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Abstract: A series of 5-alkoxy-1,3-benzenedicarbaldehydes and related dimers were prepared in three
steps from dimethyl 5-hydroxyisophthalate. Acid catalyzed condensation of the dialdehydes with a
tripyrrane dicarboxylic acid, followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone,
afforded good yields of 3-alkoxybenziporphyrins, although dimeric tetraaldehydes failed to give
isolatable porphyrinoid products. Proton NMR spectroscopy gave no indication of an aromatic ring
current, but addition of trifluoroacetic acid resulted in the formation of dications that exhibited weakly
diatropic characteristics. Spectroscopic titration with TFA demonstrated that stepwise protonation
took place, generating monocationic and dicationic species. 3-Alkoxybenziporphyrins reacted with
nickel(II) or palladium(II) acetate to give the related nickel(II) or palladium(II) complexes. These
stable organometallic derivatives showed increased diatropic properties that were most pronounced
for the palladium(II) complexes. These unique porphyrinoids provide further insights into the
properties of benziporphyrins.

Keywords: carbaporphyrinoids; benziporphyrins; aromaticity; organometallic compounds

1. Introduction

Benziporphyrins [1,2], e.g., 1a, porphyrin analogues that possess a benzene moiety
in place of one of the pyrrolic units, are examples of highly modified carbaporphyrinoid
systems [3]. Unlike true porphyrins, benziporphyrin 1a (Figure 1) is nonaromatic, although
a weak global diatropic ring current manifests upon protonation [4–6]. On the other hand,
2-hydroxybenziporphyrin 1b favors a fully aromatic semiquinone tautomer 2 that exhibits
dramatically reduced diatropicity upon protonation in the presence of excess acid due
to the formation of a phenolic dication [4,7]. 2,4-Dimethoxybenziporphyrin 3a [8] and
related meso-tetraarylbenziporphyrins 4a [9,10] exhibit macrocyclic ring currents due to
the electron-donating methoxy groups facilitating dipolar canonical forms such as 3a′

and 4a′, which possess 18π electron delocalization pathways. The aromatic character of
dimethoxybenziporphyrins 3b and 4b is considerably reduced because steric congestion
due to the 3-methyl group prevents the methoxy units from lying coplanar with the
benzene ring, thereby undermining the electronic interactions responsible for resonance
contributors 3′ and 4′ [8–10]. Protonation of 3a or 4a with excess trifluoroacetic acid gave
strongly aromatic dications 3aH2

2+ and 4aH2
2+. Surprisingly, 22-hydroxybenziporphyrin 5

has been shown to favor an antiaromatic keto-tautomer 6 [11,12], further demonstrating
the versatility of this family of carbaporphyrinoids.

Due to their intriguing properties, benziporphyrins have been widely investigated and
have been shown to form a range of stable organometallic complexes [2,13–17]. In addition,
benziporphyrin derivatives have shown promise as fluorescent zinc ion detectors [18] and
as components of nanomolecular assemblies [19].

In a continuation of our studies in this area, a series of 3-alkoxybenziporphyrins 7
(Scheme 1) were targeted for synthesis. The properties of these substituted benziporphyrins
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were assessed and metalation studies were performed. In addition, the potential use of this
substitution pattern to generate a tether between two porphyrinoid units was considered.
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Figure 1. Selected examples of benziporphyrins. 
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Scheme 1. The ‘3 + 1’ synthesis of 3-alkoxybenziporphyrins.

2. Results and Discussion

Alkoxybenziporphyrins 7a–c were prepared using the ‘3 + 1’ variant of the MacDonald
condensation (Scheme 1) [20,21]. The key intermediates were 5-alkoxyisophthalaldehydes
8a–c and tripyrrane dicarboxylic acid 9 [22,23]. The dialdehydes were prepared in turn from
commercially available dimethyl 5-hydroxyisophthalate 10 (Scheme 2). Alkylation of 10
with methyl or ethyl iodide and potassium carbonate in refluxing acetonitrile gave methoxy
and ethoxy derivatives 11a and 11b, respectively. Reduction with lithium aluminum hy-
dride in THF afforded the corresponding dialcohols 12a and 12b, and subsequent treatment
with pyridinium chlorochromate (PCC) gave dialdehydes 8a and 8b. Related dialdehyde
8c was prepared by an alternative route. Reduction of 10 with lithium aluminum hydride
gave phenolic dicarbinol 13, and subsequent oxidation with PCC afforded dialdehyde 14.
Reaction with methyl bromoacetate and potassium carbonate then furnished aryloxyacetate
dialdehyde 8c.

Tripyrrane 9 was treated with trifluoroacetic acid (TFA), the reaction solution diluted
with dichloromethane, and the intermediate condensed with dialdehydes 8a–c. Following
oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), purification by column
chromatography on grade 3 alumina, and recrystallization from chloroform-methanol,
3-alkoxybenziporphyrins 7a–c were isolated as dark-purple crystals in 34–44% yield. Inter-
estingly, no porphyrinoid products could be isolated when phenolic dialdehyde 14 was
reacted with tripyrrane 9, possibly due to the instability of hydroxybenziporphyrins. As
had been expected, the proton NMR spectra for 7a–c showed no indication of an aromatic
ring current. Porphyrins, which exhibit exceptionally powerful diamagnetic ring currents,
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give strongly deshielded resonances for the external protons, while the internal protons are
shifted atypically upfield [24,25]. For instance, the bridging methine protons (meso-protons)
in porphyrins commonly appear downfield near +10 ppm, while the inner N-H protons are
generally observed upfield near −4 ppm.
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The proton NMR spectrum of 3-ethoxybenziporphyrin 7b (Figure 2) confirmed that
the macrocycle possesses a plane of symmetry and demonstrated the absence of overall
aromatic character. The meso-protons gave rise to two 2H singlets at 6.5 and 7.1 ppm,
values that are consistent with a nonaromatic porphyrinoid. Furthermore, the internal
C-H resonance appeared downfield at 7.8 ppm, while the N-H appeared at 8.2 ppm.
Benziporphyrins 7a and 7c gave similar results. However, the addition of TFA to the NMR
tube resulted in the emergence of weak, but nonetheless significant, aromatic character.
In the case of 7b (Figure 2), the meso-protons of the resulting dication 7bH2

2+ (Scheme 3)
shifted downfield to give 2H singlets at 7.0 and 7.8 ppm, while the external benzene rings
(2,4-H) moved from 7.5 to 8.0 ppm. However, the inner C-H (22-H) shifted upfield by
3 ppm to give a 1H resonance at 4.8 ppm (Figure 2). In the absence of any other changes,
protonation would be expected to result in deshielding, so the shift associated with the
22-H resonance is significant. This result can be attributed to contributions from canonical
forms such as 7b′H2

2+, which possess 18π electron pathways (Scheme 3). Nevertheless,
the diatropic character for the dication is relatively weak compared to porphyrins or fully
aromatic porphyrinoids such as oxybenziporphyrin 2. Protonation of 7a and 7c gave similar
results (Figures S49 and S84).

The UV-vis spectra of 7a–c were also consistent with nonaromatic structures. For
instance, benziporphyrin 7b gave two moderate absorptions at 308 and 382 nm and weaker
broad absorptions between 500 and 800 nm (Figure 3). Spectroscopic titration with TFA
demonstrated that two sequential protonations occurred. The addition of 0.5–3 equivalents
of TFA resulted in a bathochromic shift of the band at 382 nm to 391 nm, while long
wavelength absorptions emerged at 776 and 858 nm (Figure 3). This was attributed to the
formation of monoprotonated cation 7bH+ (Scheme 3). At higher concentrations of TFA,
further changes were noted, and the long wavelength bands hypsochromically shifted to
760 and 842 nm, while the Soret-like band was reduced in intensity and moved to 400 nm
(Figure 3). This was attributed to the formation of dication 7bH2

2+ (Scheme 3). Similar
results were obtained for 7a and 7c (Figures S9–S14 and S17–S18).

