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Abstract: A systematic theoretical study was conducted on the triel bonds (TrB) within the BH3···M(MDA)2

and C5H4BX···M(MDA)2 (M = Ni, Pd, Pt, X = H, CN, F, CH3, NH2, MDA = enolated malondialde-
hyde) complexes, with BH3 and C5H4BX acting as the electron acceptors and the square-coordinated
M(MDA)2 acting as the electron donor. The interaction energies of these systems range between −4.71 and
−33.18 kcal/mol. The larger the transition metal center M, the greater the enhancement of the TrB, with
σ–hole TrBs found to be stronger than π–hole TrBs. In the σ–hole TrB complex, an electron-withdrawing
substituent on the C opposite to the B atom enhances the TrB, while an electron-donating substituent has
little effect on the strength of TrB in the Pd and Pt complexes but enhances the TrB in the Ni-containing
complexes. The van der Waals interaction plays an important role in stabilizing these binary systems, and
its contribution diminishes with increasing M size. The orbital effect within these systems is largely due to
charge transfer from the dz

2 orbital of M into the empty pz orbital of B.

Keywords: π–hole; σ–hole; triel bond; transition metal

1. Introduction

The interaction formed between a group 13 element acting as a Lewis acid center and
a Lewis base is called a triel bond (TrB) [1], and it may be considered to be a noncovalent
interaction. The noncovalent interaction has always been a “hot” research topic, having
important applications in molecular assembly [2,3], protein structure regulation [4,5],
organic catalysis [6–8], molecular recognition [9], and other fields. When triel atoms bond
with other atoms, they usually undergo sp2 hybridization to form a planar triangular
configuration. This special structure and the excellent properties of triel bonds (with a wide
range of strength adjustment) give rise to important applications in catalysis [10], crystal
material construction [11], dye synthesis [12], hydrogen storage materials [11], and other
fields. Due to the electron deficiency of the pz orbitals above the sp2-hybridized Tr atom, a
positive electrostatic potential develops above the center of the triangular plane, known as
a π–hole [13]. This positive region can interact with a series of nucleophilic molecules.

In the 1960s, 1:1 van der Waals dimers were discovered by infrared spectroscopic
studies of mixtures of ethylene/propylene and BF3 and the electron-deficient site above B
bound to the C=C double bond [14]. Subsequent studies found that a similar interaction
also existed between BF3 and other Lewis bases (NH3, HCN, PhCN, N(CH3)3) [15–17]. In
addition, spectral and theoretical studies of X-CH3CN-BF3 (X = F, Cl, Br, I) found that the
complex possessed a very weak coordination bond in the gas phase and a very short N-B
distance in the solid phase. These all indicated the existence of N-B interactions [18]. In the
theoretical study of the TrB between TrF3- (Tr = B, Al) and LP-type N-containing electron
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donors, Grabowski found that some C3V symmetric complexes were formed, where N
interacts with B and Al [19,20]. In subsequent research, he defined this interaction as a
TrB [1]. This type of interaction is often very strong, and its stability mainly depends on
the charge transfer caused by the coordination. The properties of Lewis base centers and
the electron-absorbing ability of substituents, as well as the feedback bond effect, are also
closely related to the strength of the interaction. Studies have also been conducted on
the other group 13 elements. By comparison, the TrB formed by B was found to be the
weakest, and different Tr atoms have different properties when used as Lewis acid centers.
Michalczyk et al. conducted a systematic study on the factors affecting the strength of
TrBs [21]. Theoretical research on the TrB between TrR3 (R = H, F, Cl, Br) and pyrazine
found that when Tr = Al or Ga, the TrB strength varies with the electron-withdrawing ability
of the substituent, with F > Cl > Br > H, whereas for Tr = B, the order is reversed. Orbital
interactions play an important role in the formation of TrBs. B-containing systems have the
strongest orbital interactions, and the orbital interactions are comparable in magnitude to
electrostatic interactions. For the systems containing Al or Ga, the electrostatic interaction
plays the dominant role in the formation of TrBs, followed by orbital interactions.

