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Abstract: Photosynthetic water splitting, when synergized with hydrogen production catalyzed by
hydrogenases, emerges as a promising avenue for clean and renewable energy. However, theoretical
calculations have faced challenges in elucidating the low-lying spin states of iron–sulfur clusters,
which are integral components of hydrogenases. To address this challenge, we employ the Extended
Broken-Symmetry method for the computation of the cubane–[Fe3S4] cluster within the [FeNi]
hydrogenase enzyme. This approach rectifies the error caused by spin contamination, allowing us
to obtain the magnetic exchange coupling constant and the energy level of the low-lying state. We
find that the Extended Broken-Symmetry method provides more accurate results for differences
in bond length and the magnetic coupling constant. This accuracy assists in reconstructing the
low-spin ground state force and determining the geometric structure of the ground state. By utilizing
the Extended Broken-Symmetry method, we further highlight the significance of the geometric
arrangement of metal centers in the cluster’s properties and gain deeper insights into the magnetic
properties of transition metal iron–sulfur clusters at the reaction centers of hydrogenases. This
research illuminates the untapped potential of hydrogenases and their promising role in the future of
photosynthesis and sustainable energy production.

Keywords: iron–sulfur clusters; density functional theory; Extended Broken-Symmetry method;
magnetic coupling constant; low-lying spin state

1. Introduction

In the face of the energy crisis and the imperative of climate change mitigation, societal
growth and development have increasingly depended on fossil energy. However, as we
continue to exploit these resources, their depletion is becoming inevitable. Moreover, the
use of fossil fuels results in substantial greenhouse gas emissions, which contribute to
the greenhouse effect and global warming [1,2]. Consequently, in order to align with the
principles of green chemistry and clean technology, it is essential to intensify research and
development in renewable energy, like hydrogen. Today, more than 95% of hydrogen
is produced from hydrocarbons through steam reforming or partial oxidation. These
methods are energy-consuming, and they are still dependent on fossil fuels, generating
CO2, black carbon particles, and climate-relevant reactive gases as by-products. The
establishment of a hydrogen-based economy remains a challenging task, and there is much
one can learn from nature. Nowadays, there are several pathways to solve this problem by
using different ways to produce and apply hydrogen, like making electrolytic devices [3],
chemical fuel cells [4], artificial hydrogenases [5], and nanomaterials made of transition
metal oxides [6]. The application of solar energy and hydrogenases is also a possible way,
which is called photosynthesis. At present, photosynthesis is the only process that can
gently split water into electrons and hydrogen [7,8]. However, the conversion efficiency of
natural photosynthetic systems remains low [9–11]. Therefore, enhancing this conversion
efficiency through artificial means is of significant importance.
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In the photosynthetic system, the catalytic conversion reaction is primarily facili-
tated by hydrogenase [12]. Hydrogenase is the enzyme catalyzing the interconversion
of hydrogen into protons and electrons (hydrogen ↔2H++2e−) in bacteria, archaea, and
eukaryotes [13]. Even though several microorganisms using hydrogen as an energy source
attracted the attention of scientists in the 1800s, Stephenson and Stickland [14] were the
first to propose the existence of hydrogenases and report the kinetic properties, as well
as the oxygen sensitivity, of these enzymes. More recently, several crystal structures of
hydrogenase have helped to unveil the geometry and mode of action of their active site [15],
and extensive phylogenetic analyses have revealed that microorganisms harboring genes
encoding hydrogenases encompass the three domains of the tree of life and are ubiquitous
in the environment [16]. These enzymes are utilized to generate energy, disperse reducing
equivalents produced during fermentation, or generate reduced cofactors involved in sev-
eral reactions of cellular metabolism. In general, microorganisms utilize hydrogen under a
mixotrophic lifestyle, which confers the ability to proliferate and survive in environments
lacking readily available organic substrates. From an ecological perspective, hydrogen
is viewed as a universal energy source, supporting a seed bank of hydrogen-oxidizing
microorganisms that provide a broad range of ecosystem services [17]. Advances in our
understanding of the biochemistry, diversity, and functions of hydrogenases contribute to
the development of new biotechnologies and a better understanding of the hydrogen cycle
and the ecological role of hydrogen-oxidizing microorganisms.

