4-Furyl-6-hydroxy-6-methyl-1,2,4,5,6,7-hexahydro-3H-indazole-3-one

Elena B. Usova, Ludmila I. Lysenko and Gennady D. Krapivin

Department of organic chemistry, Kuban State Technological University, Moskovskaya, 2, Krasnodar, 350072, Russian Federation. Phone +7 8612 559556, E-mail: organics@kubstu.ru

Received: 26 November 1999 / Accepted: 15 December 1999 / Published: 24 January 2000

It is known that indazoles have varied biological activity [1,2]. 4-Furyl-6-hydroxy-6-methyl-1, 2,4,5,6,7-hexahydro- 3 H -indazole-3-one has been obtained for investigation of its biological activity. To a solution of 3-furyl-5-hydroxy-5-methyl-2-ethoxycarbonylcyclohexanone ($1.24 \mathrm{~g}, 5 \mathrm{mmol}$) in ethanol (10 ml) were added an aqueous solution of hydrazine hydrate ($52 \%, 0.5 \mathrm{ml}, 5 \mathrm{mmol}$) and acetic acid (0.5 ml), and the mixture heated to reflux until the reaction was complete ($\sim 1.5 \mathrm{~h}, \mathrm{TLC}$). The reaction mixture was then cooled to $5-10{ }^{\circ} \mathrm{C}$, the crystalline product was collected, washed with cold ethanol and recrystallized from ethanol to yield 0.97 g (83%) of hexahydroindazole-3-one as a white crystals.
M.p. $268-269{ }^{\circ} \mathrm{C}$ (ethanol).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CF}_{3} \mathrm{COOD}, 250 \mathrm{MHz}\right.$): 7.48 (d, $\mathrm{J}_{1}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ furan), 6.33 (dd, $\mathrm{J}_{1}=2.0 \mathrm{~Hz}, \mathrm{~J}_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}$, H-4 furan), 6.00 (d, J $\mathrm{J}_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ furan), $4.60(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 2.82 (broad s, 2H, 7-H, 7-H), $2.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=6 \mathrm{~Hz}, \mathrm{~J}_{2}=14 \mathrm{~Hz}, 5-\mathrm{H}\right), 1.75\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2}=14 \mathrm{~Hz}, \mathrm{~J}_{3}=11 \mathrm{~Hz}, 5-\mathrm{H}\right), 1.36\left(\mathrm{c}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

IR (cm^{-1}, nujol): $3270,3150,1605,1600$.
$\mathrm{UV}\left[1_{\max }(\mathrm{nm}), \log \mathrm{e}\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]$ (ethanol): 208(4,24), 253(3.63).
Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}(234,25)$: C 61.52, H 6.02, N 11.96. Found: C 61.24, H 6.29, N 11.68.

References and Notes

1. Aran, V.J.; Flores, M.; Munoz, P.; Paez J.A.; Sanchez-Verdu, P.; Stud, M. Liebigs. Ann. 1996, 683.
2. Morie, T.; Harada, H.; Kato, S. Synth. Commun. 1997, 27, 559.

Sample Availability: Available from the authors.
©1999 MDPI. All rights reserved. Molecules website www.mdpi.org/molecules/