Transition metals (TM) seem anomalous since they often exhibit Lewis acid behavior
due to their unfilled d orbitals and the 18-electron rule. The Lewis base properties of
transition metals are usually observed in the feedback phenomenon from metal to ligand,
but TMs can exhibit pure Lewis base behavior when interacting with Lewis acids [22,23]. In
the 1960s, it was first proposed that metals could act as hydrogen-bond acceptors based on
the liquid-phase infrared spectroscopy of ferrocene alcohols [24–27]. At the same time, the
existence of interactions between boranes and metals was also predicted, but the structures
were not validated [28,29]. In 1979, Burlitch and his colleagues reported the first evidence
of the interaction between TM and triel atoms, obtained via crystallographic confirmation.
They found that Al in AlPh3 can coordinate with Fe in [FeCp(CO2)]− [30]. Subsequently, a
crystallographic study confirmed the interaction between heavier Tr atoms (Al, Ga, In) and
TM [31], accompanied by short TM-Tr distances and a clear pyramiding of the chemical
environment around the Tr atoms. The TrBs formed by B and TM are weak, making it
difficult to form stable dimers between B and TM. With the development of Lewis acid-base
strategies with rigid multi-toothed frameworks in 1999, Hill and his colleagues synthesized
and validated the first pillar TM-B complex. The shorter Ru-B distance and the chemical
environment surrounding B showed the presence of a Ru-B interaction [32].

The group 10 transition metals are relatively common TrB electron donors. A study
on the interaction between [Pt(PCy3)2] and the heavier Tr atoms shows that Al atoms
can directly coordinate with Pt [33]. For Ga, the binding form of the complex depends
on the properties of the halogen ligand. Among the three Lewis acids, GaCl3, GaBr3,
and GaI3, only GaCl3 forms the target complex with [Pt(PCy3)2] [34]. X-ray diffraction
confirmed the T-shaped geometric shape formed by the P-Pt-P framework and Tr atoms in
the corresponding complexes of AlCl3 and GaCl3. Theoretical work on [TM(PMe3)2(TrX3)]
(TM = Ni, Pd, Pt, Tr = F, Cl, Br, I, X = F, Cl, Br, I) provided more information on this
interaction. The interaction between B and TM is the weakest, with the dissociation energy
not exceeding 27 kcal/mol. The metallaboratranes with a triangular biconical structure for
Ni [35], Pd, Pt [36] were prepared via a rigid multi-toothed framework strategy. The three
common ligands of TM and B fix TM directly above the B, and the chemical environment
around B undergoes significant tapering. The influence of metal centers on the TM–B
interaction has also been studied. In the d8 DPB composite, the position of the 11B NMR
signal in the Pt system is higher than that of Pd, indicating that the interaction with Pd is
weaker than with Pt. The TM-B binding distance also indicates the same issue, with Pd
having a longer TM-B binding distance and a significant decrease in NBO delocalization
energy [23].

For the crystal research on d8 Ni, it was found that Ni can act as an electron donor to
form Ni···I halogen bonds, with a halogen bond strength of 4.5 kcal/mol [37,38]. Further
research showed that Pd and Pd could also be considered as halogen bond receptors [39].
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Subsequently, various types of TM···I interactions were identified [40–43]. Ni and Pt metal
nanoparticles can interact with Na+, HF, and H2O, due to the attraction between local
positive and negative electrostatic potential regions on the two monomers. On this basis,
the author also demonstrated the correlation between electrostatic potential and binding
energy [44]. Recently, Zierkiewicz et al. investigated the ability of Pt and Pd atoms in
square–planar coordination geometries to act as σ–hole acceptors. The σ–hole bond is
quite strong and varies in the range 6 to 20 kcal/mol. The σ–hole bond involving Pt is
stronger than the corresponding bond for Pd, and this difference increases as the size of
the Lewis acid atom increases [45]. The π–hole interaction between C6F6 and the square–
planar [M(II)] (M = Pd, Pt) coordination complex has also been studied. There is a weak
negative potential region on the M surface, and the bond critical point between C···M in
QTAIM analysis indicates the presence of a [M(II)]···π–hole interaction [46]. Malenov et al.
investigated the stacking interactions between acac-type chelates of Ni, Pd, and Pt, where
the ligands in these chelates are formate anions and enolated forms of malondialdehyde.
The stacking interaction between chelates ranges from −9.21 to −9.70 kcal/mol, and the
strength of the interaction increases with an increase in the metal’s atomic number [47].
They also investigated the stacking interactions of acac-type chelates of Ni, Pd, Pt with
benzene. The stacking interaction ranges from −5.36 to −5.75 kcal/mol, and the strength
of the interaction decreases with an increase in the metal’s atomic number [48].