The catalytic conversion carried out by hydrogenase predominantly occurs in transi-
tion metal clusters at its core. These clusters can serve as catalysts, continually providing
protons or hydrogen [18]. A comprehensive understanding of these transition metal clus-
ters within hydrogenases will aid in elucidating their catalytic processes, and this is crucial
for the design of transition metal complexes that serve as potentially sustainable proton
reduction or H2 oxidation catalysts. Hydrogenases can be classified into several types based
on the differences in the central transition metal cluster, including [NiFe] hydrogenases,
[FeFe] hydrogenases, and [Fe] hydrogenases [19]. Among these, [NiFe] hydrogenases rep-
resent a crucial category and can be further divided into two types: oxygen-tolerant [NiFe]
hydrogenases and oxygen-sensitive [NiFe] hydrogenases [20]. However, oxygen-sensitive
[NiFe] hydrogenases become inactive when exposed to oxygen, thus limiting their practical
applications [21]. Consequently, the development of oxygen-tolerant [NiFe] hydrogenases
presents a significant area of research.

Within the protein fragment of oxygen-tolerant [NiFe] hydrogenases, there exists a
catalytic conversion pathway in which the [NiFe] cluster serves as the central active site.
The active site of the [NiFe] hydrogenases features a nickel tetrathiolate (four cysteines)
with two S bridges to an Fe(CN)2(CO) center [22]. Four key states in the catalytic cycle are
Ni-SIa (NiIIFeII), Ni–L (NiIFeII), Ni–C (NiIIIµ(H)FeII), and Ni–R (NiIIµ(H)FeII) [23]. During
the catalytic process, in the process of valence changes of iron and nickel, three electrons
are required, which are supplied by [Fe4S3], [Fe3S4], and [Fe4S4] [24]. The relative positions
and distances between these clusters are depicted in Figure 1. Existing studies indicate
that the [Fe3S4] cluster plays a pivotal role in oxygen-tolerant [NiFe] hydrogenases [25,26].
Therefore, research focusing on [Fe3S4] clusters could represent a significant breakthrough
in the development of oxygen-tolerant hydrogenases.
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Currently, calculations of transition metal clusters, such as [Fe3S4] clusters, primarily
rely on density functional theory (DFT) [27,28]. The Broken-Symmetry (BS) method is
a common approach within DFT. This method calculates the energy difference between
the high-spin state and the BS state, allowing for an estimation of the magnetic coupling
constant, J, between spin centers [29]. However, because the BS state is not an eigenstate
of the total spin operator Ŝ2 [30], some errors may occur when using the BS method to
calculate the magnetic coupling constant J. Additionally, due to the strong magnetism of
transition metal clusters and the high degree of dynamic and static correlation among the
3d orbital electrons of the central atom [31], clusters exhibit multiple degenerate states, with
the ground state (GS) typically being a low-spin state. Concerning the static correlation,
we may distinguish two different effects: the local static correlation necessary to correctly
describe the nature of the bonds between each metal atom and its ligands and the global
static correlation among the spin centers due to the interactions between localized unpaired
electrons. This latter contribution is crucial to guaranteeing the correct overall spin sym-
metry of the wave function [32]. In the DFT method, the open-shell single-determinant
wavefunction utilized in the Kohn–Sham equation fails to deliver the correct spin symme-
try [33]; therefore, the DFT method cannot correctly describe the low-spin GS of the cluster,
nor can it correctly calculate the cluster’s magnetic properties.

