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Abstract: Fluorescent sensors with single reading are generally subject to unpredictable disturbs
from environmental and artificial factors. In order to overcome this barrier of detection reliability, a
paper-based optical sensor with proportional fluorescence was established and further combined
with a smartphone for visual, on-site and quantitative detection of Fe3+, which affects the color, smell
and taste of water, and endangers the health of plants and animals. The ratio fluorescent probe was
fabricated by rhodamine B and carbon quantum dots derived from xylan. The red fluorescence of
rhodamine B was inert to Fe3+, which was referred to as background. And blue emitting carbon
quantum dots functioned as signal report units, which would be quenched by Fe3+ and make the
fluorescence of the ratio probe change from purple to red. The quantitative detection of Fe3+ was
conducted by investigating the RGB value of fluorescent images with a smartphone. With the increase
of Fe3+ concentration, the R/B (red/blue) value of the fluorescent paper gradually increased. The
linear detection range was 10–180 µM, and the limit of detection was 198.2 nM. The application of
ratio fluorescent paper with a smartphone provides a facile method for the rapid detection of ions.

Keywords: ratio fluorescence paper; smartphone; carbon quantum dots; Fe3+ sensing; xylan

1. Introduction

Iron is an important metal element in life, smelting and industry, and plays a very
important role in the progress of material civilization. However, when the concentration of
Fe3+ in water is 0.1 to 0.3 mg/L, it will affect the color, smell and taste of water. Usually,
water has the function of self-purification, but when the amount of Fe3+ reaches a certain
level, the water body will not be able to self-purify, which will destroy the ecological
environment [1,2]. Therefore, the monitoring of Fe3+ is crucial for the environment. There
are various methods to detect Fe3+, such as fluorescent analysis [3], atomic absorption
spectroscopy [4] and inductively coupled plasma analysis [5]. Noteworthily, the fluorescent
analysis method has the advantages of simplicity, high sensitivity, and fast response, which
meet the need for rapid and accurate detection.

Carbon quantum dots (CQDs) are a new type of fluorescent carbon material with
a diameter of less than 10 nm [6,7]. Compared with metal-based quantum dots, CQDs
are biocompatible, environment-friendly and low-cost, which makes them a promising
alternative in analytical chemistry. Due to their high specific surface area, small particle
size and facile surface functionalization [8], CQDs have high activity towards various
targets, resulting in changes in their fluorescence. For example, Zhang et al. [9] prepared
CQDs by hydrothermal method using black sesame as a carbon precursor. This dual-
function fluorescence sensor could detect Fe3+ and L-ascorbic acid. However, the quantum
yield (QY) of CQDs derived from natural biomass is low and has to be improved. The
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composition and surface functional groups of CQDs are important factors affecting the
luminescence and sensing performance of CQDs, and heteroatomic doping can improve the
optical performance and quantum yield of CQDs [10,11]. Xylan is a non-aromatic molecule
whose main chain is linked by a beta-(1 → 4) glycosidic bond. China is a big agricultural
country, where corn and sugarcane are important crops. As renewable resources, corncob
and bagasse contain abundant xylan and are important raw materials for the preparation
of xylan. The excellent properties of xylan such as degradability, biocompatibility and
renewability have attracted the attention of experts and scholars at home and abroad. Xylan
derivatives prepared by certain means can be used in food additives, paper additives, drug
carriers, wound dressings, capacitor energy storage devices, degradable films, etc., which
broadens the high-value utilization and industrial application of xylan [12,13]. Therefore,
xylan is a promising carbon precursor with low cost, abundant resources and renewable
energy. We prepared CQDs by heteroatom-doped xylan.

