Molecules 2000, 5, M176

(u,l,l,u)-3,5-Diethyl-2,4,6-triphenyltetrahydropyran-2,4-diol

Rolf Söllner, ¹ Thomas Koy² and Michael Schmittel²*

¹ Institut für Organische Chemie der Universität Würzburg, Am Hubland, 97074 Würzburg.

² FB 8 - OC 1 (Chemie - Biologie), Universität GH Siegen, Adolf-Reichwein-Str., D-57068 Siegen, Germany, E-mail: schmittel@chemie.uni-siegen.de.

Received: 18 July 2000 / Accepted: 21 July 2000 / Published: 25 December 2000

The experimental procedure follows a novel protocol developed recently by us [1]. All reactions were carried out under an atmosphere of dry argon by using standard Schlenk tube techniques. A solution of diisopropylamine (1.26 mL, 9.0 mmol) in THF (30 mL) was treated at 0 °C with a solution of *n*-butyllithium (3.0 mL, 2.5M in hexane, 7.5 mmol) and stirred for 15 min. At 40 °C butyrophenone (1.11mL, 7.50 mmol) was added and the mixture was stirred at 40 °C for 1 h. Then InCl₃ (2.5 mmol) was added and the mixture was stirred for 30 min at 40 °C and 1 h at room temperature. After addition of benzaldehyde (0.25 mL, 2.5 mmol) in THF (30 mL), the reaction mixture was stirred for 2 h at 25 °C. The reaction was quenched with saturated aqueous NaHCO₃ (50 mL). The layers were separated and the aqueous layer was extracted three times with diethylether. The combined organic layers were washed with saturated aqueous NaCl and dried with Na₂SO₄. Crystallisation from hexane afforded 70% of the title compound in a diastereomerically pure form as white crystals.

M.p. 160 °C.

IR (KBr): 3412, 3089, 3062, 3031, 2963, 2930, 2906, 2872, 1654, 1602, 1497, 1448, 1388, 1312, 1273, 1238, 1225, 1190, 1146, 1130, 1077, 1046, 1029, 755, 738, 700, 553 cm⁻¹.

 $^{1}\text{H-NMR (600MHz; CDCl}_{3}\text{): -0.15 (t, }^{3}\textit{J}=7.6\text{Hz, 3H, CH}_{3}\text{), -0.02 (t, }^{3}\textit{J}=7.5\text{Hz, 3H, CH}_{3}\text{), 0.96-1.19 (m, 2H, CH}_{2}\text{), 1.28-1.33 (m, 2H, CH}_{2}\text{), 2.12 (td, }^{3}\textit{J}=3.9\text{Hz, }^{4}\textit{J}=1.4\text{Hz, 1H, 3-H}\text{), 2.16 (ddd, }^{3}\textit{J}=10.6\text{Hz, }^{3}\textit{J}=5.4\text{Hz, }^{3}\textit{J}=2.5\text{Hz, 1H, 5-H}\text{), 3.96 (d, }^{4}\textit{J}=1.4\text{Hz, OH}\text{), 4.03 (s, 1H, OH}\text{), 5.08 (d, }^{3}\textit{J}=10.6\text{Hz, 1H, 6-H}\text{), 7.21-7.24 (m, 1H, Ph-H), 7.27-7.40 (br m, 9H, Ph-H), 7.52-7.55 (m, 2H, Ph-H), 7.66-7.69 (m, 2H, Ph-H), 7.75-7.79 (br m, 1H, Ph-H).}$

¹³C-NMR (151MHz, CDCl₃): 13.6 (CH₃), 14.5 (CH₃), 17.9 (CH₂), 19.4 (CH₂), 53.5 (C5), 55.2 (C3), 75.3 (C6), 79.4 (C4), 101.5 (C2), 124.9 (br s, Ph), 126.0 (Ph), 126.5 (Ph), 126.6 (br s, Ph), 127.8 (br s, Ph), 128.0 (Ph), 128.1 (Ph), 128.2 (Ph), 128.3 (Ph), 140.6 (*quart*.-Ph), 143.4 (*quart*.-Ph), 144.0 (*quart*.-Ph).

MS-EI (70 eV): 403 [M⁺], 385 [M⁺ - H₂O].

Anal. Calcd. for C₂₇H₃₀O₃, C: 80.56, H: 7.51; Found C: 80.64, H: 7.84.

Acknowledgements: The authors gratefully acknowledge financial support from the DFG (Graduiertenkolleg, SFB 347).

Reference

1 von 2 04.05.2009 16:43

1. Schmittel, M.; Ghorai, M. K.; Haeuseler, A.; Henn, W.; Koy, T.; Söllner, R. Eur. J. Org. Chem. 1999, 2007-2010.

Sample Availability: Available from MPDI.

© 2000 MDPI. All rights reserved. Molecules website www.mdpi.org/molecules/

2 von 2 04.05.2009 16:43