Previous studies have conducted a series of computational analyses on transition
metal clusters, specifically those involving iron (Fe), manganese (Mn), and cobalt (Co)
complexes within photosynthetic systems [34–37]. However, due to the limitations of the
DFT method previously discussed, the calculated values of system energy and magnetic
coupling constants J for multicenter transition metal clusters significantly deviate from
experimental data. This discrepancy underscores the need to refine our computational
methods to more accurately characterize the properties of transition metal clusters.

To rectify the errors resulting from the issues mentioned above, in this study, we will
apply the Extended Broken-Symmetry (EBS) method [38] to perform calculations on the
cubane–[Fe3S4] cluster. Through the Heisenberg–Dirac–van Vleck (HDvV) Hamiltonian,
we aim to derive a low-spin ground state (GS) with correct symmetry for a cluster with an
arbitrary number of spin centers. Based on preliminary calculations [39], for the low-spin
GS, we will carry out multiple iterative optimizations on the geometric structure until the
program converges. We will then obtain the magnetic exchange coupling constant J, energy
levels, and energy spectral distribution of the final cluster structure. By comparing the
EBS method with the BS method and the high-spin (HS) method, we find that the EBS
method yields a bond length and magnetic coupling constant data that are closer to the
experimental data, indicating a better description of the system. We anticipate that the EBS
method will yield more accurate properties and structures of the low-lying state, which is
closest to the eigenstate of transition metal clusters. As these clusters are the core catalytic
oxidation reaction centers of hydrogenases, and the function of hydrogenase is carried
out by the redox process of these clusters, obtaining more precise information on their
magnetic properties and structure can lead to a deeper understanding of the nature of the
hydrogenases in which they are incorporated.

2. Results and Discussion
2.1. Structure and Spin State

The object of our calculation is the [[Fe3S4](CH3CH2S)3(CH3CH2SH)]3- cluster, with
its central cluster being [Fe3S4]1+. In this cluster, all three Fe centers are Fe(III), and the 3d
orbital contains five electrons.

Initially, we characterized the clusters using the BS method. The central [Fe3S4]1+

cluster contains three Fe spin centers and four different BS states. We assume that the
outermost electrons of each Fe atom have spins in the same direction at each spin center,
implying that the spin at each spin center is s = 5/2; Therefore, the spins of the four different
BS states are presented in Table 1. The clusters we selected were from existing research [40],
and the cluster model is illustrated in Figure 2.
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Table 1. Different spin states of the [Fe3S4]1+ cluster.

BSk Spin State |s1,s2,s3⟩ Stot

BS1 ↑↑↑
∣∣∣ 5

2 , 5
2 , 5

2

〉
15
2

BS2 ↓↑↑
∣∣∣− 5

2 , 5
2 , 5

2

〉
5
2

BS3 ↑↓↑
∣∣∣ 5

2 ,− 5
2 , 5

2

〉
5
2

BS4 ↑↑↓
∣∣∣ 5

2 , 5
2 ,− 5

2

〉
5
2
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2.2. Bond Lengths between Spin Centers

We employed three methods—the HS method, the BS method, and the EBS method—to
calculate the structure of the cluster and compared the results. The HS method calculates
the geometry of the high-spin state of the cluster. The BS method calculates the four
different BS states of the cluster. The details of EBS method can be found in Section 3.

The bond lengths of the cluster’s Fe–Fe bonds obtained from these calculations are
presented in Table 2, where the unit of the bond length is Å.

Table 2. Bond length of the [[Fe3S4](CH3CH2S)3(CH3CH2SH)]2− cluster. The experimental data are
from the X-ray structure analysis [41]. Errors are calculated according to the differences between the
experimental value and the calculated value.