Generally, sensors with a single readout of fluorescent CQDs are inevitably disturbed
by ambient temperature, light, state/parameters of the spectrophotometer, operational
error, etc. [14]. In order to overcome this reliability barrier, it is a good strategy to adopt
a ratio strategy in the design of a fluorescence probe, which simultaneously emits two or
more fluorescence signals at different wavelengths and their intensity ratio is measured
for quantification. The ratio fluorescence probe provides one inert fluorescence signal as
an internal reference for self-calibration [15]. Thus, external effects are eliminated and
the reliability as well as sensitivity of the target detection are improved [16]. The red
fluorescence of rhodamine B is centered around 572 nm, which does not coincide with
the emission wavelength of most CQDs. Meanwhile, due to its relatively stable chemical
properties and high stability to various metal ions, rhodamine B with red fluorescence was
an appropriate self-reference signal.

However, the traditional fluorescent analysis relies on the lab and cannot conduct
on-site, rapid detection. Fortunately, the fast development of smartphone technology in
the past decade provides excellent access. For their powerful computing ability, high-
resolution camera and customizable software program, convenient on-site inspection
is made possible. Meanwhile, paper, a cheap, biodegradable, renewable and portable
carrier for fluorescent probes, shows advantages with smartphones among plastic, glass,
textile, etc. It has been reported that a variety of smartphone-linked sensors for collecting
different types of signals, including optical, impedance and electrochemical current, largely
promotes the development of smartphone-based detection platforms [17]. For instance,
Liu et al. reported a smartphone-based sensing system for quantitative assays of 2, 4,
6-trinitrotoluene by using printed electrodes to receive impedance signals [18]. Lin and Yu
reported a smartphone device to shoot and record the color changes of sensor fluorescence
caused by streptomycin, and the corresponding digital images were then transferred to
red–green–blue (RGB) data and analyzed by a smartphone [19].

Therefore, in this study, a paper-based optical sensor based on a ratio fluorescence
probe was established and further combined with a smartphone for visual, on-site and
quantitative detection of Fe3+ (Scheme 1). CQDs derived from xylan and amikacin sulfate
with N, S doping to improve QY functioned as signal response part in the ratio fluores-
cence probe, where red luminous rhodamine B acted as an internal reference. Further,
a fluorescent paper was fabricated by infiltrating circular paper in the ratio probe. The
measurement of fluorescent signals depended on a smartphone instead of a fluorescence
spectrophotometer. This research establishes a kind of ratio fluorescence sensing platform,
showing a broad prospect in the real-time monitoring of metal ions for the environment.
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at 240 nm, which was attributed to the π-π* transition of aromatic C=C bonds [20]. 

 

Scheme 1. Illustration of (a) fabrication of a paper-based platform with rhodamine B–CQD ratio
fluorescent probe, (b) on-site, visual and rapid detection of Fe3+ using smartphone.

2. Results and Discussion
2.1. Characterization of N-SCQDs Prepared via Hydrothermal Method

As is shown in the inset of Figure 1a, nitrogen-sulfur-doped CQDs (N-SCQDs) emitted
bright blue fluorescence under ultraviolet light, and their aqueous solution was light yellow
under sunlight. According to UV–vis spectra, N-SCQDs had a characteristic peak at 240 nm,
which was attributed to the π-π* transition of aromatic C=C bonds [20].

The fluorescence properties of N-SCQDs were comprehensively characterized by
fluorescence excitation, emission and attenuation spectra. As shown in Figure 1a, its
fluorescence excitation wavelength was centered around 340 nm, and the excited emission
wavelength was 427 nm. The emitted fluorescence was affected by the wavelength of
excitation light. With the increase of excitation wavelength, the emitted fluorescence
gradually redshifted, and the maximum fluorescence was excited by light of 340 nm
(Figure 1b). Using quinine sulfate as the standard, the fluorescence quantum yield of N-
SCQDS was 24.6%. Compared with xylan, the functional groups of N-SCQDs were different
due to the doping of nitrogen and sulfur elements. According to their FT-IR spectrum
(Figure 1c), except for the significant enhancement of the peak at 1408 cm−1 (C-OH) and
1687 cm−1 (C=O), there was additional peaks near 1205 cm−1, which may be attributed to
the stretching vibration of C-N and C-S [21]. All these indicated that N-SCQDs contained
abundant functional groups. When Fe-trivalent ions were added to N-SCQDs, the peak
at 1408 cm−1 (C-OH), 875 cm−1 (C=C) and 1687 cm−1 (C=O) decreased significantly. This
may be because the hydroxyl group and the carboxyl group have some chelating effect
on the trivalent iron ion. According to the time-resolved fluorescence attenuation curve
(Figure 1d), the attenuation curve was fitted as I(t) = 526(−t/2.27) + 396(−t/7.78) [22], it was
calculated that the average fluorescence life of N-SCQDs was 6.98 ns.