Metalation of 3-alkoxybenziporphyrins 7a–c was also investigated (Scheme 4). The
palladium complexes were synthesized by refluxing 3-alkoxybenziporphyrins 7a–c in
acetonitrile for 30 min in the presence of palladium(II) acetate. Following purification by
column chromatography on a grade 3 basic alumina column and recrystallization from
chloroform-methanol, organometallic complexes 7Pd were isolated in a 60–73% yield.
When benziporphyrins 7a–c were refluxed in N,N-dimethylformamide (DMF) for 30 min
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in the presence of nickel(II) acetate and purified similarly, the corresponding nickel(II)
complexes 7Ni were obtained as dark-green solids in a 55–86% yield.
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Figure 2. Partial 500 MHz proton NMR spectra of ethoxybenziporphyrin 7b in CDCl3 (A) and the
related diprotonated dication in TFA-CDCl3 (B). Protonation leads to the internal 22-H shifting
upfield by ca. 3 ppm while the external protons are significantly deshielded, results that demonstrate
the emergence of a global aromatic ring current.
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The proton NMR spectra for the palladium and nickel complexes demonstrated that
metalation induced the emergence of aromatic character in these structures (Figure 4). This
was particularly evident for palladium(II) complexes 7Pd. Figure 4 illustrates how the
meso-protons are shifted downfield for the 3-methoxybenziporphyrin series 7a, 7aNi, and
7aPd. The meso-protons for free base 7a appeared at 6.48 and 7.14 ppm, but these resonances
shifted to 7.08 and 7.35 ppm in 7aNi, and 7.25 and 7.57 ppm in 7aPd. In addition, the
2,4-protons on the arene unit were also shifted downfield from 7.49 to 7.63 to 7.68 ppm,
going from 7a to 7aNi to 7aPd. Although the observed global ring currents are weak,
the results show significant changes, and these were replicated for the metal complexes
of 7b and 7c. The carbon-13 NMR spectra showed the meso-carbon resonances at 95.3
(11,16-CH) and 123.2 ppm (6,21-CH) for 7aNi, while these peaks appeared at 95.5 and
126.6 ppm, respectively, for 7aPd. As was the case for the non-metalated benziporphyrins,
the meso-carbons flanking the phenylene unit are ca. 30 ppm further downfield than the
meso-carbons connecting two pyrrolic moieties. Similar results were obtained for 7bNi,
7cNi, 7bPd, and 7cPd (Figures S69, S74, S88 and S93).
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Figure 3. UV-vis spectra of ethoxybenziporphyrin 7b in dichloromethane with 0–3 equivalents of
TFA (left) and 50–500 equivalents of TFA (right) showing sequential mono- and diprotonation.
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Scheme 4. Metalation of 3-alkoxybenziporphyrins.

The UV-Vis spectra of the metalated species also showed characteristic features
(Figure 5). Palladium complex 7aPd showed a strong Soret-like absorbance at 407 nm,
a shoulder at 391 nm, and a weaker absorbance at band 308 nm. Multiple Q-type ab-
sorbances appeared between 407 and 850 nm. However, nickel(II) complex 7aNi gave very
different results, showing three moderately strong absorptions at 313, 353, and 405 nm and
a broad band centered on 660 nm (Figure 5). Similar spectra were obtained for the nickel(II)
and palladium(II) complexes of 7b and 7c (Figures S7, S8, S19 and S20).

The possibility of using this strategy to prepare linked benziporphyrins was also
investigated. Alkylation of dimethyl 5-hydroxybenzene-1,3-dicarboxylate 10 with o-, m-,
or p-dibromoxylenes 15a–c and potassium carbonate in refluxing acetonitrile gave a series
of linked tetraesters 16a–c in a 67–99% yield. Reduction with lithium aluminum hydride
afforded the related tetraalcohols 17a–c, and subsequent oxidation with PCC yielded
tetraaldehydes 18a–c (Scheme 5). Unfortunately, attempts to prepare benziporphyrin
dimers 19a–c by reacting tetraaldehydes 18a–c with two equivalents of tripyrrane 9 only af-
forded trace amounts of porphyrinoid products. The reactions were attempted using DDQ
or FeCl3 as the oxidant, and at different concentrations of reactants, but none of the condi-
tions investigated produced useful quantities of product, and substantial decomposition
was observed. Although this route proved not to be viable, these new tetraaldehydes have
potentially valuable architectures that may allow the synthesis of other tethered systems.
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3. Experimental

Melting points are uncorrected. NMR spectra are recorded using a 400 or 500 MHz
NMR spectrometer and are run at 302 K unless otherwise indicated. 1H NMR values
are reported as chemical shifts δ, relative integral, multiplicity (s, singlet; d, doublet; t,
triplet; q, quartet; m, multiplet; br, broad peak) and coupling constant (J). Chemical shifts
are reported in parts per million (ppm) relative to CDCl3 (1H residual CHCl3 singlet δ
7.26 ppm, 13C CDCl3 triplet δ 77.23 ppm) or DMSO-d6 (1H residual DMSO-d5 pentet δ
2.49 ppm, 13C DMSO-d6 septet δ 39.7 ppm), and coupling constants are taken directly from
the spectra. NMR assignments are made with the aid of 1H-1H COSY, HSQC, DEPT-135,
and nOe difference proton NMR spectroscopy. Two-dimensional (2D)-NMR experiments
are performed using standard software. Mass spectral data are acquired using positive-
mode electrospray ionization (ESI+) and a high-resolution time-of-flight mass spectrometer.

Dimethyl 5-methoxy-1,3-benzenedicarboxylate (11a). Dimethyl 5-hydroxyisophthalate
(1.860 g, 8.9 mmol), methyl iodide (2.301 g, 16.2 mmol), and potassium carbonate (1.342 g,
10.4 mmol) were dissolved in acetonitrile (30 mL) and refluxed overnight. The solution was
cooled, and the solvent was removed on a rotary evaporator. The residue was dissolved
in ethyl acetate (50 mL) and then washed with water (2 × 30 mL) and saturated sodium
bicarbonate (2 × 30 mL). The organic layer was dried over sodium sulfate and filtered,
and the solvent was evaporated under reduced pressure to yield 5-methoxyisophthalic
acid dimethyl ester (1.989 g, 8,88 mmol, quantitative) as a white solid, mp 111–112 ◦C (lit.
mp [26] 110–112 ◦C). 1H NMR (500 MHz, CDCl3): δ 8.29 (t, 1H, 4JHH = 1.4 Hz, 2-H), 7.75
(d, 2H, 4JHH = 1.4 Hz, 4,6-H), 3.94 (s, 6H, 2 × CO2CH3), 3.89 (s, 3H, OCH3). 13C NMR
(125 MHz, CDCl3): δ 166.3 (C=O), 159.9 (5-C), 128.3 (1,3-C), 123.1 (2-CH), 119.5 (4,6-CH),
55.9 (OMe), 52.5 (2 × ester OMe).

5-Methoxy-1,3-bis(hydroxymethyl)benzene (12a). Lithium aluminum hydride (1.111 g,
29.3 mmol) was added to a solution of 11a (1.918 g, 8.56 mmol) in dry THF (100 mL), and
the resulting mixture was stirred at room temperature overnight. Dilute hydrochloric acid
(80 mL) was added dropwise to the solution, and the contents of the reaction flask were
stirred for an additional 30 min. Ethyl acetate (200 mL) was added, and the aqueous layer
was drawn off. The organic layer was washed with water (2 × 100 mL) and saturated
sodium bicarbonate solution (2 × 100 mL). The ethyl acetate layer was dried over sodium
sulfate and filtered, and the solvent was removed under reduced pressure to yield 12a
(1.439 g, 8.56 mmol, quantitative) as a white solid, mp 66–68 ◦C (lit. mp [27] 66–67 ◦C). 1H
NMR (500 MHz, CDCl3): δ 6.94 (s, 1H, 2-H), 6.85 (br s, 2H, 4,6-H), 4.67 (s, 4H, 2 × CH2),
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3.82 (s, 3H, OCH3), 1.76 (br s, 2H, 2 × OH). 13C NMR (125 MHz, CDCl3): δ 160.4 (5-C),
143.3 (1,3-C). 117.7 (2-CH), 111.8 (4,6-CH), 65.4 (2 × CH2OH), 55.5 (OCH3).

5-Methoxybenzene-1,3-dicarbaldehyde (8a). Dialcohol 12a (1.515 g, 9.02 mmol) was
dissolved in dichloromethane (108 mL) and THF (72 mL). Pyridinium chlorochromate
(5.979 g, 27.7 mmol) and silica gel (3.720 g, 61.9 mmol) were added to the solution, and
the mixture was stirred at room temperature for 1 h. The contents of the reaction flask
were immediately chromatographed twice on silica gel, eluting with dichloromethane. The
desired column fractions were evaporated under reduced pressure to afford the dialdehyde
(1.185 g, 7.22 mmol, 80%) as a white solid, mp 109–110 ◦C (lit. mp [28] 108–109 ◦C). 1H
NMR (500 MHz, CDCl3): δ 10.05 (s, 2H, 2 × CHO), 7.96 (t, 1H, 4JHH = 1.4 Hz, 2-H), 7.65
(d, 2H, 4JHH = 1.4 Hz, 4,6-H), 3.93 (s, 3H, OCH3). 13C NMR (125 MHz, CDCl3): δ 191.0
(2 × CHO), 161.1 (5-C), 138.6 (1,3-C), 124.4 (2-CH), 119.6 (4,6-CH), 56.2 (OCH3).