Hybrid
Function Method Fe1-Fe2/Å Fe2-Fe3/Å Fe1-Fe3/Å Error/%

Exp [41] 2.71 2.67 2.73

B3LYP
HS 3.05 3.07 3.06 12%~15%
BS 2.88 3.03 2.90 6%~13%

EBS 2.85 2.79 2.87 4%~5%

TPSSh
HS 2.99 3.02 2.99 10%~13%
BS 2.76 2.95 2.79 2%~8%

EBS 2.73 2.78 2.78 0.7%~4%

From the table, it is evident that the B3LYP functional calculations using the HS
method generally have a large deviation from the experimental data of approximately
0.3~0.4 Å, with an error of around 15%. The bond length error is about 0.2~0.3 Å, and the
error percentage is roughly 10%. The discrepancy between the bond length data calculated
using the EBS method and the experimental structure is approximately 0.1 Å, and the
deviation percentages from the experimental data are 5% and 4%, respectively.

Similar conclusions were reached in the calculations using the TPSSh functional on
clusters. We observed that the bond lengths calculated using the HS method have large
discrepancies from the experimental values, resulting in a loose cluster structure. The
cluster structure has been optimized to some extent using the BS method, but there is
still a significant error in some bond lengths. However, the EBS structure optimization
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yielded a structure closest to the experimental data. Therefore, we believe that the results
obtained using the EBS method are more accurate than those obtained using the HS and
BS methods. Based on the above results, the HS, BS, and EBS methods, which give the
smallest deviation, underestimate the bond length between spin centers. Bond lengths
from the X-ray diffraction method were obtained for the solid phase, where the structure is
distorted by intermolecular interactions. Meanwhile, the bond lengths from the HS, BS,
and EBS methods were obtained for free molecular systems. Therefore, these methods fail
to consider that the field generated by the external ligands and external molecules could be
the reason for this underestimation.

Figure 3a,b illustrate the comparison of the bond length difference, ∆r, which repre-
sents the differences between the experimental value and calculated value using the HS,
BS, and EBS methods with the B3LYP and TPSSh functionals, respectively.
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2.3. Exchange Coupling Constants

The magnetic coupling constants J calculated using the BS method and the EBS method
are shown in Table 3, where J1 represents the magnetic coupling between Fe1 and Fe2, J2
represents the magnetic coupling between Fe2 and Fe3, and J3 represents the magnetic
coupling between Fe1 and Fe3. In the EBS method, each structure optimization provides a
new optimized structure and outputs its corresponding magnetic coupling constant J. For
the optimized geometry obtained using the B3LYP functional, the corresponding J values
are −109.5 cm−1, −119.8 cm−1, and −100.9 cm−1; For the converged geometry obtained
using the TPSSh functional, the J values were −155.7 cm−1, −149.6 cm−1, and −124.3 cm−1,
respectively.

Table 3. Magnetic spin coupling J/cm−1 between spin centers calculated using the BS and EBS
methods with B3LYP and TPSSh hybrid functionals. The experimental data are from the X-ray
structure analysis [42].

Hybrid
Function Method J1/cm−1 J2/cm−1 J3/cm−1

B3LYP
BS −65.4 −67.5 −62.1

EBS −109.5 −119.8 −100.9

TPSSh
BS −94.0 −89.0 −88.5

EBS −155.7 −149.6 −124.3
Exp [42] −(200~300), J1 ≈ J2 ≈ J3

In contrast with the range provided by experimental values, we observe that the mag-
netic coupling constants (J values) obtained using both the B3LYP and TPSSh functionals
are smaller. From the Fe–Fe bond lengths in Table 2, it is suggested that as the Fe–Fe
distance increases, the antiferromagnetic coupling becomes weaker. Therefore, we believe
that the obtained J coupling constant aligns with the bond length data.



Molecules 2024, 29, 2152 6 of 11

The J values calculated using the BS and EBS methods revealed that the J coupling
constants given by the BS method generally deviate significantly from the experimental
values. After optimization using the EBS method, the J value is noticeably closer to the
range provided by experimental values, reducing the error by approximately 15% compared
to the BS method with the same functional. Furthermore, a comparison of the J coupling
constants and bond lengths indicates that the EBS-optimized structure is denser and has
shorter bond lengths than the one optimized using the BS method, leading to stronger
magnetic coupling. In summary, we believe that the EBS method reduces the calculation
error to a certain extent, and the structure obtained using the BS method, once optimized
through the EBS method, yields a compact cluster structure closer to the experimental
data. Based on the calculations we have performed, we believe that the best results can be
obtained by using the EBS method and the TPSSh hybrid function.