The morphology of N-SCQDs was investigated using AFM and TEM, as shown in
Figure 2a,b. N-SCQDs were monodisperse quasi-spherical shaped with a height of 3–5 nm
(illustration of Figure 2a), indicating that the prepared N-SCQDs consisted of a single
layer or several layers of graphene sheets. In HRTEM images of N-SCQDs (illustration of
Figure 2b), the lattice stripes of 0.24 nm corresponding to the (1120) plane of graphite were
clearly visible [23], confirming a certain crystallinity of N-SCQDs.
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Figure 2. (a) AFM image of N-SCQDs and height distribution of the white line region in (a). Brown
represents the background and white dots represent the quantum dots; (b) TEM image of N-SCQDs
and HRTEM image of N-SCQDs.

In the full-scan XPS spectrum (Figure 3a), there were four typical peaks at 164.5 eV,
285 eV, 400 eV and 530.8 eV, assigned to S2p, C1s, N1s and O1s, respectively. The result
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indicated that after reaction with amikacin sulfate, the N-SCQDs contained nitrogen, sulfur
functional groups and abundant oxygen-containing functional groups [24]. Figure 3b is the
high-resolution XPS spectrum of C1s. It can be seen that carbon element has four different
chemical states C=C, C-N, C-O and C=O, which were at 284.7 eV, 285.5 eV, 286.4 eV and
288.9 eV, respectively [25]. The oxygen-containing functional groups of N-SCQDs were
analyzed in the high-resolution XPS spectra of O1s (Figure 3c). The peaks at 530.5 eV,
531.6 eV and 534.7 eV were attributed to C=O/C-OH, C=O and N-O, respectively [26]. In
the high-resolution XPS spectra of N1s (Figure 3d), the peaks of 398.6 eV and 400.0 eV
are associated with N-H and C-N-C, respectively [24]. Figure 3e is the high-resolution
XPS spectrum of S2p, which mainly shows the peak of C-S [21]. These results indicated
that the core of doped N-SCQDs is a carbon cluster, and the edge comprises a large
number of oxygen-containing functional groups and a small number of nitrogen and sulfur
functional groups.
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2.2. Construction of Ratio Fluorescence Probe for Fe3+ Detection

In order to overcome the influence of the environment on fluorescence intensity,
the fluorescent dye, rhodamine B, was added to construct the ratio fluorescent probe.
Figure 4a shows the fluorescence spectra of rhodamine B with different concentrations
at the excitation wavelength of 340 nm. It could be seen that the fluorescence intensity
increased with the increase in concentration and had a good linear relationship. As shown
in Figure 4b, the linear regression equation was Y = 2.76 × 106C − 1.31 × 104. (R = 0.992)
(Y: fluorescence intensity; C: concentration).