Dimethyl 5-ethoxy-1,3-benzenedicarboxylate (11b). Dimethyl 5-hydroxy-isophthalate
(1.680 g, 8.0 mmol), ethyl iodide (1.905 g, 12.2 mmol), and potassium carbonate (1.344 g,
9.7 mmol) were dissolved in acetonitrile (30 mL) and refluxed overnight. The solution
was cooled, and the solvent was removed using a rotary evaporator. The resulting solid
was dissolved in ethyl acetate (50 mL) and washed with water (2 × 30 mL) and saturated
sodium bicarbonate (2 × 30 mL). The organic layer was dried over sodium sulfate and
filtered, and the solvent was removed under reduced pressure to yield 5-ethoxyisophthalic
acid dimethyl ester (1.754 g, 7,57 mmol, 92%) as a white solid, mp 101–102 ◦C (lit. mp [29]
102 ◦C). 1H NMR (500 MHz, CDCl3): δ 8.25 (t, 1H, 4JHH = 1.4 Hz, 2-H), 7.73 (d, 2H,
4JHH = 1.4 Hz, 4,6-H), 4.11 (q, 2H, 3JHH = 7.0 Hz, OCH2CH3), 3.93 (s, 6H, 2 × OCH3), 1.44
(t, 3H, 3JHH = 7.0 Hz, OCH2CH3). 13C NMR (125 MHz, CDCl3): δ 166.4 (C=O), 159.2 (5-C),
131.9 (1,3-C), 123.0 (2-CH), 120.0 (4,6-CH), 64.3 (OCH2), 52.5 (2 × OMe), 14.8 (OCH2CH3).

5-Ethoxy-1,3-bis(hydroxymethyl)benzene (12b). Lithium aluminum hydride (1.018 g,
26.8 mmol) was added to a solution of 11b (2.018 g, 8.48 mmol) in dry THF (100 mL).
The mixture was stirred at room temperature overnight, dilute hydrochloric acid (80 mL)
was added dropwise to the solution, and the contents of the reaction flask were stirred
for an additional 30 min. Ethyl acetate (200 mL) was added, and the aqueous layer was
drawn off. The organic layer was washed with water (2 × 100 mL) and a saturated sodium
bicarbonate solution (2 × 100 mL). The organic solution was dried over sodium sulfate
and filtered, and the solvent was removed under reduced pressure to yield the dialcohol
(1.534 g, 8.43 mmol, 99%) as a white solid, mp 123–124 ◦C (lit. mp [29] 124–125 ◦C). 1H NMR
(500 MHz, CDCl3): δ 6.88 (br s, 1H, 2-H), 6.79 (br s, 2H, 4,6-H), 4.59 (s, 4H, 2 × CH2OH),
4.02 (q, 2H, 3JHH = 7.0 Hz, OCH2CH3), 2.53 (br s, 2H, 2 × OH), 1.39 (t, 3H, 3JHH = 7.0 Hz,
OCH2CH3). 13C NMR (125 MHz, CDCl3): δ 159.6 (5-C), 143.0 (1,3-C). 117.6 (2-CH), 112.3
(4,6-CH), 65.2 (2 × CH2OH), 63.7 (OCH2CH3), 15.0 (CH2CH3).

5-Ethoxybenzene-1,3-dicarbaldehyde (8b). Dialcohol 12b (0.191 g, 1.05 mmol) was
dissolved in dichloromethane (12 mL) and THF (8 mL). Pyridinium chlorochromate (0.656 g,
3.0 mmol) and silica gel (0.411 g, 6.8 mmol) were added to the solution, and the mixture
was stirred at room temperature for 1 h. The contents of the reaction flask were imme-
diately chromatographed twice on silica gel, eluting with dichloromethane. The desired
column fractions were evaporated under reduced pressure to give the dialdehyde (0.175 g,
0.98 mmol, 94%) as a white solid, mp 207–208 ◦C (lit. mp [29] 208–209 ◦C). 1H NMR
(500 MHz, CDCl3): δ 10.05 (s, 2H, 2 × CHO), 7.94 (s, 1H, 4JHH = 1.4 Hz, 2-H), 7.64 (s,
2H, 4JHH = 1.4 Hz, 4,6-H), 4.16 (q, 4H, 3JHH = 7.0 Hz, OCH2), 1.47 (t, 3H, 3JHH = 7.0 Hz,
CH2CH3). 13C NMR (125 MHz, CDCl3): δ 191.1 (2 × CHO), 160.4 (5-C), 138.6 (1,3-C), 124.2
(2-CH), 120.1 (4,6-CH), 64.6 (OCH2), 14.8 (CH2CH3).

5-Hydroxybenzene-1,3-dicarbaldehyde (14). Lithium aluminum hydride (6.076 g,
160 mmol) was dissolved in dry THF (150 mL) in a 3-neck flask fitted with an addition
funnel, stopper, and condenser. A solution of dimethyl 5-hydroxyisophthalate (10.501 g,
50.0 mmol) in dry THF (175 mL) was added dropwise to the solution, and the mixture
was refluxed for 2 h and subsequently stirred at room temperature overnight. A mixture
of ethanol (5 mL), ethyl acetate (10 mL), and brine (50 mL) was added dropwise. After
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the addition was complete, the contents of the flask were filtered, and the solid was
washed with ethanol. The filtrate was evaporated under reduced pressure to yield 3,5-
bis(hydroxymethyl)phenol (13, 7.005 g, 45.5 mmol, 91%) as a white solid, mp 174–175 ◦C
(lit. mp [30] 175–176 ◦C). The crude solid (3.90 g, 25.3 mmol) and potassium dichromate
(14.94 g, 50.8 mmol) were dissolved in DMSO (166 mL) and stirred at 100 ◦C for 4 h. The
mixture was cooled, poured into a beaker of water (750 mL), and extracted with diethyl
ether (5 × 200 mL). The aqueous layer was discarded, and the organic phase was washed
with water (150 mL), dried over sodium sulfate, and filtered, and the solvent was removed
on a rotary evaporator to give the dialdehyde (2.512 g, 16.7 mmol, 66%) as a light tan solid,
mp 146–147 ◦C (lit. mp [30] 146–147.5 ◦C). 1H NMR (500 MHz, CDCl3): δ 10.04 (s, 2H,
2 × CHO), 7.95 (t, 1H, 4JHH = 1.4 Hz, 2-H), 7.63 (d, 2H, 4JHH = 1.4 Hz, 4,6-H), 6.23 (1H, br
s, OH). 13C NMR (125 MHz, CDCl3): δ 191.3 (2 × CHO), 157.5 (5-C), 138.8 (1,3-C), 124.5
(2-CH), 121.0 (4,6-CH).

5-Methoxycarbonylmethoxybenzene-1,3-dicarbaldehyde (8c). Dialdehyde 12 (301 mg,
2.00 mmol), potassium carbonate (357 mg, 2.6 mmol), and methyl bromoacetate (0.3 mL,
3.2 mmol) in acetone (25 mL) were stirred at room temperature overnight. The solvent was
removed under reduced pressure, and the residue was dissolved in ethyl acetate (20 mL).
The solution was washed with water and saturated sodium bicarbonate solution. The
organic layer was dried over sodium sulfate and filtered, and the solvent was removed
under reduced pressure to yield 8c (275 mg, 1.24 mmol, 62%) as a white solid, mp 97–99 ◦C.
1H NMR (500 MHz, CDCl3): δ 10.05 (s, 2H, 2 × CHO), 8.01 (t, 1H, 4JHH = 1.3 Hz, 2-H), 7.66
(d, 2H, 4JHH = 1.3 Hz, 4,6-H), 4.77 (s, 2H, CH2O), 3.83 (s, 3H, OCH3). 13C NMR (100 MHz,
CDCl3): δ 190.6 (CHO), 168.4 (OCH2CO2CH3), 159.0 (5-C), 138.4 (1,3-C), 124.9 (2-CH), 119.9
(4,6-CH), 65.3 (OCH2CO2CH3), 52.4 (OCH2CO2CH3). HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C11H11O5
+ 223.0601; Found 223.0601.