To the best of our knowledge, there are currently no reports on the use of group
10 metals in square–planar coordination geometries acting as triel bond acceptors. In
addition, although the π–hole interaction between the group 13 elements and M (M = Ni,
Pd, Pt) with linear geometric coordination has been studied before [49], the presence of
strong secondary interactions between halogen ligands and M causes a significant twist in
the target structure of the T-type, thus making it difficult for the full strength of the Tr···M
interaction to be manifested. In order to reduce the influence of secondary interactions
and maintain good directionality between B···M, we used [M(II)] atoms coordinated in a
square–planar geometry as electron donors interacting with BH3 in order to more accurately
study π–hole Tr···M interactions. In the present work, the triel bonds in the dimers of
BH3···M (MDA)2 and C5H4BX···M (MDA)2 (M = Ni, Pd, Pt, X = H, CN, F, CH3, NH2,
MDA = enolated malondialdehyde) were systematically studied. To investigate substituent
effects on the strength of triel bonds, the H on the para-C was replaced by different
functional groups in C5H5B. The properties of triel bonds in the system were studied, and
their formation mechanism was explained through structural analysis, interaction energy
calculations, AIM, IRI, and NOCV analyses.

2. Results
2.1. MEP Analysis

Figure 1 shows the electrostatic potential maps for M(MDA)2 (M = Ni, Pd Pt), while
those of BH3 and C5H4BX (X = H, CH3) are plotted in Figure S1. Table 1 collects the most
positive electrostatic potential value (Vs,max) corresponding to the π–hole on BH3 and
σ–hole on C5H4BX. From the results, the π–hole is weaker than the σ–hole. For C5H4BX,
the presence of electron-withdrawing groups increases the Vs,max values, and this increase
in value is positively correlated with its electron-withdrawing ability. The introduction
of electron-donating groups has little effect on Vs,max values. Although the most negative
electrostatic potential value was not found in the metal center, it can be seen from the
figure that there is a weak negative potential region above the metal atom, and this region
eventually turns blue as the atomic mass of M increases. This means that the heavier
M Lewis base center has a more negative electrostatic potential region, which may form
stronger triel bonds than does the lighter M center.
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Table 1. The most positive MEP (Vs,max, kcal/mol) on the π–hole of BH3 and the σ–hole of C5H4BX
(X = H, CN, F, CH3, NH2).

Vs,max

BH3 41.35
C5H5B 44.07

C5H4BF 52.08
C5H4BCN 59.58
C5H4BCH3 43.35
C5H4BNH2 44.02

2.2. Structural Analyses

All B atoms in the system are stably bound above the metal atoms, and there is
a clear directionality between B···M. Figure 2 is a schematic diagram of the structure of
BH3···Pd(MDA)2 and C5H5B···Pd(MDA)2. For the π–hole system, all system configurations
are similar to BH3···Pd(MDA)2, with the BH3 plane parallel to the M(MDA)2 plane. The
configuration of the σ–hole system is similar to that of C5H5B···Pd(MDA)2, with the line
connecting the para-C and B pointing towards the metal atom and perpendicular to the
M(MDA)2 plane. Table 2 shows that the B···M binding distance R in the π–hole system is
longer than in the σ–hole system. All B···M binding distances lie between the sum of the
covalent radii of B and M and the sum of their van der Waals radii, and vary with a change
of X substituents. The introduction of electron-withdrawing substituents shortens the B···M
binding distance, and the greater the electron withdrawing-ability of X, the greater the
shortening of the B···M binding distance. The addition of electron-donating groups also
shortens the binding distance between B and M but to a lesser extent. For the Ni-centered
system, substitution at the para-C position in C5H5B by the -CH3 and -NH2 groups shortens
the B···M binding distance by about 0.18 Å; the B···M distances in C5H4BCH3···Ni(MDA)2
and in C5H4BNH2···Ni(MDA)2 are 2.604 Å and 2.611 Å, respectively, differing by no more
than 0.007 Å. However, substitution of the -CH3 and -NH2 in the Pd and Pt systems has
little effect on the B···M binding distance, which does not change by more than 0.01 Å. The
B···M binding distance is generally in the order C5H4BCN < C5H4BF < C5H5B < C5H4BNH2
< C5H4BCH3 < BH3. For fixed Lewis acid, the heavier metal centers correspond to a shorter
binding distance, indicating enhancement of the corresponding TrB.
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Table 2. Binding distance (R, Å), interaction energy (Eint, kcal/mol), binding energy (Eb, kcal/mol),
and deformation energy (DE, kcal/mol) in the complexes.