Compared to the linear–[Fe3S4] [38] cluster, which has two similar exchange coupling
constants, the cubane–[Fe3S4] cluster in this study provides three similar exchange coupling
constants, as shown in Table 3. This could generate more nearly degenerate states and
enrich the properties of the cluster as a catalyst. The spatial configuration of the transition
metal atoms in a cluster plays an important role in determining its electron conductivity
and magnetic properties.

2.4. Energy Spectrum

The energy spectral distributions of the HS state and the GS state after EBS optimiza-
tion using the B3LYP functional are depicted in Figure 4. The energy spectral distribution re-
veals multiple degeneracies in the low-spin GS of the [[Fe3S4](CH3CH2S)3(CH3CH2SH)]2−

cluster. The small gap between energy levels suggests that the cluster is susceptible to redox
reactions when perturbed. Additionally, upon comparing the cluster energies calculated
using the two methods, the cluster energy calculated using the HS method is −7294.034 Eh,
while the cluster energy calculated using the EBS method is −7294.056 Eh. We found that
structure optimization through EBS can achieve a lower energy, with an energy difference
of 0.022 Eh (4828.44 cm−1).

Molecules 2024, 29, x FOR PEER REVIEW 6 of 12 
 

 

In contrast with the range provided by experimental values, we observe that the mag-
netic coupling constants (J values) obtained using both the B3LYP and TPSSh functionals 
are smaller. From the Fe‒Fe bond lengths in Table 2, it is suggested that as the Fe‒Fe dis-
tance increases, the antiferromagnetic coupling becomes weaker. Therefore, we believe 
that the obtained J coupling constant aligns with the bond length data. 

The J values calculated using the BS and EBS methods revealed that the J coupling 
constants given by the BS method generally deviate significantly from the experimental 
values. After optimization using the EBS method, the J value is noticeably closer to the 
range provided by experimental values, reducing the error by approximately 15% com-
pared to the BS method with the same functional. Furthermore, a comparison of the J cou-
pling constants and bond lengths indicates that the EBS-optimized structure is denser and 
has shorter bond lengths than the one optimized using the BS method, leading to stronger 
magnetic coupling. In summary, we believe that the EBS method reduces the calculation 
error to a certain extent, and the structure obtained using the BS method, once optimized 
through the EBS method, yields a compact cluster structure closer to the experimental 
data. Based on the calculations we have performed, we believe that the best results can be 
obtained by using the EBS method and the TPSSh hybrid function. 

Compared to the linear–[Fe3S4] [38] cluster, which has two similar exchange coupling 
constants, the cubane–[Fe3S4] cluster in this study provides three similar exchange cou-
pling constants, as shown in Table 3. This could generate more nearly degenerate states 
and enrich the properties of the cluster as a catalyst. The spatial configuration of the tran-
sition metal atoms in a cluster plays an important role in determining its electron conduc-
tivity and magnetic properties. 

2.4. Energy Spectrum 
The energy spectral distributions of the HS state and the GS state after EBS optimiza-

tion using the B3LYP functional are depicted in Figure 4. The energy spectral distribution 
reveals multiple degeneracies in the low-spin GS of the [[Fe3S4](CH3CH2S)3(CH3CH2SH)]2- 
cluster. The small gap between energy levels suggests that the cluster is susceptible to 
redox reactions when perturbed. Additionally, upon comparing the cluster energies cal-
culated using the two methods, the cluster energy calculated using the HS method is 
−7294.034 Eh, while the cluster energy calculated using the EBS method is −7294.056 Eh. 
We found that structure optimization through EBS can achieve a lower energy, with an 
energy difference of 0.022 Eh (4828.44 cm−1). 