9,13,14,18-Tetraethyl-3-methoxy-8,19-dimethylbenziporphyrin (7a). In a pear-shaped
flask, tripyrrane dicarboxylic acid 9 (99 mg, 0.22 mmol) was dissolved in TFA (1 mL) and
stirred under nitrogen for 2 min. Dichloromethane (100 mL) was added, followed by
5-methoxybenzene-1,3-dicarbaldehyde (42 mg, 0.25 mmol). The flask was subsequently
covered in aluminum foil to protect the reaction from ambient light, and the solution was
stirred overnight under nitrogen. DDQ (81 mg, 0.357 mmol) was added, and the mixture
was stirred for 1 h. The resulting solution was washed with water and saturated sodium
bicarbonate solution (the aqueous layers were back-extracted with chloroform to ensure all
of the product was collected). The combined organic layers were evaporated under reduced
pressure, and the residue was purified on a grade 3 basic alumina column, eluting with
dichloromethane. The product was collected as a dark-blue band. Recrystallization from
chloroform-methanol afforded the benziporphyrin (37 mg, 0.075 mmol, 34%) as dark-purple
crystals, mp > 300 ◦C. UV-vis (1% Et3N-CH2Cl2): λmax (log ε): 308 (4.73), 382 (4.84), 580 (sh,
3.46), 630 (3.62), 672 (3.65), 733 nm (3.44). UV-vis (1% TFA-CH2Cl2): λmax (log ε): 315 (4.63),
399 (4.78), 504 (3.91), 573 (3.36), 692 (sh, 3.53), 745 (3.07), 838 nm (sh, 3.61). 1H NMR (500
MHz, CDCl3): δ 9.21 (br s, 1H, NH), 7.86 (s, 1H, 22-H), 7.49 (d, 2H, 4JHH = 1.2 Hz, 2,4-H),
7.14 (s, 2H, 6,21-H), 6.48 (s, 2H, 11,16-H), 4.04 (s, 3H, OCH3), 2.82 (q, 4H, 3JHH = 7.6 Hz,
9,18-CH2CH3), 2.73 (q, 4H, 3JHH = 7.6 Hz, 13,14-CH2CH3), 2.39 (s, 6H, 8,19-CH3), 1.33 (t,
6H, 3JHH = 7.6 Hz, 13,14-CH2CH3), 1.25 (t, 6H, 3JHH = 7.6 Hz, 9,18-CH2CH3). 1H NMR
(500 MHz, TFA-CDCl3): 9.86 (br s, 1H, NH), 7.92 (s, 2H, 6,21-H), 7.75 (s, 2H, 2,4-H), 6.92
(s, 2H, 11,16-H), 5.06 (s, 1H, 22-H), 4.03 (s, 3H, OCH3), 2.92–2.87 (m, 8H, 9,13,14,18-CH2),
2.61 (s, 6H, 8,19-CH3), 1.33 (t, 6H, 3JHH = 7.6 Hz), 1.30 (t, 6H, 3JHH = 7.6 Hz) (4 × CH2CH3).
13C NMR (125 MHz, CDCl3): δ 169.3, 159.6, 157.4, 148.1, 141.3, 141.2, 140.5, 135.2, 122.6
(6,21-CH), 122.1 (2,4-CH), 118.7 (22-CH), 93.1 (11,16-CH), 55.7 (OCH3), 18.5 (13,14-CH2CH3),
18.1 (9,18-CH2CH3), 16.1 (13,14-CH2CH3), 15.3 (9,18-CH2CH3), 10.4 (8,19-CH3). 13C NMR
(125 MHz, TFA-CDCl3): δ 163.1, 162.8, 154.7, 148.0, 146.6, 143.8, 141.6, 133.2, 128.4 (6,21-
CH), 124.7 (2,4-CH), 101.7 (22-CH), 94.2 (11,16-CH), 56.3 (OCH3), 18.4 (13,14-CH2CH3),
18.1 (9,18-CH2CH3), 15.2 (13,14-CH2CH3), 14.3 (9,18-CH2CH3), 10.7 (8,19-CH3). HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C33H38N3O+ 492.3009; Found 492.3011.
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[9,13,14,18-Tetraethyl-3-methoxy-8,19-dimethylbenziporphyrinato]palladium(II) (7aPd).
Methoxybenziporphyrin 7a (17 mg, 0.0346 mmol) and palladium(II) acetate (20 mg, 0.089 mmol)
in acetonitrile (15 mL) were refluxed for 30 min. The solution was cooled to room tempera-
ture and then diluted with dichloromethane (35 mL). The solution was washed with water,
and the solvent was removed using a rotary evaporator. The residue was chromatographed
on a grade 3 basic alumina column, eluting with dichloromethane. A reddish-purple frac-
tion was collected, and the solvent was removed under reduced pressure. The residue was
recrystallized from chloroform-methanol to give the palladium complex (15 mg, 0.025 mmol,
72%) as a dark-purple solid, mp > 300 ◦C. UV-vis (CH2Cl2): λmax (log ε): 308 (4.61), 391 (sh,
4.69), 407 (4.75), 474 (sh, 3.48), 507 (sh, 3.67), 543 (3.82), 572 (3.84), 666 (3.31), 728 (3.55), 807
(3.50). 1H NMR (400 MHz, CDCl3): δ 7.68 (2H, s, 2,4-H), 7.57 (2H, s, 6,21-H), 7.25 (2H, s,
11,16-H), 4.10 (3H, s, OCH3), 3.01–2.92 (8H, overlapping quartets, 4 × CH2CH3), 2.59 (6H,
s, 8,19-CH3), 1.43 (6H, t, 3JHH = 7.6 Hz, 13,14-CH2CH3), 1.37 (6H, t, 3JHH = 7.6 Hz, 9,18-
CH2CH3). 13C NMR (100 MHz, CDCl3): δ 157.4, 157.2, 153.7, 145.3, 144.0, 141.1, 138.5, 133.4,
131.6, 126.8 (2,4-CH), 126.6 (6,16-CH), 95.5 (11,21-CH), 55.8 (OCH3), 18.9 (13,14-CH2CH3),
18.6 (9,18-CH2CH3), 16.6 (13,14-CH2CH3), 15.3 (9,18-CH2CH3). HRMS (ESI-TOF) m/z: M+

Calcd for C33H36N3OPd+ 506.1888; Found 596.1869.
[9,13,14,18-Tetraethyl-3-methoxy-8,19-dimethylbenziporphyrinato]nickel(II) (7aNi).

Methoxybenziporphyrin 7a (19 mg, 0.0387 mmol) and nickel(II) acetate (40 mg, 0.16 mmol)
in DMF (20 mL) were refluxed for 30 min. The solution was cooled to room temperature
and diluted with chloroform (25 mL). The solution was washed with water, and the solvent
was evaporated under reduced pressure. The residue was chromatographed on a grade
3 basic alumina column, eluting with chloroform. A dark-green band was collected, and
the solvent was removed under reduced pressure. The residue was recrystallized from
chloroform-methanol to give the nickel complex (16 mg, 0.029 mmol, 75%) as a dark-green
solid, mp > 300 ◦C. UV-vis (CH2Cl2): λmax (log ε): 313 (4.32), 353 (4.27), 405 (4.39), 493 (sh,
3.43), 527 (3.38), 660 (3.51). 1H NMR (500 MHz, CDCl3) δ 7.63 (s, 2H, 2,4-H), 7.35 (s, 2H,
6,21-H), 7.08 (s, 2H, 11,16-H), 4.05 (s, 3H, OCH3), 2.91 (q, 4H, 3JHH = 7.6 Hz, 13,14-CH2CH3),
2.84 (q, 4H, 3JHH = 7.6 Hz, 9,18-CH2CH3), 2.44 (s, 6H, 8,19-CH3), 1.37 (t, 6H, 3JHH = 7.6 Hz,
13,14-CH2CH3), 1.30 (t, 6H, 3JHH = 7.6 Hz, 9,18-CH2CH3). 13C NMR (125 MHz, CDCl3): δ
159.5, 157,8, 153.5, 146.7, 144.7, 141.4, 139.9, 136.7, 130.0, 125.8 (2,4-CH), 123.2 (6,21-CH),
95.3 (11,16-CH), 55.7 (OCH3), 18.50, 18.48 (13,14-CH2CH3), 16.5 (13,14-CH2CH3), 15.3 (9,18-
CH2CH3), 10.4 (8,19-CH3). HRMS (ESI-TOF) m/z: M+ Calcd for C33H36N3NiO+ 548.2206;
Found 548.2205.