R Eint Eb DE

BH3-Ni 2.842 −4.71 −4.47 0.24
BH3-Pd 2.544 −8.60 −7.56 1.04
BH3-Pt 2.447 −14.09 −11.38 2.71
C5H5B-Ni 2.786 −8.66 −8.00 0.66
C5H5B-Pd 2.356 −16.76 −13.16 3.60
C5H5B-Pt 2.271 −26.91 −20.17 6.74
C5H4BF-Ni 2.528 −10.44 −8.85 1.59
C5H4BF-Pd 2.323 −19.07 −15.02 4.05
C5H4BF-Pt 2.254 −29.61 −22.61 7.00
C5H4BCN-Ni 2.466 −12.46 −10.30 2.15
C5H4BCN-Pd 2.293 −21.89 −17.08 4.80
C5H4BCN-Pt 2.233 −33.18 −25.22 7.96
C5H4BCH3-Ni 2.604 −8.88 −7.71 1.17
C5H4BCH3-Pd 2.354 −16.72 −13.16 3.56
C5H4BCH3-Pt 2.269 −26.89 −20.20 6.69
C5H4BNH2-Ni 2.611 −9.03 −7.86 1.18
C5H4BNH2-Pd 2.346 −16.93 −13.38 3.55
C5H4BNH2-Pt 2.265 −27.11 −20.54 6.57

2.3. Interaction Energy

In addition to the B···M binding, the interaction energy Eint, binding energy Eb,
and deformation energy DE between all monomers in the complexes were also calcu-
lated. Both Eint and Eb display similar variations. The interaction energy ranges between
−4.71 and −33.18 kcal/mol. For the fixed Lewis acid, Eint increases as M gets larger,
which is consistent with the results for the B···M binding distance and electrostatic po-
tential analysis; i.e., the heavier group 10 metals tend to form stronger TrBs. For the
fixed M, the interaction energy increases and the B···M binding distance decreases with
an increase in the electron-withdrawing ability of the X substituent; i.e., when M = Ni,
C5H4BCN > C5H4BF > C5H4BNH2 > C5H4BCH3 > C5H5B > BH3 for Eint and the reverse or-
der for the B···M distance, whereas when M = Pd or Pt, C5H4BCN > C5H4BF > C5H4BNH2
> C5H5B > C5H4BCH3 > BH3 for Eint and the reverse order for the intermolecular separa-
tion, with the computed values for C5H5B ≈ C5H4BCH3 ≈ C5H4BNH2. The σ–hole TrB
is thus stronger than the π–hole TrB, and the electron-withdrawing substituents enhance
the system’s interaction energy, while the electron-donating substituents have little effect.
The deformation energy DE ranges from 0.24 to 7.96 kcal/mol, and also increases with
the atomic mass of M, indicating that systems with heavier metal centers undergo greater
polarization and have stronger orbital interactions.

2.4. AIM Analysis

In order to further verify the presence of TrBs in the complexes and explore their
properties, we conducted AIM analyses on all dimers. Figure 3 shows the AIM diagram
of two systems. Taking BH3···Pd(MDA)2 and C5H5B···Pd(MDA)2 as examples, there are
clear bond critical points (BCPs) between all B···M. With reference to the σ–hole system, in
addition to the bond path of the target TrB, there are also two other bond paths between
H···C, connecting the two H atoms on the C atoms adjacent to and on either side of B to the
two C atoms on the (MDA)2 ring to which they point, indicating the existence of secondary
interactions such as H-bonds in these systems. Table 3 shows the electron density of the
B···M BCP (ρ), the Laplacian of the electron density (∇2ρ), and the total energy density (H).
The electron density ρ increases as M gets larger, and ρ for the π–hole system is smaller
than for the σ–hole system. The electron-withdrawing substituents increase ρ at the BCP,
but there is little to no change in ρ due to the electron-donating groups (CH3, NH2). At the
BCP in the Ni systems, ∇2ρ is positive and H negative, indicating that their TrBs exhibit
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partially covalent characteristics. For the Pd and Pt systems, except for BH3···Pd(MDA)2
and BH3···Pt(MDA)2 (where ∇2ρ is positive and H is negative), both ∇2ρ and H are
negative, indicating that the TrBs in these systems have covalent characteristics.
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Table 3. Electron densities (ρ), Laplacians (∇2ρ), and total energy densities (H) at the B···M BCP in
the complexes, all in a.u.

