Next Article in Journal
Organic Chemistry: Structure and Function. By K. Peter C. Vollhardt
Previous Article in Journal
Synthesis of N-7-Substituted Purines from Imidazole Precursors
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Trimethylcyanosilane as a Convenient Reagent for the Preparation of Trimethylsilyl Enol Ethers of 1,3-Diketones

College of Pharmacy, The Ohio State University, Columbus, Ohio 43221, USA
Molecules 1999, 4(10), 310-315; https://doi.org/10.3390/41000310
Submission received: 22 August 1999 / Accepted: 12 September 1999 / Published: 10 October 1999

Abstract

:
Trimethylsilyl enol ethers of 1,3-diketones are generated “in situ” or obtained in high isolated yield by the reaction of 1,3-diketones with trimethylcyanosilane in various solvents such as cyclohexane, hexane, benzene, methylene chloride, chloroform, carbon tetrachloride, and acetonitrile.

Introduction

Silyl enol ethers of 1,3-diketones are effective silylating agents and useful precursors for the preparation of Diels-Alder dienes, 1,3-bis(silyloxy)buta-1,3-dienes. They have found extensive application in organic synthesis. The preparation of the silyl enol ethers of 1,3-diketones resulted in only fair yields by using reagents such as trimethylchlorosilane/strong bases [1], bis(trimethylsilyl)formamide [2], bis(trimethylsilyl)acetamide [3], triethylsilyl-thiobenzene [4], trimethylsilyl trifluoromethanesulfonate [5], and ethyl trimethylsilylacetate/tetra-n-butylamonium fluoride [6], employed previously for the silylation of carbonyl compounds. A few methods for the preparation of trimethylsilyl enol ethers of 1,3-diketones have been developed by using hexamethyldisilazane [7], hexamethyldisilazane/imidazole [8], 2-oxo-3-trimethylsilyltetrahydro-1,3-oxazole [9], and (trimethylsilyl)-diethylamine /methyl iodide [10].
Trimethylcyanosilane (Me3SiCN) has been used widely in organic synthesis [11,12]. It has been used to protect a variety of alcohols, phenols, carboxylic acids, amines and thiols [13]. Previously we have shown that α-cyano enols were conveniently converted to trimethylsilyl enol ethers by using Me3SiCN [14]. We now wish to report a method for the silylation of 1,3-diketones to their trimethylsilyl enol ethers by using Me3SiCN.

Results and Discussion

The reaction of Me3SiCN with 1,3-diketones is complicated as shown in Scheme 1. The products formed depend upon the experimental conditions: temperature, time, the stoichiometric amount of Me3SiCN added, and the catalyst used [11]. The reaction of pentan-1,3-dione (1) with excess Me3SiCN formed trimethylsilyl enol ether 2 at room temperature or the adduct 3 at elevated temperatures (90°C) [11,15]. Alternatively, the reaction yielded compounds 4 or/and 5 under different conditions, [15,16,17].
We observed that the silylation proceeded very smoothly at ambient temperature when Me3SiCN was added to the 1,3-diketones 6a-f or 8a-g in CDCl3 solution. The reactions were completed in 10 min (monitored by 1H NMR) and produced the corresponding trimethylsilyl enol ethers 7a-f or 9a-g in quantitative yield (Scheme 2). The reactions of Me3SiCN with 1,3-diketones can be carried out in various solvents. For example, the reaction of Me3SiCN with cyclohexane-1,3-dione 6b proceeded very smoothly in cyclohexane, hexane, benzene, carbon tetrachloride, chloroform, methylene chloride, and acetonitrile, and afforded 7b in quantitative yield.
The reaction of Me3SiCN with 2-acetylcyclopentanone 10a gave a ca. 1:1 ratio mixture of the two trimethylsilyl enol ethers 11a and 12a in quantitative yield (Scheme 3). Interestingly, the reaction of Me3SiCN toward 2-acetylcyclohexanone 10b was slow and produced only trimethylsilyl enol ether 12b in 50% yield after 24 h.