3-Ethoxy-9,13,14,18-tetraethyl-8,19-dimethylbenziporphyrin (7b). In a pear-shaped
flask, tripyrrane dicarboxylic acid 9 (106 mg, 0.234 mmol) was dissolved in TFA (1 mL)
and stirred under nitrogen for 2 min. Dichloromethane (100 mL) was added, followed
by dialdehyde 8b (42 g, 0.236 mol), and the mixture was stirred in the dark overnight
under nitrogen. DDQ (73 mg, 0.321 mmol) was added, and the mixture was stirred for 1 h.
The resulting solution was washed with water and saturated sodium bicarbonate, back
extracting the aqueous layers with chloroform at each stage to ensure that all of the product
was collected. The combined organic layers were evaporated under reduced pressure, and
the residue was purified on a grade 3 basic alumina column, eluting with dichloromethane.
The product was collected as a dark-blue band. Recrystallization from chloroform-methanol
gave benziporphyrin 7b (52 mg, 0.103 mmol, 44%) as dark-purple crystals, mp > 300 ◦C.
UV-vis (1% Et3N-CH2Cl2): λmax (log ε): 308 (4.77), 382 (4.89), 581 (sh, 3.37), 626 (3.59), 673
(3.68), 733 nm (3.48). UV-vis (5 equiv. TFA-CH2Cl2): λmax (log ε): 304 (4.65), 391 (4.87), 479
(3,74), 524 (3.71), 566 (3.73), 776 (3.90), 858 (4.15). UV-vis (1% TFA-CH2Cl2): λmax (log ε):
315 (4.65), 400 (4.82), 510 (3.92), 573 (3.36), 711 (sh, 3.57), 760 (3.70), 842 nm (sh, 3.60). 1H
NMR (500 MHz, CDCl3): δ 9.16 (br s, 1H, NH), 7.80 (s, 1H, 22-H), 7.49 (br d, 2H, 4JHH = ca.
1 Hz, 2,4-H), 7.14 (s, 1H, 6,21-H), 6.48 (s, 2H, 11,16-H), 4.29 (q, 2H, 3JHH = 6.9 Hz, OCH2),
2.82 (q, 4H, 3JHH = 7.6 Hz, 13,14-CH2), 2.74 (q, 4H, 3JHH = 7.6 Hz, 9,18-CH2), 2.39 (s, 6H,
8,19-CH3), 1.53 (t, 3H, 3JHH = 6.9 Hz, OCH2CH3), 1.34 (t, 6H, 3JHH = 7.6 Hz, 13,14-CH2CH3),
1.26 (t, 6H, 3JHH = 7.6 Hz, 9,18-CH2CH3). 1H NMR (500 MHz, TFA-CDCl3): δ 9.42 (br s,
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2H, 2 × NH), 8.03 (s, 2H, 6,21-H), 7.83 (br d, 2H, 2,4-H), 7.04 (s, 2H, 10,15-H), 4.77 (s, 1H,
22-H), 4.30 (q, 2H, 3JHH = 7.0 Hz, OCH2), 2.98–2.92 (m, 8H, 9,13,14,18-CH2), 2.66 (s, 6H,
8,19-CH3), 1.54 (t, 3H, 3JHH = 7.0 Hz, OCH2CH3), 1.37 (t, 6H, 3JHH = 7.7 Hz), 1.32 (t, 6H,
3JHH = 7.7 Hz) (4 × CH2CH3). 13C NMR (125 MHz, CDCl3): δ 169.2, 158.9, 157.3, 148.1,
141.3, 141.1, 140.5, 135.2, 122.9 (2,4-CH), 122.7 (6,21-CH), 118.5 (22-CH), 93.1 (11,16-CH), 64.0
(OCH2), 18.5 (13,14-CH2), 18.1 (9,18-CH2), 16.1 (13,14-CH2CH3), 15.3 (9,18-CH2CH3), 15.2
(OCH2CH3), 10.4 (8,19-CH3). 13C NMR (125 MHz, TFA-CDCl3): δ 162.7, 162.3, 155.0, 147.3,
146.3, 143.8, 141.3, 133.2, 128.0 (6,21-CH), 124.8 (2,4-CH), 101.9 (22-CH), 94.0 (11,16-CH),
64.8 (OCH2), 18.4 (13,14-CH2), 18.1 (9,18-CH2), 15.2 (13,14-CH2CH3), 14.8 (9,18-CH2CH3),
14.3 (OCH2CH3), 10.6 (8,19-CH3). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C34H40N3O+

506.3166; Found 506.3167.
[3-Ethoxy-9,13,14,18-tetraethyl-8,19-dimethylbenziporphyrinato]palladium(II) (7bPd).

Ethoxybenziporphyrin 7b (17 mg, 0.0336 mmol) and palladium(II) acetate (17 mg, 0.076 mmol)
in acetonitrile (15 mL) were refluxed for 30 min. The solution was cooled to room tempera-
ture and then diluted with dichloromethane (35 mL). The solution was washed with water,
and the solvent was removed on a rotary evaporator. The residue was chromatographed on
a grade 3 basic alumina column, eluting with dichloromethane. A reddish-purple fraction
was collected, and the solvent was removed under reduced pressure. The residue was
recrystallized from chloroform-methanol to give the palladium complex (15 mg, 0.025
mmol, 73%) as a dark-purple solid, mp > 300 ◦C. UV-vis (CH2Cl2): λmax (log ε): 308 (4.61),
391 (sh, 4.67), 408 (4.75), 474 (sh, 3.48), 507 (sh, 3.69), 542 (3.85), 573 (3.86), 666 (3.27), 731
(3.53), 806 (3.46). 1H NMR (500 MHz, CDCl3): δ 7.70 (s, 2H, 2,4-H), 7.57 (s, 1H, 6,21-H),
7.27 (s, 2H, 11,16-H), 4.37 (q, 2H, 3JHH = 7.0 Hz, OCH2), 3.01–2.93 (m, 8H, 9,13,14,18-CH2),
2.59 (s, 6H, 8,19-CH3), 1.57 (t, 3H, 3JHH = 7.0 Hz, OCH2CH3), 1.43 (t, 6H, 3JHH = 7.6 Hz,
13,14-CH2CH3), 1.38 (t, 6H, 3JHH = 7.6 Hz, 9,18-CH2CH3). 13C NMR (125 MHz, CDCl3): δ
157.1, 156.1, 153.7, 145.2, 144.0, 141.1, 138.5, 133.3, 131.5, 127.7 (2,4-CH), 126.6 (6,21-CH), 95.5
(11,16-CH), 64.0 (OCH2), 18.9, 18.6 (9,13,14,18-CH2), 16.6 (13,14-CH2CH3), 15.3 (OCH2CH3
and 9,18-CH2CH3), 10.5 (8,19-CH3). HRMS (ESI-TOF) m/z: M+ Calcd for C34H38N3OPd+

610.2044; Found 610.2037.
[3-Ethoxy-9,13,14,18-tetraethyl-8,19-dimethylbenziporphyrinato]nickel(II) (7bNi).

Ethoxybenziporphyrin 7b (20 mg, 0.0396 mmol) and nickel(II) acetate (32 mg, 0.129 mmol)
in DMF (20 mL) were refluxed for 30 min. The mixture was cooled to room temperature
and diluted with chloroform (20 mL). The solution was washed with water, and the solvent
was evaporated under reduced pressure. The residue was chromatographed on a grade
3 basic alumina column, eluting with chloroform. A dark-green band was collected, and
the solvent was removed under reduced pressure. The residue was recrystallized from
chloroform-methanol to give the nickel complex (12 mg, 0.0213 mmol, 54%) as a dark-
green solid, mp > 300 ◦C. UV-vis (CH2Cl2): λmax (log ε): 313 (4.48), 355 (4.43), 406 (4.56),
493 (sh, 3.58), 528 (3.52), 669 (3.65). 1H NMR (500 MHz, CDCl3): δ 7.63 (s, 2H, 2,4-H),
7.34 (s, 1H, 6,21-H), 7.09 (s, 2H, 11,16-H), 4.31 (q, 2H, 3JHH = 7.0 Hz, OCH2), 2.91 (q, 4H,
3JHH = 7.6 Hz, 12,13-CH2), 2.84 (q, 4H, 3JHH = 7.6 Hz, 9,18-CH2), 2.44 (s, 6H, 8,19-CH3),
1.53 (t, 3H, 3JHH = 7.0 Hz, OCH2CH3), 1.37 (t, 6H, 3JHH = 7.6 Hz, 13,14-CH2CH3), 1.30
(t, 6H, 3JHH = 7.6 Hz, 9,18-CH2CH3). 13C NMR (125 MHz, CDCl3): δ 159.5, 157.1, 153.5,
146.7, 144.7, 141.4, 139.9, 136.7, 130.0, 126.7 (2,4-CH), 123.2 (6,21-CH), 95.3 (11,16-CH), 64.0
(OCH2), 18.51, 18.49 (9,13,14,18-CH2), 16.5 (13,14-CH2CH3), 15.29 (9,18-CH2CH3), 15.27
(OCH2CH3), 10.4 (8,19-CH3). HRMS (ESI-TOF) m/z: M+ Calcd for C34H38N3NiO+ 562.2363;
Found 562.2352.