ρ ∇2ρ H

BH3-Ni 0.0130 0.0264 −0.0004
BH3-Pd 0.0301 0.0354 −0.0064
BH3-Pt 0.0437 0.0200 −0.0162

C5H5B-Ni 0.0163 0.0196 −0.0018
C5H5B-Pd 0.0476 −0.0067 −0.0205
C5H5B-Pt 0.0662 −0.0489 −0.0427

C5H4BF-Ni 0.0255 0.0140 −0.0059
C5H4BF-Pd 0.0509 −0.0156 −0.0244
C5H4BF-Pt 0.0683 −0.0502 −0.0463

C5H4BCN-Ni 0.0298 0.0100 −0.0079
C5H4BCN-Pd 0.0553 −0.0268 −0.0282
C5H4BCN-Pt 0.0728 −0.0640 −0.0509

C5H4BCH3-Ni 0.0223 0.0179 −0.0041
C5H4BCH3-Pd 0.0477 −0.0070 −0.0208
C5H4BCH3-Pt 0.0662 −0.0476 −0.0431
C5H4BNH2-Ni 0.0228 0.0193 −0.0040
C5H4BNH2-Pd 0.0480 −0.0082 −0.0217
C5H4BNH2-Pt 0.0662 −0.0440 −0.0439

2.5. IRI Analysis

In order to study the interactions within the system more intuitively, we also conducted
IRI analyses to visualize the interactions within the system. Figure 4 shows the IRI diagram
of the systems. The isosurface between B···M continuously turns blue with an increase in
the M atomic mass, and for the systems containing BH3, this change is most pronounced,
going from dark green between B···Ni to blue between B···Pd and then to dark blue between
B···Pt. This suggests that the TrB of these three systems transitions from interactions slightly
stronger than those due to van der Waals forces to moderately strong interactions and then
finally to strong interactions closer in strength to covalent bonds. In C5H4BX···M(MDA)2,
two light green isosurfaces on both sides of the target TrB are evident, which correspond
to the bond path between H···C in AIM analysis, thereby confirming the existence of
secondary H-bond interactions. However, from the perspective of color, their intensities
are small and comparable to van der Waals forces.
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2.6. EDA Analysis

In order to assess the energetic contributions to B···M TrBs, we conducted EDA analysis
on all systems, which decomposed the interaction energy into six terms: electrostatic energy
Eele, exchange energy Eex, repulsion energy Erep, polarization energy Epol, dispersion
energy Edisp, and electron correlation energy Ecorr. Table 4 presents these data. The total
interaction energy obtained from the EDA method has almost the same magnitude as that
obtained from the supermolecular method, suggesting that each energy term obtained by
EDA is reliable. The Erep term has a relatively large positive value and correlates with
decreasing Tr···M distance as M gets larger. On the other hand, the exchange energy
is the largest attractive term, usually coexisting with the Erep term (confirmed by the
strong linear relationship shown in Figure S2), which causes both terms to offset each
other, thereby diminishing their net effect on the interaction energy; thus, these terms
are not discussed in detail. No good linear relationship is obtained between the total
interaction energy and each term; thus, there appears to be no consistent trend for each
energetic term in all complexes. The sum of Edisp and Ecorr reflects the van der Waals
interaction, while the orbital interaction is partly reflected by Epol. The van der Waals
interaction dominates in the Ni and Pd systems, followed by the electrostatic interaction,
with the orbital interaction being the weakest. The variation of each energetic term in the
Pt systems is not straightforward. Most Pt systems are dominated by the orbital interaction,
and the van der Waals interactions are weakest, while the reverse result is found for
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BH3···Pt(MDA)2. As M gets larger, the proportion of electrostatic and orbital interactions
contributing to the TrB strength increases, whereas the Edisp/corr variation (for the same
Lewis acid) is irregular.