During the preparation of N-SCQDs via the hydrothermal method, the effect of the
dosage of amikacin sulfate on their fluorescent performance was discussed. As shown in
Figure 4c, when amikacin sulfate was not added, the emission peak of carbon quantum
dots was at 437 nm. When amikacin sulfate was added, the summit was blue-shifted
to 427 nm, indicating that the doped elements N and S had a significant impact on the
emission spectrum. In addition, when the dosage of amikacin sulfate was 10%, the fluo-
rescent intensity was enhanced, and when the dosage increased to 20%, the fluorescent



Molecules 2024, 29, 1658 6 of 13

intensity was greatly enhanced, but when the dosage was 30%, the fluorescent intensity
was weakened. Therefore, N-SCQDs were prepared via hydrothermal method with 20%
amikacin sulfate.
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Fe3+ on the fluorescence of rhodamine B and N−SCQDs.

As shown in Figure 4d, when only rhodamine B was in solution, there was an obvious
emission peak at 572 nm. When rhodamine B and N-SCQDs were mixed, a dual emission
system was formed at 427 nm and 572 nm with the same excitation wavelength. After the
addition of Fe3+, it was found that the emission peak of N-SCQDs decreased significantly,
while the peak intensity of rhodamine B basically remained unchanged, indicating that Fe3+

can quench the fluorescence of N-SCQDs rather than that of rhodamine B, which provides
a possibility for the construction of ratio fluorescent probe for the detection of Fe3+.

The pH value of the solution has a great influence on the fluorescent intensity of N-
SCQDs and fluorescent dyes. Therefore, we studied the fluorescence intensity of N-SCQDs
and rhodamine B at different pH values. As shown in Figure 5a, in a neutral solution,
the fluorescence intensity of N-SCQDs was the strongest. When the pH became acid or
alkaline, the fluorescence became weak. This may be caused by the different charges of
the surface groups in the acid–base environment. Amino groups are positively charged in
acidic environments and carboxyl groups are negatively charged in alkaline environments.
The surface effect of functional groups affects the excited radiation transition efficiency of
N-SCQDs, and finally leads to different fluorescence intensities [27]. As can be seen from
Figure 5b, rhodamine B was almost unaffected by pH. Therefore, considering the influence
of pH on N-SCQDs and rhodamine B, the pH value of the solution should be stabilized to
neutral to avoid its interference with the detection of Fe3+.
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2.3. Detection of Fe3+ Using Ratio Fluorescence Probe

As shown in Figure 5c, the effect of various ions (K+, Zn2+, Mn2+, Fe3+, Cr2O7
2−, Cd2+,

Al3+, Ag+, Pb2+, Ba2+, Mg2+, Cl−, NO3
−, CH3COO−, SO4

2−, Fe2+) on the fluorescence of
N-SCQDs was discussed. The quenching rate of N-SCQD fluorescence by Fe3+ could reach
85.8%, while the quenching rate of N-SCQD fluorescence by other ions was less than 13.2%,
indicating that Fe3+ had a specific quenching effect on N-SCQD fluorescence compared
with other ions, thus N-SCQDs could be used to specifically identify Fe3+. Subsequently,
the effects of these ions on the fluorescence of rhodamine B were investigated (Figure 5d),
and it was found that these ions had little effect on the fluorescence of rhodamine B—their
quenching rates were all less than 5%, which provided a good condition for the construction
of dual emission ratio fluorescent probes for the detection of Fe3+.

In order to avoid the influence of the environment on fluorescence intensity, a ratio
fluorescence probe was constructed to detect Fe3+ in solution. As shown in Figure 6a, when
one of the ions (K+, Zn2+, Mn2+, Cr2O7

2−, Cd2+, Al3+, Ag+, Pb2+, Ba2+, Mg2+, Cl−, NO3
−,

CH3COO−, SO4
2−, Fe2+) exists, the quenching efficiencies of Fe3+ on N-SCQDs–rhodamine