9,13,14,18-Tetraethyl-3-(methoxycarbonylmethoxy)-8,19-dimethylbenziporphyrin (7c).
In a pear-shaped flask, tripyrrane dicarboxylic acid 9 (202 mg, 0.446 mmol) was dissolved
in TFA (2 mL) and stirred under nitrogen for 2 min. Dichloromethane (200 mL) was added,
followed by dialdehyde 8c (104 mg, 0.468 mmol). The flask was covered in aluminum foil
to protect the reaction from ambient light, and the solution was stirred overnight under
nitrogen. DDQ (154 mg, 0.678 mmol) was added, and the mixture was stirred for 1 h.
The resulting solution was washed with water and saturated sodium bicarbonate, back-
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extracting the aqueous layers with chloroform at each stage to ensure that all of the product
was collected. The organic layers were evaporated under reduced pressure, and the residue
was purified on a grade 3 basic alumina column, eluting with dichloromethane. The product
was collected as a dark-blue band. Recrystallization from chloroform-methanol afforded
benziporphyrin 7c (100 mg, 0.182 mmol, 41%) as dark-purple crystals, mp > 300 ◦C. UV-vis
(1% Et3N-CH2Cl2): λmax (log ε): 308 (5.60), 380 (5.72), 541 (sh, 4.39), 583 (sh, 4.59), 629 (sh,
4.62), 677 (sh, 4.46), 742 (sh, 4.12). UV-vis (1% TFA-CH2Cl2): λmax (log ε): 313 (5.56), 398
(5.71), 494 (sh, 4.89), 535 (sh, 4.66), 575 (sh, 4.55), 723 (sh, 4.69), 836 (sh, 4.46). 1H NMR (500
MHz, CDCl3): δ 9.35 (br s, 1H, NH), 8.04 (br t, 1H, 22-H), 7.48 (d, 2H, 4JHH = 1.2 Hz, 2,4-H),
7.07 (s, 2H, 6,21-H), 6.45 (s, 2H, 11,16-H), 4.86 (s, 2H, CH2CO2Me), 3.85 (s, 3H, OCH3),
2.81 (q, 4H, 3JHH = 7.6 Hz, 12,13-CH2CH3), 2.72 (q, 4H, 3JHH = 7.6 Hz, 9,18-CH2CH3),
2.37 (s, 6H, 8,19-CH3), 1.33 (t, 6H, 3JHH = 7.6 Hz, 13,14-CH2CH3), 1.25 (t, 6H, 3JHH = 7.6
Hz, 9,18-CH2CH3). 1H NMR (400 MHz, TFA-CDCl3): δ 7.71 (s, 2H), 7.64 (s, 2H, 6,21-H),
6.70 (s, 2H, 11,16-H), 4.83 (s, 2H, CH2CO2Me), 3.85 (s, 3H, OCH3), 2.82 (q, 8H, 3JHH =
7.6 Hz, 4 × CH2CH3), 2.55 (s, 6H, 8,19-CH3), 1.32–1.26 (overlapping triplets, 12H, 4 ×
CH2CH3). 13C NMR (125 MHz, CDCl3): δ 169.7, 169.5, 157.9, 157.6, 148.3, 141.34, 141.26,
140.6, 135.4, 122.6 (2,4-CH), 122.3 (6,21-CH), 119.6 (22-CH), 93.1 (11,16-CH), 66.0 (OCH2),
52.6 (OCH3), 18.4 (13,14-CH2CH3), 18.1 (9,18-CH2CH3), 16.1 (13,14-CH2CH3), 15.3 (9,18-
CH2CH3), 10.4 (8,19-CH3). 13C NMR (100 MHz, TFA-CDCl3): δ 169.3, 163.2, 161.1, 155.3,
147.4, 146.4, 141.1, 133.5, 127.6 (2,4-CH), 124.3 (6,21-CH), 102.6 (22-CH), 94.1 (11,16-CH), 65.9
(OCH2), 52.9 (OCH3), 18.4 (13,14-CH2CH3), 18.1 (9,18-CH2CH3), 15.2 (13,14-CH2CH3), 14.3
(9,18-CH2CH3), 10.6 (8,19-CH3). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C35H40N3O3

+

550.3064; Found 550.3067.
[9,13,14,18-Tetraethyl-3-(methoxycarbonylmethoxy)-8,19-dimethylbenziporphyrinato]

palladium(II) (7cPd). Benziporphyrin 7c (20 mg, 0.0364 mmol) and palladium(II) acetate
(22 mg, 0.098 mmol) in acetonitrile (15 mL) were refluxed for 30 min. The solution was
cooled to room temperature and diluted with dichloromethane (35 mL). The solution was
washed with water, and the solvent was removed on a rotary evaporator. The residue
was chromatographed on a grade 3 basic alumina column, eluting with dichloromethane.
A reddish-purple fraction was collected, and the solvent was removed under reduced
pressure. The residue was recrystallized from chloroform-methanol to give the palladium
complex (12 mg, 0.0183 mmol, 50%) as a dark-purple solid, mp > 300 ◦C. UV-vis (CH2Cl2):
λmax (log ε): 308 (4.47), 350 (sh, 4.21), 389 (sh, 4.49), 406 (4.63), 473 (sh, 3.33), 507 (sh, 3.52),
539 (3.65), 570 (3.63), 665 (3.21), 730 (3.41), 805 (3.31). 1H NMR (500 MHz, CDCl3): δ 7.67
(s, 2,4-H), 7.50 (s, 2H, 6,21-H), 7.22 (s, 2H, 11,16-H), 4.93 (s, 2H, CH2CO2Me), 3.87 (s, 3H,
OCH3), 2.99–2.91 (m, 8H, 4 × CH2CH3), 2.57 (s, 6H, 8,19-CH3), 1.42 (t, 6H, 3JHH = 7.6 Hz,
13,14-CH2CH3), 1.37 (t, 6H, 3JHH = 7.6 Hz, 9,18-CH2CH3). 13C NMR (125 MHz, CDCl3): δ
169.9, 157.4, 155.8, 153.9, 145.4, 144.0, 141.2, 138.6, 133.6, 132.9, 127.1 (2,4-CH), 126.3 (6,21-
CH), 95.6 (11,16-CH), 66.1 (OCH2), 52.6 (OCH3), 18.9 (13,14-CH2CH3), 18.6 (9,18-CH2CH3),
16.6 (13,14-CH2CH3), 15.3 (9,18-CH2CH3), 10.4 (8,19-CH3). HRMS (ESI-TOF) m/z: M+

Calcd for C35H38N3O3Pd+ 654.1943; Found 654.1934.
[9,13,14,18-Tetraethyl-3-(methoxycarbonylmethoxy)-8,19-dimethylbenziporphyrinato]

nickel(II) (7cNi). Benziporphyrin 40c (19 mg, 0.0346 mmol) and nickel(II) acetate (40 mg,
0.161 mmol) in DMF (20 mL) were refluxed for 30 min. The solution was cooled to room
temperature, diluted with chloroform (20 mL), and washed with water. The solvent was
evaporated under reduced pressure, and the residue chromatographed on a grade 3 ba-
sic alumina column, eluting with chloroform. A dark-green band was collected, and
the solvent was removed under reduced pressure. The residue was recrystallized from
chloroform-methanol to give the nickel complex (16 mg, 0.026 mmol, 76%) as a dark-green
solid, mp > 300 ◦C. UV-vis (CH2Cl2): λmax (log ε): 312 (4.49), 348 (4.45), 405 (4.56), 492 (sh,
3.66), 526 (3.59), 667 (3.69). 1H NMR (500 MHz, CDCl3): δ 7.61 (s, 2,4-H), 7.29 (s, 2H, 6,21-H),
7.05 (s, 2H, 11,16-H), 4.87 (s, 2H, CH2CO2Me), 3.85 (s, 3H, OCH3), 2.89 (q, 4H, 3JHH = 7.6 Hz,
13,14-CH2), 2.82 (q, 4H, 3JHH = 7.6 Hz, 9,18-CH2), 2.42 (s, 6H, 8,19-CH3), 1.36 (t, 6H, 3JHH
= 7.6 Hz, 13,14-CH2CH3), 1.29 (t, 6H, 3JHH = 7.6 Hz, 9,18-CH2CH3). 13C NMR (125 MHz,