Conclusion

In summary, we have shown that Me3SiCN is an efficient silylation reagent for silylating 1,3-diketones, especially for the cyclic 1,3-diketones and 2-(hydroxymethylene)ketones. The method provides a convenient way to trimethylsilyl enol ethers of 1,3-diketones under neutral conditions.

Experimental

The general procedure for the preparation of trimethylsilyl enol ethers of 1,3-diketones is as follows: Me3SiCN (0.205 g, 2.05 mmol) was added to 1,3-diketone (2 mmol) in dry CDCl3 (3 ml) or other suitable solvent under a nitrogen atmosphere. The progress of the reaction was directly monitored by 1H-NMR. The reaction is generally completed at room temperature in 5-10 min. After the completion of the reaction, a stream of nitrogen was allowed to pass through the mixture for 5 min. The resulting solution contains the trimethylsilyl enol ether. The solvent was evaporated under reduced pressure. The residue is the desired compound.
3-(Trimehylsilyloxy)cyclopent-2-en-1-one (7a): 1H NMR(CDCl3): 5.30 (t, J = 1.0, H-2), 2.57 (m, 2H, H-4), 2.42 (m, 2H, H-5), 0.33 (s, 9H, OSiMe3).
3-(Trimehylsilyloxy)cyclohex-2-en-1-one (7b): 1H NMR(CDCl3): 5.37 (t, J = 0.7, H-2), 2.36 (td, J = 6.2, 0.7, 2H, H-4), 2.32 (t, J = 6.7, 2H, H-6), 1.97 (m, 2H, H-5), 0.30 (s, 9H, OSiMe3).
5,5-Dimethyl-3-(trimehylsilyloxy)cyclohex-2-en-1-one (7c): 1H NMR(CDCl3): 5.35 (t, J = 0.6, H-2), 2.24 (d, J = 0.6, 2H, H-4), 2.17 (s, 2H, H-6), 1.07 (s, 6H, 2 Me), 0.30 (s, 9H, OSiMe3).
2-Methyl-3-(trimehylsilyloxy)cyclopent-2-en-1-one (7d): 1H NMR(CDCl3): 2.51 (m, 2H, H-4), 2.43 (m, 2H, H-5), 1.58 (t, J = 1.8, Me), 0.33 (s, 9H, OSiMe3).
2-Methyl-3-(trimehylsilyloxy)cyclohex-2-en-1-one (7e): 1H NMR(CDCl3): 2.40 (tq, J = 6.4, 1.6, 2H, H-4), 2.35 (t, J = 6.7, 2H, H-6), 1.94 (m, 2H, H-5), 1.66 (t, J = 1.6, Me), 0.28 (s, 9H, OSiMe3).
5,5-Dimethyl-2-methyl-3-(trimehylsilyloxy)cyclohex-2-en-1-one (7f): 1H NMR(CDCl3): 2.26 (q, J = 1.5, 2H, H-4), 2.23 (s, 2H, H-6), 1.67 (t, J = 1.5, 3H, Me), 1.07 (s, 6H, 2 Me), 0.28 (s, 9H, OSiMe3).