Table 4. Electrostatic (Eele), exchange (Eex), repulsion (Erep), polarization (Epol), sum of dispersion and
electron correlation (Edisp/corr), and total interaction energies (Etotal) in the complexes, all in kcal/mol.

Eele Eex Erep Epol Edisp Ecorr Edisp/corr Etotal

BH3-Ni −3.13 −14.5 22.46 4.64 −4.56 −9.56 −14.12 −4.65
BH3-Pd −9.47 −35.26 58.77 −2.38 −5.64 −14.52 −20.16 −8.50
BH3-Pt −18.24 −54.52 94.45 −15.85 −5.95 −13.87 −19.82 −13.98
C5H5B-Ni −6.03 −21.62 35.08 3.38 −8.26 −11.12 −19.38 −8.58
C5H5B-Pd −16.20 −55.47 96.10 −13.02 −9.74 −18.28 −28.02 −16.61
C5H5B-Pt −28.82 −80.19 143.69 −37.28 −10.31 −13.83 −24.14 −26.73
C5H4BF-Ni −6.53 −30.29 50.21 5.07 −8.28 −20.51 −28.79 −10.34
C5H4BF-Pd −16.61 −57.22 99.85 −15.62 −9.85 −19.47 −29.32 −18.92
C5H4BF-Pt −28.93 −80.15 144.23 −39.92 −10.36 −14.30 −24.66 −29.43
C5H4BCN-Ni −7.79 −33.63 56.56 4.27 −8.44 −23.31 −31.75 −12.34
C5H4BCN-Pd −17.91 −59.75 105.48 −19.38 −10.02 −20.16 −30.18 −21.73
C5H4BCN-Pt −30.47 −82.44 149.99 −45.72 −10.48 −13.88 −24.36 −33.00
C5H4BCH3-Ni −6.71 −28.17 46.32 4.70 −8.16 −16.76 −24.92 −8.78
C5H4BCH3-Pd −16.19 −55.68 96.38 −12.93 −9.76 −18.40 −28.16 −16.57
C5H4BCH3-Pt −28.80 −80.38 143.89 −37.06 −10.34 −14.02 −24.36 −26.71
C5H4BNH2-Ni −8.22 −29.64 49.03 3.90 −8.17 −15.84 −29.32 −8.93
C5H4BNH2-Pd −16.12 −56.16 97.17 −13.27 −9.75 −18.65 −28.40 −16.78
C5H4BNH2-Pt −28.68 −80.53 143.94 −37.01 −10.33 −14.32 −24.65 −26.93

2.7. NOCV Analysis

Figure 5 shows the density difference plot of NOCV in the complexes, and the orbital
effect of TrB in all systems, which mainly comes from the charge transfer from the dz

2

orbital of M into the empty pz orbital of B. Table 5 shows the NOCV energy in different
systems. From the table, it can be seen that the NOCV energy of the σ–hole system is
stronger than that of the π–hole system. The electron-withdrawing substituents increase
the NOCV energy, and do so to a much greater extent than do the electron-donating
substituents, relative to the C5H5B. In fact, for the Pd and Pt systems, there is hardly any
change in the NOCV energy due to CH3 or NH2 substitution in C5H5B. For all complexes,
as M goes from Ni to Pd to Pt, the NOCV energy increases continuously. Thus, overall,
electron-withdrawing substituents and heavier metal centers are more conducive to charge
transfer between monomers, while electron-donating substituents only promote charge
transfer in the Ni systems and have little effect on the other systems.
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Table 5. NOCV orbital energies (E, kcal/mol) in the complexes.

Ni Pd Pt

BH3 −4.75 −14.07 −23.04
C5H5B −5.73 −22.70 −34.99

C5H4BF −12.29 −25.32 −37.06
C5H4BCN −15.03 −28.27 −40.35
C5H4BCH3 −9.47 −22.74 −35.01
C5H4BNH2 −9.05 −23.16 −35.21

3. Discussion

The MEP analysis shows that there is a weak negative potential region in the center of
the group 10 metal square–planar moiety, which increases with an increase in M atomic
mass. Rozhkov et al. studied the electrostatic potential of similar structures [46], but their
research focused only on Pd and Pt metal centers; their conclusions are consistent with
those from this present work. Although the most negative electrostatic potential value
was not obtained, the weak negative potential region at the metal center still gives a good
indication of the possible B···M binding site.