Molecules 2024, 29, 1903 13 of 17

CDCl3): δ 169.9, 159.8, 156.1, 153.7, 146.9, 144.8, 141.5, 140.0, 136.9, 131.6, 126.1 (2,4-CH),
123.0 (6,21-CH), 95.4 (11,16-CH), 66.1 (OCH2), 52.5 (OCH3), 18.48, 18.46 (4 × CH2CH3), 16.4
(13,14-CH2CH3), 15.2 (9,18-CH2CH3), 10.4 (8,19-CH3). HRMS (ESI-TOF) m/z: M+ Calcd for
C35H38N3NiO3

+ 606.2261; Found 606.2262.
1,2-Bis[3,5-dimethoxycarbonylbenzyloxy]benzene (16a). Dimethyl 5-hydroxyisophthalate

(2.415 g, 11.5 mmol), α,α’-dibromo-o-xylene (1.510 g, 5.72 mmol), and potassium carbonate
(1.66 g, 12 mmol) in acetonitrile (100 mL) were refluxed overnight. The solvent was removed
on a rotary evaporator, and the solid residue was dissolved in ethyl acetate (75 mL) and
washed with water (2 × 30 mL) and saturated sodium bicarbonate (2 × 30 mL). The
organic layer was dried over sodium sulfate and filtered, and the solvent was removed
under reduced pressure to yield 1,2-bis[3,5-dimethoxycarbonylbenzyloxy]benzene (2.90 g,
5.55 mmol, 97%) as a white solid, mp 150–151 ◦C. 1H NMR (400 MHz, CDCl3): δ 8.26 (t, 2H,
4JHH = 1.4 Hz, 4′,4′′-H), 7.78 (d, 4H, 4JHH = 1.4 Hz, 2′,2′′,6′,6′′-H), 7.53–7.50 (m, 2H, 3,6-H),
7.42–7.39 (m, 2H, m, 4,5-H), 5.26 (s, 4H, 2 × CH2O), 3.92 (s, 12H, s, 4 × OCH3). 13C NMR
(100 MHz, CDCl3): δ 166.2 (CO2CH3), 158.8, 134.8, 132.1, 129.7 (4,5-CH), 129.1 (3,6-CH),
123.6 (4′,4′′-H), 120.3 (2′,2′′,6′,6′′-H), 69.0 (\1–\2CH2O), 52.6 (4 × OCH3). HRMS (ESI-TOF)
m/z: [M + Na]+ Calcd for C28H26NaO10

+ 545.1418; Found 545.1415.
1,2-Bis[3,5-diformylbenzyloxy]benzene (18a). Lithium aluminum hydride (0.400 g,

10.5 mmol) was added to a solution of 1,2-bis[3,5-dimethoxycarbonylbenzyloxy]benzene
(1.006 g, 1.93 mmol) in dry THF (100 mL). The mixture was stirred at room temperature
overnight. Dilute hydrochloric acid (40 mL) was added dropwise to the solution, and the
contents of the reaction flask were stirred for an additional 30 min. Ethyl acetate (200 mL)
was added, and the aqueous layer was drawn off. The organic layer was washed with
water (2 × 100 mL) and saturated sodium bicarbonate solution (2 × 100 mL). The organic
layer was dried over sodium sulfate and filtered, and the solvent was removed under
reduced pressure to yield 1,2-bis[3,5-dihydroxymethylbenzyloxy]benzene (17a, 0.735 g,
1.79 mmol, 93%) as a white solid, mp 65–66 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 7.53–7.50
(m, 2H, 4,5-H), 7.37–7.34 (m, 2H, 3,6-H), 6.86 (br s, 2H, 4′,4′′-H), 6.83 (br s, 4H, 2′,2′′,6′,6′′-H),
5.19 (s, 4H, 2 × CH2O), 5.13 (t, 4H, 3JHH = 5.7 Hz, 4 × OH), 4.43 (8H, d, 3JHH = 5.7 Hz, 4
× CH2OH). 13C NMR (125 MHz, DMSO-d6): δ 158.4, 144.1, 135.5, 128.6 (3,6-CH), 128.1
(4,5-CH), 117.2 (4′,4′′-CH), 111.1 (2′,2′′,6′,6′′-CH), 67.1 (2 × CH2O), 63.0 (4 × CH2OH).
Tetraalcohol 17a (100 mg, 0.246 mmol) was dissolved in dichloromethane (12 mL) and THF
(8 mL). Pyridinium chlorochromate (0.330 g, 1.5 mmol) and silica gel (0.342 g, 5.7 mmol)
were added to the solution, and the mixture was stirred at room temperature for 1 h.
The contents of the reaction flask were immediately chromatographed twice on silica
gel, eluting with dichloromethane. The desired column fractions were evaporated under
reduced pressure to yield tetraaldehyde 18a (72 mg, 0.179 mmol, 73%) as a white solid,
mp 175–177 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 10.02 (s, 4H, 4 × CHO), 8.00 (t, 2H,
4JHH = 1.3 Hz, 4′,4′′-H), 7.79 (d, 4H, 4JHH = 1.3 Hz, 2′,2′′,6′,6′′-H), 7.61–7.57 (m, 2H, 3,6-H),
7.44–7.40 (m, 2H, 4,5-H), 5.43 (s, 4H, 2 × CH2O). 13C NMR (100 MHz, DMSO-d6): δ 192.4
(CHO), 159.5, 138.3, 134.9, 129.3 (4,5-CH), 128.7 (3,6-CH), 123.3 (4′,4′′-H), 120.4 (2′,2′′,6′,6′′-
CH), 68.3 (CH2O). HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H18NaO6

+ 425.0996;
Found 425.0999.

1,3-Bis[3,5-dimethoxycarbonylbenzyloxy]benzene (16b). Dimethyl 5-hydroxyisophthalate
(735 mg, 3.50 mmol), α,α’-dibromo-m-xylene (4.60 mg, 1.74 mmol) and potassium carbonate
(500 mg, 3.6 mmol) were dissolved in acetonitrile (30 mL) and refluxed overnight. The solu-
tion was cooled, and the solvent was removed on a rotary evaporator. The solid residue was
dissolved in ethyl acetate (75 mL) and then washed with water (2 × 30 mL) and saturated
sodium bicarbonate solution (2 × 30 mL). The organic layer was dried over sodium sulfate
and filtered, and the solvent was evaporated under reduced pressure to afford tetraester
16b (902 mg, 1.73 mmol, 99%) as a white solid, mp 92–93 ◦C. 1H NMR (500 MHz, CDCl3):
δ 8.28 (t, 2H, 4JHH = 1.4 Hz, 4′,4′′-H), 7.82 (d, 4H, 4JHH = 1.4 Hz, 2′,2′′,6′,6′′-H), 7.53 (br s,
1H, 2-H), 7.43–7.41 (m, 3H, 4,5,6-H), 5.15 (s, 4H, CH2O), 3.92 (s, 12H, 4 × OCH3). 13C NMR
(125 MHz, CDCl3): δ 166.2 (4 × C=O), 158.9, 136.9, 132.1, 129.2 (5-CH), 127.5 (4,6-CH), 126.7
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(2-CH), 123.5 (4′,4′′-CH), 120.3 (2′,2′′,6′,6′′-CH), 70.2 (2 × CH2O), 52.6 (4 × OCH3). HRMS
(ESI-TOF) m/z: [M + Na]+ Calcd for C28H26NaO10

+ 545.1418; Found 545.1418.
1,3-Bis[3,5-diformylbenzyloxy]benzene (18b). Lithium aluminum hydride (100 mg,