4-(Trimehylsilyloxy)but-3-en-2-one (9a). 1H NMR(CDCl3): 7.51 (d, J = 12.2, 1H, H-4), 5.73 (d, J = 12.2, 1H, H-3), 2.17 (s, 3H, Me), 0.29 (s, 9H, OSiMe3).
1-Phenyl-3-(trimehylsilyloxy)prop-2-en-1-one (9b). 1H NMR(CDCl3): 7.87-7.91 (m, 2H, Ph), 7.75 (d, J = 11.6, 1H, H-3), 7.50-7.55 (m, 1H, Ph), 7.42-7.47 (m, 2H, Ph), 6.53 (d, J = 11.6, 1H, H-2), 0.32 (s, 9H, OSiMe3).
3-Methyl-4-(trimehylsilyloxy)but-3-en-2-one (9c). 1H NMR(CDCl3): 7.46 (q, J = 1.2, 1H, H-4), 2.17 (s, 3H, MeCO), 1.70 (d, J = 1.2, Me-3), 0.30 (s, 9H, OSiMe).
2-Methyl-1-(trimehylsilyloxy)pent-1-en-3-one (9d). 1H NMR(CDCl3): 7.48 (q, J = 1.3, 1H, H-4), 2.55 (q, J = 7.4, 2H, H-4), 1.72 (d, J = 1.3, Me-2), 1.10 (t, J = 7.4, 3H, H-5), 0.29 (s, 9H, OSiMe3).
2-Methyl-1-phenyl-3-(trimehylsilyloxy)prop-2-en-1-one (9e). 1H NMR(CDCl3): 7.53 (m, 2H, Ph), 7.48 (m, 1H, Ph), 7.41 (m, 2H, Ph), 7.15 (q, J = 1.3, 1H, H-3), 1.88 (d, J = 1.3, 3H, Me-2), 0.22 (s, 9H, OSiMe3).
1,2-Diphenyl-3-(trimehylsilyloxy)prop-2-en-1-one (9f). 1H NMR(CDCl3): 7.63-7.67 (m, 2H), 7.21-7.49 (m, 9H), 0.24 (s, 9H, OSiMe3).
2-(Trimehylsilyloxymethylene)cyclohexan-1-one (9g). 1H NMR(CDCl3): 7.46 (t, J = 2.0, 1H, =CH), 2.44 (td, J = 6.7, 2.0, 2H, H-3), 2.34 (t, J = 6.7, 2H, H-6), 1.77-1.90 (m, 2H, H-5), 1.64-1.76 (m, 2H, H-4), 0.26 (s, 9H, OSiMe3).
2-(1-Trimehylsilyloxyethylene)cyclopentan-1-one (11a). 1H NMR(CDCl3): 2.59 (tq, J = 7.3, 1.8, 2H, H-3), 2.48-2.52 (m, 2H, H-5), 2.32 (t, J = 1.8, 3H, Me), 1.76-1.87 (m, 2H, H-4), 0.26 (s, 9H, OSiMe3).
2-(1-Oxoethyl)-1-(Trimehylsilyloxy)cyclopent-1-ene (12a). 1H NMR(CDCl3): 2.47-2.52 (m, 4H, H-3 and H-5), 2.34 (s, 3H, MeCO), 1.76-1.87 (m, 2H, H-4), 0.32 (s, 9H, OSiMe3).
2-(1-Oxoethyl)-1-(Trimehylsilyloxy)cyclohex-1-ene (12b). 1H NMR(CDCl3): 2.37 (s, 3H, MeCO), 2.30-2.36 (m, 2H), 2.20-2.28 (m, 2H), 1.64-1.71 (m, 2H), 1.51-1.58 (m, 2H), 0.29 (s, 9H, OSiMe3).