In the study of B···M interactions, the possibility of large secondary effects can often
be a complicating factor since they may cause displacement of the preferred B···M target
binding site [49]. In this work, there is a clear directionality between B···M in all designed
dimers, with the B atom located above the M atom. The B···M binding distance R ranges
between 2.233 and 2.842 Å, these values all lying between the sum of the van der Waals radii
of B and M and the sum of their covalent radii, which conforms to a defining characteristic
of noncovalent interactions. For the fixed Lewis acid, R decreases with an increase in
the M atomic mass, indicating that heavier metal centers are more conducive for the
enhancement of TrBs and consistent with the MEP results. For the fixed M, the binding
distance between B and M exhibits two effects as the type of X substituent changes. Firstly,
electron-withdrawing substituents cause a decrease in the B···M binding distance with the
increase in electron-withdrawing ability, consistent with the MEP analysis. These types
of substituents reduce the electron density on the six-membered Lewis acid ring, thereby
increasing the magnitude of the σ–hole; consequently, the greater the electron-withdrawing
ability of the substituent, the stronger the TrB.

Surprisingly, the σ–hole should have been diminished by the presence of the electron-
donating substituents, but their influence was found to be negligible in the Pd and Pt
systems, where the B···M binding distance hardly changes (decreasing by no more than
0.003 Å). However, in the Ni systems, the binding distances are significantly shortened; for
example, the B···Ni distance in C5H4BCH3···Ni(MDA)2 is shortened by 0.182 Å relative
to C5H4B···Ni(MDA)2. The B···M binding distance in BH3···M(MDA)2 is longer than in
C5H4BX···M (MDA)2, which means that the π–hole B···M TrB is weaker than the σ–hole
B···M TrB.

The interaction energy of the B···M TrB ranges between −4.71 and −33.18 kcal/mol,
spanning weak and strong noncovalent interactions. The interaction energy increases
as the central metal atom gets larger, consistent with the MEP and structural analyses,
as mentioned earlier. The π–hole interaction energy is smaller in magnitude than the
σ–hole interaction energy. For the fixed Lewis base, electron-withdrawing substituents
enhance the interaction energy, while electron-donating substituents hardly change the
interaction energy.

AIM analysis is one of the powerful tools for studying noncovalent interactions. AIM
analysis shows that, in addition to the presence of BCPs between the target B···M region,
there are also two other BCPs in the C5H4BX systems, which correspond to two weak
hydrogen-bonding secondary interactions. The interaction energy is the sum of all inter-
action strengths within the system. Will the presence of secondary interactions hinder
the accurate description of the target TrB’s binding strength? In previous studies, good
correlations between the electron density at the BCP and the corresponding interaction
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strength were reported [50,51], so the correlation between the TrB and the interaction energy
can be used to measure the impact of secondary interactions on the total interaction energy.
Figure 6 shows a good linear relationship between the electron density (ρ) at the B···M BCP
in C5H4BX···M(MDA)2 and interaction energy (Eint). The scatter plot shows a very good
correlation between Eint and ρ, with a correlation coefficient of 0.96, indicating that the
contribution of secondary effects to the total interaction energy is very small.
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Figure 6. Linear relationship between the electron density (ρ, a.u.) at the B···M BCP and the interaction
energy (Eint, kcal/mol) in C5H4BX···M(MDA)2.

The results of the IRI analysis and the AIM analysis are consistent with each other,
and the presence of two light green regions at the weak hydrogen bond positions in the
C5H4BX system also indicates that the secondary effect is quite weak. There is a clear
density gradient isosurface between B···M, which further indicates the presence of a TrB.
The isosurface turns blue with the increase in M atomic mass, indicating enhancement of
the TrB. The large green isosurfaces in the Ni system indicate the important role of the van
der Waals interaction in the formation of its TrB.