2.63 mmol) was added to a solution of 16b (209 mg, 0.400 mmol) in dry THF (50 mL), and
the resulting mixture was stirred at room temperature overnight. Dilute hydrochloric acid
(30 mL) was added dropwise to the solution, and the contents of the reaction flask were
stirred for an additional 30 min. Ethyl acetate (100 mL) was added, and the aqueous layer
was drawn off. The organic layer was washed with water (2 × 50 mL) and a saturated
sodium bicarbonate solution (2 × 50 mL). The organic solution was dried over sodium
sulfate and filtered, and the solvent was removed under reduced pressure to give 1,3-bis[3,5-
dihydroxymethylbenzyloxy]benzene (17b, 147 mg, 0.358 mmol, 89%) as a white solid, mp
82–84 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 7.53 (s, 1H, 2-H), 7.42–7.38 (3H, s, 4,5,6-H),
6.86 (br s, 2H, 4′,4′′-H), 6.84 (br s, 4H, 2′,2′′,6′,6′′-H), 5.14 (4H, t, 3JHH = 5.7 Hz, 2 × OH),
5.09 (s, 4H, 2 × CH2O), 4.45 (d, 8H, 3JHH = 5.7 Hz, 4 × CH2OH). 13C NMR (100 MHz,
DMSO-d6): δ 158.5, 144.1, 137.7, 128.7 (5-CH), 127.1 (4,6-CH), 126.8 (2-CH), 117.1 (2′,2′′,6′,6′′-
CH), 111.2 (4′,4′′-CH), 69.2 (CH2O), 63.0 (CH2OH). Tetraalcohol 17b (100 mg, 0.244 mmol)
was dissolved in dichloromethane (12 mL) and THF (8 mL), pyridinium chlorochromate
(0.426 g, 2.0 mmol) and silica gel (0.208 g, 3.5 mmol) were added, and the mixture was
stirred at room temperature for 1 h. The contents of the reaction flask were immediately
run through a short silica gel column and eluted with dichloromethane. The solvent was
evaporated, and the residue was purified on silica, eluting fist with dichloromethane and
then with chloroform. The product fractions were evaporated under reduced pressure, and
the residue was recrystallized from chloroform-hexanes to yield the tetraaldehyde (55 mg,
0.137 mmol, 56%) as a white solid, mp 158–159 ◦C. 1H NMR (500 MHz, CDCl3): δ 10.05 (s,
4H, 4 × CHO), 7.98 (t, 2H, 4JHH = 1.3 Hz, 4′,4′′-H), 7.73 (d, 4H, 4JHH = 1.3 Hz, 2′,2′′,6′,6′′-H),
7.55 (br s, 1H, 2-H), 7.48–7.43 (m, 3H, 4,5,6-H), 5.22 (s, 4H, CH2O). 13C NMR (125 MHz,
CDCl3): δ 190.9 (4 × C=O), 160.0, 138.7, 136.6, 129.5 (5-CH), 127.8 (4,6-CH), 126.7 (2-CH),
124.8 (4′,4′′-CH), 120.4 (2′,2′′,6′,6′′-CH), 70.6 (2 × CH2O). HRMS (ESI-TOF) m/z: [M + Na]+

Calcd for C24H18NaO6
+ 425.0996; Found 425.1000.

1,4-Bis[3,5-dimethoxycarbonylbenzyloxy]benzene (16c). Dimethyl 5-hydroxyisophthalate
(2.508 g, 11.9 mmol), α,α’-dibromo-p-xylene (1.066 g, 4.04 mmol), and potassium carbonate
(1.70 g, 12.3 mmol) were refluxed in acetonitrile (100 mL) overnight. After the solution was
cooled, the solvent was evaporated on a rotary evaporator. The residue was dissolved in
ethyl acetate (50 mL) and washed with water (2 × 30 mL) and saturated sodium bicarbonate
solution (2 × 30 mL). The organic layer was dried over sodium sulfate and filtered, and the
solvent was removed under reduced pressure to give 16c (1.42 g, 2.72 mmol, 67%) as a white
solid, mp 197–200 ◦C. 1H NMR (400 MHz, CDCl3): δ 8.30 (t, 2H, 4JHH = 1.4 Hz, 4′,4′′-H),
7.84 (d, 4H, 4JHH = 1.4 Hz, 2′,2′′,6′,6′′-H), 7.48 (s, 4H, 2,3,5,6-H), 5.16 (s, 4H, 2 × CH2O),
3.94 (12H, s, 4 × OCH3). 13C NMR (100 MHz, CDCl3): δ 166.3, 158.9, 136.4, 132.1, 128.1
(2,3,5,6-CH), 123.5 (4′,4′′-CH), 120.4 (2′,2′′,6′,6′′-CH), 70.4 (CH2O), 52.6 (CO2CH3). HRMS
(ESI-TOF) m/z: [M + Na]+ Calcd for C28H26NaO10

+ 545.1418; Found 545.1418.
1,4-Bis[3,5-diformylbenzyloxy]benzene (18c). Lithium aluminum hydride (0.200 g,

5.3 mmol) was added to a solution of 16c (0.472 g, 0.904 mmol) in dry THF (50 mL). The
mixture was stirred at room temperature overnight. Dilute hydrochloric acid (30 mL)
was added dropwise to the solution, and the contents of the reaction flask were stirred
for an additional 30 min. Ethyl acetate (100 mL) was added, and the aqueous layer was
drawn off. The organic layer was washed with water (2 × 50 mL) and saturated sodium
bicarbonate solution (2 × 50 mL). The ethyl acetate layer was dried over sodium sulfate
and filtered, and the solvent was removed under reduced pressure to yield 1,4-bis[3,5-
dihydroxymethylbenzyloxy]benzene (17c, 0.369 g, 0.90 mmol, 99%) as a white solid, mp
165–167 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 7.45 (s, 4H, 2,3,5,6-H), 6.85 (br s, 2H, 4′,4′′-H),
6.82 (br s, 4H, 2′,2′′,6′,6′′-H), 5.13 (t, 4H, 3JHH = 5.7 Hz, 2 × OH), 5.08 (s, 4H, 2 × CH2O), 4.44
(d, 8H, 3JHH = 5.7 Hz, 4 × CH2OH). 13C NMR (100 MHz, DMSO-d6): δ 158.5, 144.1, 137.0,
127.8 (2,3,5,6-CH), 117.0 (4′,4′′-CH), 111.1 (2′,2′′,6′,6′′-CH), 69.0 (CH2O), 63.0 (CH2OH).
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Tetraalcohol 17c (94 mg, 0.23 mmol), was dissolved in dichloromethane (12 mL) and THF
(8 mL), pyridinium chlorochromate (0.426 g, 2.0 mmol) and silica gel (0.208 g, 3.5 mmol)
were added, and the mixture was stirred at room temperature for 1 h. The contents of
the reaction flask were immediately chromatographed twice on silica gel, eluting with
dichloromethane. The desired column fractions were evaporated under reduced pressure
to yield the tetraaldehyde (90 mg, 0.224 mmol, 97%) as a white solid, mp 195–198 ◦C. 1H
NMR (500 MHz, DMSO-d6): δ 10.06 (s, 4H, CHO), 8.04 (br t, 2H, 4JHH = 1.2 Hz, 4′,4′′-H),
7.83 (br d, 4H, 4JHH = 1.2 Hz, 2′,2′′,6′,6′′-H), 7.53 (s, 4H, 2,3,5,6-H), 5.30 (s, 4H, 2 × CH2O).
13C NMR (125 MHz, DMSO-d6): δ 192.5 (CHO), 159.5, 138.4, 136.3, 128.1 (2,3,5,6-CH), 123.1
(4′,4′′-CH), 120.5 (2′,2′′,6′,6′′-CH), 69.8 (CH2O). HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for
C24H18NaO6

+ 425.0996; Found 425.1005.

4. Conclusions

A series of nonaromatic 3-alkoxybenziporphyrins were synthesized in 34–44% yield
by reacting 5-alkoxyisophthalaldehydes with a tripyrrane dicarboxylic acid. Stepwise
protonation of the macrocycles was observed to give mono- and diprotonated species.
The proton NMR spectra for the diprotonated dications showed significant upfield shifts
to the internal C-H resonances, and this demonstrated that a degree of overall global
diatropic character was present. This can be attributed to dipolar resonance contributors
that possess 18π-electron delocalization pathways. Metalation of the benziporphyrins with
nickel(II) or palladium(II) acetate afforded the corresponding nickel(II) or palladium(II)
organometallic complexes in 50–76% isolated yields. These derivatives exhibited enhanced
diatropicity compared to the parent free base benziporphyrins, although the nickel(II)
complexes showed less diatropic character than their palladium(II) counterparts. This
may be due in part to the palladium complexes taking on more planar conformations,
as the porphyrinoid macrocycle may be distorted to facilitate coordination to smaller
nickel(II) cations. Although the strategy used to prepare 3-alkoxybenziporphyrins was quite
successful, attempts to apply the methodology to the synthesis of benziporphyrin dimers
did not prove to be fruitful. Nevertheless, this study provides access to structurally novel
carbaporphyrinoids and gives insights into the effects that result from the introduction of
electron-donating substituents.
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