Acknoledgement 

The author is indebted to Professor Hugo Wyler for valuable comments.

References and Notes

  1. West, R. J. Am. Chem. Soc. 1958, 80, 3246–3249. House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. J. Org. Chem. 1969, 34, 2324–2336. Pawlenko, S. Houben-Weyl, Methoden der Organischen Chemie, 4th Edn; Muller, E., Bayer, O., Eds.; Vol. XIII/5, Georg Thieme Verlag: Stuttgart, 1980; pp. 193–201. [Google Scholar]
  2. Kantlehner, W.; Kugel, W.; Bredereck, H. Chem. Ber. 1972, 105, 2264–2270.
  3. Dedier, J.; Gerval, P.; Frainnet, E. J. J. Organomet. Chem. 1980, 185, 183–197. Klebe, J. F.; Finkbeiner, H.; White, D. M. J. Am. Chem. Soc. 1966, 88, 3390–3395.
  4. Ojima, I.; Nagai, Y. J. Organomet. Chem. 1973, 57, C42–C44.
  5. Emde, H.; Domsch, D.; Feger, H.; Frick, U.; Goetz, A.; Hergott, H. H.; Hofmann, K.; Kober, W.; Kraegeloh, K.; Oesterle, T.; Steppan, W.; West, W.; Schimchen, G. Synthesis 1982, 1–26. Emde, H.; Goetz, A.; Hofmann, K.; Simchen, G. Justus Liebigs Ann. Chem. 1981, 1643–1657; Simchen, G.; Kober, W. Synthesis 1976, 259–261.
  6. Nakamura, E.; Murotushi, T.; Shimizu, M.; Kuwajima, I. J. Am. Chem. Soc. 1976, 98, 2346–2348.
  7. Chu, D. T.; W. Huckin, S. N. Can. J. Chem. 1980, 58, 138–142.
  8. Torkelson, S.; Ainsworth, C. Synthesis 1976, 722–724.
  9. Aizpurua, J. M.; Palomo, C. Synthesis 1982, 280–281.
  10. Yamamoto, Y.; Matui, C. Organometallics 1997, 16, 2204–2206.
  11. Rasmussen, J. K.; Heilmann, S. M.; Krepski, L. R. Advances in Silicon Chemistry; Larson, G.L., Ed.; JAI Press INC.: London, England, 1991; Volume 1, pp. 64–187. [Google Scholar]
  12. Furin, G. G.; Vyazankina, O. A.; Gostevsky, B. A.; Vyazankin, N. S. Tetrahedron 1988, 44, 2675–2749. Colvin, E. W. Chem. Soc. Rev. 1978, 7, 15. Groutas, W. C.; Felker, D. Synthesis 1980, 861–868.
  13. Mai, K.; Paril, G. J. Org. Chem. 1986, 51, 3545–3548. Corey, E. J.; Wu, Y.-J. J. Am. Chem. Soc. 1993, 115, 8871–8872. Becu, C.; Reyniers, M.-F.; Anteuuuunis, M. J. O. Bull. Soc. Chim. Belg. 1990, 99, 779–782. Antenuis, M. J. O.; Becu, C.; Becu, F. Bull. Soc. Chim. Belg. 1990, 99, 361–377.
  14. Zhuo, J.-C.; Wyler, H. Helv. Chim. Acta 1993, 76, 1916–1927.
  15. Gostevskii, B. A.; Kruglaya, O. A.; Albanov, A. I.; Vyazankin, N. S. Zh. Obshch. Khim. 1981, 51, 817–820. Gostevskii, B. A.; Vyazankina, O. A.; Vyazankin, N. S. Zh. Obshch. Khim. 1983, 53, 1843–1846.
  16. Foley, L. H. J. Org. Chem. 1985, 50, 5204–5209.
  17. Neef, H.; Müller, R. J. Prakt. Chem. 1973, 315, 367–374.
  • Samples Availability: Not available.
Scheme 1.
Scheme 1.
Molecules 04 00310 sch001
Scheme 2.
Scheme 2.
Molecules 04 00310 sch002
Scheme 3.
Scheme 3.
Molecules 04 00310 sch003

Share and Cite

MDPI and ACS Style

Zhuo, J.-C. Trimethylcyanosilane as a Convenient Reagent for the Preparation of Trimethylsilyl Enol Ethers of 1,3-Diketones. Molecules 1999, 4, 310-315. https://doi.org/10.3390/41000310

AMA Style

Zhuo J-C. Trimethylcyanosilane as a Convenient Reagent for the Preparation of Trimethylsilyl Enol Ethers of 1,3-Diketones. Molecules. 1999; 4(10):310-315. https://doi.org/10.3390/41000310

Chicago/Turabian Style

Zhuo, Jin-Cong. 1999. "Trimethylcyanosilane as a Convenient Reagent for the Preparation of Trimethylsilyl Enol Ethers of 1,3-Diketones" Molecules 4, no. 10: 310-315. https://doi.org/10.3390/41000310

Article Metrics

Back to TopTop