B are 86.2%, 86.0%, 84.8%, 90.2%, 84.2%, 87.8%, 85.9%, 87.2%, 85.1%, 86.5%, 83.5%, 86.7%,
87.5%, 86.5% and 87.8%, respectively. The influence of these ions on the quenching effi-
ciency is below 6.7%, indicating that ionic interference on the quenching effect of Fe3+ is
weak. Different concentrations of Fe3+ (0–200 µM) were added to the solution containing
N-SCQDs–rhodamine B, and the fluorescence intensity was measured with a fluorescence
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spectrometer. As shown in Figure 6b, with the increase of Fe3+ concentration, the fluo-
rescent intensity at 427 nm (emission peak of N-SCQDs) gradually decreased, while the
fluorescence intensity at 572 nm (emission peak of rhodamine B) changed negligibly. In
the range of 20–180 µM, there was an excellent linear relationship between Fe3+ concen-
tration and the ratio of fluorescent intensity at 427 nm and 572 nm. The linear equation
was y = −9.01 × 10−3C + 2.08 (R = 0.9999), (y: fluorescence intensity; C: concentration).
Furthermore, the detection limit (S/N = 3) was estimated to be 42.3 nM.
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N−SCQDs/rhodamine B solution and Fe3+ concentration.

2.4. Paper-Based Platform for Detection of Fe3+ in Water

Since the ratio fluorescent solution was not convenient enough for detection, the
platform combined fluorescent paper with the smartphone was built here to carry out visual
and quantitative detection of Fe3+. As shown in Figure 7a, pure rhodamine B solution emits
bright red fluorescence, while N-SCQDS solution emits bright blue fluorescence. When
rhodamine B solution and N-SCQDS solution were mixed in different proportions, it was
found that the color of fluorescence changed from pink to dark purple. After soaking in the
mixture for 20 min and drying, the fluorescence of the paper under UV light was measured
(Figure 7b). It was found that the paper presented similar fluorescence with the solution in
Figure 7a. In order to quantitatively detect Fe3+ with fluorescent paper, fluorescent paper
with rhodamine B and N-SCQDs ratio of 1:2 was chosen for its large response range in color
of fluorescence. The fluorescent papers were soaked in Fe3+ solution in the concentration
range of 0–180 µM for 5 min, and their images taken using a smartphone are shown in
Figure 7c. By measuring chroma value, the results showed that with the increase of Fe3+

concentration, the R/B (red/blue) value of the fluorescent disk gradually increased. In
the range of 10–180 µM, the Fe3+ concentration and R/B value were fitted to the equation
Y = 9.75 × 10−3C + 0.851, and the limit of detection of Fe3+ was calculated to be 198.2 nM
by dividing the slope of the linear equation by three times the standard variance [28].
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Figure 7. (a) Fluorescent images of N-SCQDs–rhodamine B in different proportions under 365 nm
UV light; (b) fluorescent images of paper dripped with N-SCQDs–rhodamine B solutions under
365 nm UV light; (c) the effect of different concentrations of Fe3+ on fluorescent paper (rhodamine B:
N-SCQDs = 1:2); (d) the linear relationship between the chromaticity value of fluorescent paper (R/B)
and Fe3+ concentration.