The type of interaction can also be judged from the results of the EDA analysis.
For example, for tetrel bonds formed by C60 and SnI4 [52] and triangular coinage metal
complexes of (M3 = Cu, Ag, and Au) and C60 [53], the dispersion energy makes the largest
contribution, followed by electrostatic energy, suggesting a van der Waals nature; however,
for N-heterocyclic carbene(NHC)-M···OEt2 complexes (M = Cu, Ag, Au) [54] and NHC-
M pyrazine bond (M = Cu, Ag, Au) interactions [55], the contribution of electrostatic
energy exceeds 60%, and orbital interaction is close to 30%; thus, these interactions show
electrostatic character. In this paper, EDA results show that a van der Waals interaction
is dominant in the formation of TrBs in the Ni/Pd-containing systems (electrostatic and
orbital interactions are more important in the Pd systems than in the Ni systems). In the Pt
systems, orbital interactions dominate, followed by electrostatic interactions, with the van
der Waals interactions being the weakest.

The unexpected positive values obtained by EDA for the polarization energy contri-
bution to the interaction energy in the Ni systems may be due to the introduction of the
electron correlation energy term. Compared to LMO-EDA [56], a portion of the newly
added Ecorr term in the GKS-EDA method comes from the Epol term. The orbital interaction
in the Ni system is weak, and after deducting the Ecorr term, Epol becomes positive. As
the atomic mass of M increases, the proportion of electrostatic and orbital interactions
contributing to the interaction energy increases, ultimately surpassing the contribution of
the van der Waals interactions. The NOCV analysis confirms this phenomenon, showing
that the NOCV energy increases as M gets larger, which indicates that the orbital interac-
tion between the systems is being enhanced accordingly (Table 5). The orbital interaction
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between the systems mainly comes from the charge transfer from the dz
2 orbital on M into

the pz orbital of B.

4. Theoretical Methods

All calculations were performed using the Gaussian suite of programs [57] at the
B3LYP-D3(BJ)/aug-cc-pVTZ(PP) [58–60] level of theory, using the basis set aug-cc-pVTZ-
PP for Pd, Pt, and aug-cc-pVTZ for the other atoms. All structures were fully optimized,
with the absence of any imaginary frequencies confirmed by vibrational frequency cal-
culations at the same level. The interaction energy and binding energy were calculated
using the supermolecular method, and the basis set superposition error (BSSE) correction
was performed using the equilibrium method proposed by Boys and Bernardi [61]. The
Multiwfn program [62] was used to perform topological analysis of the bond critical point
(BCP) electron density of the complexes using the atoms in molecules (AIM) theory [63].
The interaction region indicator function (IRI) method [64] was used to visualize the TrBs in
the complexes. The orbital interactions in the complexes were analyzed using the Extended
Transition State-Natural Orbitals for Chemical Valence (ETS-NOCV) method [65]. IRI
and ETS-NOCV analyses also utilized the Multiwfn program [62]. In order to predict the
binding site, the molecular electrostatic potential (MEP) of the monomers on the 0.001 a.u.
electron density isosurface was analyzed using the Multiwfn program [62]. Energy decom-
position calculations were performed using XEDA [66] software (https://xacs.xmu.edu.cn,
accessed on 10 January 2024) combined with GKS-EDA [67] theory, and XEDA input files
were generated using the Mokit program [68].

5. Conclusions

A systematic theoretical study was conducted on the triel bonds within BH3···M(MDA)2
and C5H4BX···M(MDA)2 complexes at the B3LYP-D3 (BJ)/aug-cc-pVTZ(PP) level. The interac-
tion energy of the system ranges between −4.71 and −33.18 kcal/mol and can be regulated so
as to span the two extremes of weak and strong noncovalent interactions. The TrB is enhanced
by an increase in the size of the metal center M, with the σ–hole TrB found to be stronger than
the π–hole TrB. For the σ–hole TrB complexes, electron-withdrawing substituents at the C
position para to B strengthen the B···M TrB, while electron-donating substituents have little
effect in the Pd and Pt complexes, but have a significant enhancing effect in the Ni complexes.
Weak hydrogen bonds are present as secondary interactions in the σ–hole TrB systems; how-
ever, their contribution to the net binding is insignificant. The van der Waals force plays
an important role in stabilizing these systems, and dominates in the Ni complexes, with its
contribution to the interaction energy consistently diminishing as the metal gets larger. In the
Pd system, it is comparable in magnitude to the orbital and electrostatic contributions, while
in the Pt system, the orbital interactions dominate. The orbital interaction arises mainly from
the charge transfer from the dZ

2 orbital of M into the empty pz orbital of B, which increases as
the metal gets larger, going from Ni to Pd to Pt.
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