N -\{2-[(2-Oxo-2H-chromen-4-yl)amino]ethyl\}acetamide

Stoyan K. Karagiosov, Ivo C. Ivanov* and Boyan I. Iliev

Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Sofia, Dunav 2, BG-1000 Sofia, Bulgaria. Tel. (+359-2) 981 7025, Fax (+359-2) 987 9874, E-mail:
i.ivanov@mbox.pharmfac.acad.bg

Received: 6 November 1999 / Accepted:24 November 1999 / Published: 17 December 1999

The direct synthesis of 4-(monoalkylamino)coumarins from primary amines [1] was developed on the basis of the reaction of 4-hydroxycoumarin with ammonium acetate in acetic acid as reported by Joshi et al. [2]. The title compound $\mathbf{4}$ was synthesized in a similar way from 4 -hydroxycoumarin (1) and ethylene diamine (2) in boiling glacial acetic acid (3). A simultaneous N-acetylation of the second amino group took place unexpectedly. Compound $\mathbf{4}$ has not been previously reported and we give here its detailed characterization.

To 4-hydroxycoumarin $(\mathbf{1}, 1.62 \mathrm{~g}, 10 \mathrm{mmol})$ in glacial acetic acid ($\mathbf{3}, 30 \mathrm{ml}, 0.53 \mathrm{~mol}$), ethylene diamine $(2,12.0 \mathrm{~g}, 0.2 \mathrm{~mol})$ was added under stirring, the mixture was heated at reflux for 14 h and then poured under stirring into 75 ml of water. The resulting precipitate was filtered and washed with hot water (2×10 $\mathrm{ml})$. The solid was stirred with ether $(20 \mathrm{ml})$ for 10 min , filtered, washed with little ether and dried at $90-100^{\circ} \mathrm{C}$ to yield $1.85 \mathrm{~g}(75 \%)$ of chromatographically homogeneous 4 as almost colorless crystals with m.p. $261-262{ }^{\circ} \mathrm{C}$ (TLC: silica gel $60 \mathrm{~F}_{254}$ Merck aluminium sheets, elution by chloroform/acetone /methanol 6:4:1, vol. parts).

After recrystallization from ethanol: colorless needles, m.p. $262-263{ }^{\circ} \mathrm{C}$.
FT-IR (Nujol, Shimadzu): 3333 (NH), 3271 (NH), 1684 (C=O), 1653 (C=O), 1609, 1557, 1327, 1262, 1223, 1196, 1150, 1080, 1040, 938, 797, 764, 752, 722, $695 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 250 \mathrm{MHz}\right): 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.25-3.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 5.21(\mathrm{~s}, 1 \mathrm{H}$, $3-\mathrm{H}), 7.31$ (m, 2H, 6-H,8-H arom.), 7.58 (m, 1H, 7-H arom.), 7.75 (broad t, 1H, 4-NH), $7.94(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}$ arom.), 8.11 (broad t, 1H, NH-CO).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{-}\right.$d, $\left.62.5 \mathrm{MHz}\right): 22.6\left(\mathrm{CH}_{3}\right), 36.9\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right), 81.3(\mathrm{C}-3), 114.3(\mathrm{C}-4 \mathrm{a}), 116.9$ (C-8), 122.2 (C-5), 123.3 (C-6), 131.9 (C-7), 153.0 (C-8a or C-4), 153.1 (C-4 or C-8a), 161.5 (C-2), 170.1 (NH-CO).

EI-MS (70 eV, $m / z(\%)): 246\left(51, M^{+}\right), 188$ (9), 187 (67), 186 (26), 175 (18), 174 (100), 162 (46), 159 (28), 146 (24), 145 (10), 118 (12), 107 (14), 91 (10), 89 (14), 73 (11), 43 (19), 30 (22).

HR-MS: Mol. mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ 246.10044; Found 246.1006.
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ (246.26): C 63.40, H 5.73, N 11.38; Found: C 63.42, H 5.77, N 11.41 .

Acknowledgement: Financial support by the National Fund for Scientific Research (Bulgaria) (Project No. $\mathrm{X}-416 / 94$) is gratefully acknowledged.

References

1. Ivanov, I. C.; Karagiosov, S. K.; Manolov I. Arch. Pharm. (Weinheim, Germany) 1991, 324, 61-62.
2. Joshi, S. D.; Sakhardande, V. D.; Seshadri, S. Indian J. Chem. Sect. B 1984, 23 (3), 206-208.

Sample Availability: Available from MDPI.
©1999 MDPI. All rights reserved. Molecules website www.mdpi.org/molecules/