2.5. Possible Mechanism of Iron Ion Detection

We further investigated the quenching mechanism of Fe3+ on a ratio fluorescence probe.
As shown in Figure 8a, when Fe3+ was added to the solution of N-SCQDs, the fluorescence
attenuation curve almost overlapped with the curve without Fe3+. Its attenuation curve
was I(t) = 593exp(−T/2.405) + 387exp(−T/8.0006), and the average fluorescence lifetime
was 7.076 ns, which was nearly the same with N-SCQDs. The results indicated that there
was no fluorescence resonance effect and dynamic quenching between N-SCQDs and
Fe3+. According to Beer’s law: A = −logT = −log(I/I0) = εbC (where A is absorbance
and ε is molar absorption coefficient or extinction coefficient), the UV absorbance of
200 µM of ferric ion at 340 nm is 0.9. Therefore, it is calculated that ε = 0.0325 in this
experiment. Furthermore, the fluorescence excitation spectrum of N-SCQDs and the UV–
vis absorption spectra of Fe3+ and Fe2+ are shown in Figure 8b. Fe3+ had a strong absorption
peak in 275–415 nm, while the wavelength of the light required for excitation of N-SCQD
fluorescence was 265–425 nm; these two ranges overlapped perfectly. Therefore, when
Fe3+ was added to the N-SCQDs solution, the light required for excitation of N-SCQD
fluorescence was absorbed by Fe3+, thus making fluorescence quenched, namely, the inner
filter effect. When the Fe3+ was reduced to Fe2+ (absorption wavelength of 225–300 nm),
the quenched fluorescence was restored.
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Due to the strong destructive ability of the oxidizing agent, the fluorescence of N-
SCQDs would also be quenched while oxidizing Fe2+ to Fe3+. Therefore, the multiple
oxidation/reduction of Fe was replaced by addition/reduction, which added additional
Fe3+ after reduction instead of oxidation of Fe2+ to Fe3+. This measure would avoid
the influence of oxidation on fluorescence. As shown in Figure 9, when ferric ion was
added, the fluorescence of the blank was greatly reduced to 85.8% After the addition of
ascorbic acid (100 µM), the fluorescence was almost completely restored. By repeating
quenching and recovery three times, the fluorescence still recovered 94.3%, although the
degree of fluorescence quenching and recovery gradually decreased. This may be due to
that the ascorbic acid added each time is slightly excessive and the chelation with Fe3+/Fe2+

disrupts fluorescent recovery. This suggests that the sensor could potentially be reused in a
limited time.
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3. Experimental Section
3.1. Reagents and Chemicals

Xylan and cellulose dialysis bag (molecular cut off 500 Da) were extracted from
bagasse and purchased from Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China).
Amikacin sulfate and sodium hydroxide were purchased from Shanghai Maclin Biochemi-
cal Technology Co., Ltd. (Shanghai, China), and other reagents were common commercially
available products. Elf11/6b/301 Muffle furnace was purchased from Verder Shanghai
Instrument Equipment Co., Ltd. (Shanghai, China).

3.2. Preparation of Nitrogen-Sulfur-Doped CQDs

In total, 0.8 g of xylan and amikacin sulfate were dissolved in 20 mL of sodium
hydroxide/urea (8%/12%, w/w) aqueous solution. The mixture was transferred to a 25 mL
Teflon-lined stainless steel autoclave and heated in a muffle oven at 240 ◦C for 18 h. The
obtained mixture was centrifuged at 14,000 rpm for 10 min to remove the precipitate.
Nitrogen-sulfur-doped CQDs (N-SCQDs) (0.3 mg/mL) were obtained after one week of
dialysis with a 500 Da dialysis bag and stored at room temperature away from light.

3.3. Preparation of N-SCQDs–Rhodamine B

N-SCQDs (0.3 mg/mL) and rhodamine B (0.1 mg/mL) were mixed in a ratio of 2:1
and stirred under magnetic stirring for 20 min to obtain N-SCQDs–rhodamine B, which
was stored at room temperature away from light.

3.4. Material Characterization

The UV–vis spectrum was investigated using a UV-1800 spectrophotometer (Daojin,
Shanghai, China). FT-IR spectra were investigated on a Tensor 27 infrared spectrometer
(Bruker, Karlsruhe, Germany). TEM images were taken with a JEM-2010F transmittance
electron microscope (JEOL, Tokyo, Japan). AFM images were obtained using a NanoScope
atomic force microscope (Veeco Metrology Group, Camden, NJ, USA). XPS spectra were
measured with an ESCALAB 250 (Themo-VG Scientific, Minneapolis, MN, USA). The
obtained XPS peaks were deconvoluted using XPSpeak41. SEM images were obtained
using a Merlin field emission 9 scanning electron microscope (Zeiss, Carl Zeiss, Germany).

The FL spectra of N-SCQDs were measured on a fluoroMax-4 fluorescence spectropho-
tometer (Horiba, Minneapolis, MN, USA).

