6, µ(Cu Kα) = 0.730 mm−1, 39,840 metrical reflexions,
and 9897 individual reflexions (Rint = 0.0975). The final values of R1 and wR(F2) were 0.0392
and 0.0868 (I > 2σ(I)), respectively. The final values of R1 and wR(F2) were 0.0483 and 0.0924
(all data), respectively. The goodness of fit of F2 was 1.036. The value of the flack parameter
was −0.02(10).

https://www.ccdc.cam.ac.uk/structures/?
https://www.ccdc.cam.ac.uk/structures/?
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3.5. Cell Transfection and Electrophysiological Recordings

HEK293T cells, acquired from ATCC, were cultured at 37 ◦C in a 5% CO2 atmosphere
using Dulbecco’s Modified Eagle Medium (DMEM, Gibco, Thermo Fisher Scientific, Inc.,
Waltham, MA, USA) supplemented with glucose, L-glutamine, pyruvate, 10% fetal bovine
serum (FBS, VivaCell, Shanghai VivaCell Biosciences Ltd., Shanghai, China), and 1%
penicillin–streptomycin (Pen-Strep, VivaCell, Shanghai VivaCell Biosciences Ltd, Shanghai,
China). Cells were plated at a low density in 12-well plates 24 h prior to transfection. For
transfection, Lipofectamine 3000 (Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA,
USA) was utilized to introduce 300 ng of ASIC1a cDNA into adherent cells, which were then
analyzed for 24–48 h post-transfection. Complete-cell voltage-clamp measurements were
obtained at ambient temperature (24 ◦C), holding the cell membrane voltage at −60 mV.
The ASIC1a greatest currents were triggered by a solution pH of 6.0, keeping the holding
potential at −60 mV. Borosilicate glass micropipettes, fashioned to achieve a resistance
of 2–6 MΩ, were filled with an intracellular recording solution comprising 140 mM KCl,
2 mM MgCl2, 5 mM EGTA, 5 mM NaCl, and 10 mM HEPES (adjusted to pH 7.4 with
KOH). The extracellular recording solution consisted of 145 mM NaCl, 5 mM KCl, 1 mM
MgCl2, 2 mM CaCl2, and 10 mM HEPES (pH 7.4 with NaOH) or 10 mM MES (pH 6.0
with HCl). Amiloride (MedChemExpress, Monmouth Junction, NJ, USA) was used as a
positive control. Current signals were amplified using a SUTTER IPA-2 amplifier, with data
acquisition and analysis performed using SutterPatch 9.0 software. Data processing was
carried out using GraphPad Prism version 8.0.

3.6. Molecular Docking

Molecular docking was performed using Discovery Studio 4.0 software. The crystal
structure of chicken ASIC1 protein [43] (cASIC1 protein, PDB code: 6X9H, a homolog of
mammalian ASIC1a protein) was obtained from the Protein Data Bank. After removing
the water molecules, hydrogens and charges were added to the system. The docking site
was defined based on the position of the co-crystallized inhibitor. The 3D conformations
of compound 1 were optimized by Discovery Studio 4.0 and the top scoring ligand poses
were saved. Docking analysis was performed by the LibDock protocol and the docking
parameters were set as defaults. The docking results with the highest LibDock score were
visualized and are presented in the full text [44].

4. Conclusions

In summary, we have identified a novel Lycopodium alkaloid, lycocasine A (1), and
seven known Lycopodium alkaloids (2–8) from L. casuarinoides. Compound 1 is characterized
by an unprecedented 5/6/6 tricyclic skeleton with a 5-aza-tricyclic[6,3,1,02,6]dodecane
moiety. In bioactivity assays, compound 1 exhibited weak inhibition of the ASIC1a. These
results not only extend the chemical diversity of Lycopodium alkaloid but also provide
a solid basis for further exploration of Lycopodium alkaloids as ASIC1a inhibitors in the
treatment of rheumatoid arthritis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29071581/s1: Figures S1–S10: 1D and 2D NMR, UV, IR,
HREIMS, and HPLC spectra of compound 1; Figures S11–S24: 1D NMR spectra of compounds 2–8;
Tables S1–S8: Detailed NMR parameters of compounds 1–8.
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