 
Figure 4. Comparison of the spin ladder of the GS and high−spin state calculated using the B3LYP 
functional. The blue lines represent the spin ladder of the high−spin state, and the red lines represent 
the spin ladder of the GS. After the optimization of the structure using the EBS method, the calcu-
lated energy difference between GS and HS states is 4828.44 cm−1. 

Figure 4. Comparison of the spin ladder of the GS and high−spin state calculated using the B3LYP
functional. The blue lines represent the spin ladder of the high−spin state, and the red lines represent
the spin ladder of the GS. After the optimization of the structure using the EBS method, the calculated
energy difference between GS and HS states is 4828.44 cm−1.

The energy spectral distributions of the HS state and the GS state after EBS optimiza-
tion using the TPSSh functional are depicted in Figure 5. The cluster energy calculated
using the HS method is −7295.034 Eh, and the cluster energy calculated using the EBS
method is −7295.144 Eh. We find that the structure optimization of the cluster using the
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EBS method can achieve a lower energy. The energy difference between them is 0.034 Eh
(7498.35 cm−1).
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Figure 5. Comparison of the spin ladder of the GS and high–spin state calculated using the TPSSh
functional. The blue lines represent the spin ladder of the high–spin state, and the red lines represent
the spin ladder of the GS. After the optimization of the structure with the EBS method, the calculated
energy difference between GS and HS states is 7498.35 cm−1.

3. Computational Method

In this calculation, ORCA [43] software was used. The all-electronic Ahlrichs TZVP [44]
and Def2-TZVP [45] basis sets were chosen. The self-consistent field (SCF) convergence
criterion was set to TightSCF and Grid4. The B3LYP and TPSSh hybrid functionals were
chosen for this study. In addition to the B3LYP hybrid function, which is most commonly
used in the calculation of transition metal clusters, we also selected the TPSSh hybrid
function benchmarked on transition metal diatomics. This choice was motivated by findings
that the TPSSh functional produces structures of comparable quality to those obtained
using other commonly used hybrid and non-hybrid functionals, such as B3LYP and BP86.
Moreover, the inclusion of 10% exact exchange in TPSSh can eliminate the large systematic
component of the error, providing an advantage over other functionals [46].

In this study, we used the Extended Broken-Symmetry (EBS) calculation method to
compute the properties of clusters. The detailed derivation has been described in a previous
study [38]. Our primary results include the magnetic coupling constant J and the optimized
energy spectral distribution of the cluster structure. The calculation process consists of
several main steps.

In the first step, we calculate the energy εBS of each BS state using the BS method.
Furthermore, we apply the EBS method using the results we obtained from the BS method,
as follows. We construct the matrix Akp =

〈
si · sj

〉
, and a linear equations system is defined

in Equation (1): 
ε1

BS

ε2
BS

ε3
BS

...
εNk

BS

 = −2


A11 A12 · · · A1Np

A21 A21 · · · A2Np

A31 A31 · · · A3Np
...

...
. . .

...
ANk1 ANk2 · · · ANk Np




J1
J2
J3
...

JNp

 (1)



Molecules 2024, 29, 2152 8 of 11

After rewriting the above equations as matrix A, we obtain the inverse matrix A−1

of the matrix Akp via singular value decomposition (SVD) [39]. The magnetic coupling
constant J is then obtained from Equation (2).