3.5. Effect of pH on Fluorescence of N-SCQDs

Aqueous solutions with pH = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 were adjusted by 0.1 M
hydrochloric acid and 0.1 M sodium hydroxide. 30 µL of N-SCQDs (0.3 mg/mL) was added to
3.0 mL of aqueous solution with a certain pH value. After mixing evenly, fluorescence spectra
under excitation of 340 nm were measured by fluoromax-4 fluorescence spectrophotometer.

3.6. Effect of Ions on Fluorescence of N-SCQDs and Rhodamine B

MnSO4, KBr, Al(NO3)3, Pb(NO3)2, K2Cr2O7, CdCl, AgNO3, FeCl3, BaCl2, NaCl, NaNO3,
CH3COONa and Na2SO4 were chosen as the ion sources of Mn2+, K+, Al3+, Pb2+, Cr2O7

2−,
Cd2+, Ag+, Fe3+, Ba2+, Cl−, NO3

−, CH3COO− and SO4
2−, respectively (the concentration for

interference ion detection is 200 µM). A total of 30 µL of N-SCQDS solution (0.3 mg/mL) and
30 µL of ion solution (2 × 10−2 M) were added to 3 mL of deionized water, and the fluorescent
spectra were measured under the excitation of 340 nm laser. Similarly, 3 mL of deionized
water was added with 10 µL of rhodamine B solution (0.1 mg/mL) and 30 µL of ion solution,
and the fluorescence spectra were measured under the excitation of 340 nm laser.

3.7. Determination of Fe3+ Using N-SCQDs–Rhodamine B

In total, 30 µL of N-SCQDs solution (0.3 mg/mL), rhodamine B solution (0.1 mg/mL) and
Fe3+ solution of different concentrations were added to 3 mL of deionized water. After mixing,
fluorescence spectra were measured using a fluoromax-4 fluorescence spectrophotometer.
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MnSO4, KBr, Al(NO3)3, Pb(NO3)2, K2Cr2O7, CdCl2, AgNO3, FeCl3, BaCl2, NaCl,
NaNO3, CH3COONa and Na2SO4 were chosen as the ion sources of Mn2+, K+, Al3+,
Pb2+, Cr2O7

2−, Cd2+, Ag+, Fe3+, Ba2+, Cl−, NO3
−, CH3COO− and SO4

2−, respectively.
When these interfering ions are present, 200 µM of ferric ions are added for fluoromax-4
fluorescence spectrophotometer determination and comparison.

N-SCQDs solution (0.3 mg/mL) and rhodamine B solution (0.1 mg/mL) were mixed
evenly in a ratio of 2:1. Furtherly, the circular paper (filter paper) with a radius of 1 cm was
put into the 3 mL mixture and soaked for 20 min before drying to form fluorescent paper.
Then, the fluorescent paper was immersed in 1 mL Fe3+ solution of different concentrations
for 2 min and then photographed using a mobile phone under a UV lamp. Photoshop 5
was used to determine the RGB value of the picture, so as to quantitatively detect Fe3+.

4. Conclusions

By mixing amikacin sulfate and xylan as precursors, N- and S-doped carbon quantum
dots were obtained after hydrothermal treatment. The addition of amikacin sulfate could
effectively change the properties of carbon quantum dots. The ratio fluorescence probe
consisting of N-SCQDs and rhodamine B improved the reliability and sensitivity of Fe3+

detection. Platform combined fluorescent paper with a smartphone was further fabricated
to realize on-site, visual and quantitative detection of Fe3+. The linear range of detection
was 10–180 µM with a limit of detection of 198.2 nM, and the detection principle was
based on the inner filter effect, which effectively quenched the fluorescence. Therefore,
the application of ratio fluorescent paper with a smartphone provides a facile method for
on-site detection of ions and high-value utilization of agricultural and forestry by-products.
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