J = −1
2

A−1 · εBS (2)

Secondly, the Hamiltonian matrices 〈bl| and |br〉 are constructed, where 〈bl| rep-
resents the left basis vector of each eigenstate and |br〉 represents the right basis vector
of each eigenstate. Using the J coupling constant obtained from Equation (2) and the
Clebsch−Gordan (CG) coefficient [47], we can diagonalize the Hamiltonian, as indicated
in Equation (3). The CG coefficient essentially functions as a transformation matrix for
representations grounded in group theory, and it is capable of converting an uncoupled
representation into a coupled one [48]. In the case of the cubane–[Fe3S4] cluster, we can
describe the low-spin GS through the combination of the CG coefficients and each BS state.〈

bl
∣∣Ĥ∣∣br

〉
= −2 ∑

i<j

〈
bl

∣∣∣Jij ŝi · ŝj

∣∣∣br

〉
= −∑

i<j
Jij

〈
bl

∣∣∣Ŝ2
ij

∣∣∣br

〉
+ ∑

i<j
Jij

〈
bl

∣∣∣ŝ2
i · ŝ2

j

∣∣∣br

〉
= −∑

i<j
Jij × CGl

ij × CGr
ij × Sij

(
Sij + 1

)
+∑

i<j
Jij ×

(
si(si + 1) + sj

(
sj + 1

))
(3)

Through the above two steps, we can obtain the GS structure and its corresponding
energy spectral distribution of the cluster, as shown in Figure 6.
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Figure 6. (a) Depicts the 8 broken symmetry states of the cubane–[Fe3S4] cluster, complete with spin
details. The energy level of the low-lying state (LS state) is illustrated in (c), where the total spins
Stot of 1/2 and 3/2 are shown. This implies that there are 7 pairs of electrons and 1 single electron
in the state with S = 1/2 and 6 pairs of electrons and 3 spin-up electrons in the state with S = 3/2.
The energy in (c) is derived from calculations of cubane–[Fe3S4] clusters using the B3LYP functional.
The magnetic coupling constant J can be extracted from the SVD matrix. The Clebsch–Gordan
transformation, represented in (b), enables the description of the cluster’s GS.
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Having completed all of the calculations above, we have obtained the energy of all BS
states, the magnetic coupling constant J, and the optimized structure, along with its GS.
Once we have these preliminary results, we can perform geometry optimization using the
EBS method, a FORTRAN code generated by interfacing the external optimizer features
available in ORCA. Figure 7 provides a schematic diagram of the entire calculation process.
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We investigated the energy gradient, denoted as ∇R(∆ε), with further details provided
in the previous study [38].

When ∇R(∆ε) becomes less than the convergence value, it indicates that the optimized
GS geometry has achieved our required accuracy. At this point, the program terminates,
and the final GS geometry, magnetic coupling constant J, and energy spectral distribution
are output.

4. Conclusions

We calculated the energies of all BS states of the cubane–[Fe3S4] cluster via the DFT
method and obtained the GS energy spectrum structure via the SVD method and CG
transformation. Based on this ground-state energy surface, we further optimized the ge-
ometry and energy spectral distribution of the low-spin GS. We find that compared to
those obtained through the BS method, the geometric parameters calculated using the EBS
method can match better with the experimental data. Therefore, we believe that the EBS
method compensates for the shortcomings of the BS method used in the DFT method and
that it reduces the errors caused by the static correlation and spin contamination. From the
energy spectrum, it is evident that the [Fe3S4] cluster possesses rich magnetic properties,
suggesting that [Fe3S4] clusters could serve as exceptional mediators of electron conduc-
tivity. Furthermore, the nearly equal J values of the three magnetic coupling constants in
[Fe3S4] clusters could be a crucial factor contributing to the robust oxygen tolerance of
[NiFe] hydrogenase. These J values are determined according to the spatial configuration
of the transition metal atoms within the cluster, further highlighting the significance of
the metal center’s geometric arrangement in the cluster’s properties. The EBS method
represents an important step toward the precise study of transition metal clusters. We
believe that for multiple magnetic clusters, it is necessary to consider the static correlation



Molecules 2024, 29, 2152 10 of 11

effect and perform quantitative comparisons with the experimental data to deepen the
understanding of the clusters. We hope that the study of magnetic properties and energy
spectral distributions can help us better understand transition metal clusters and their
functions and properties in hydrogenases.
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