Short Note

bis[(N-Benzyloxycarbonyl)-(2R)-amino-4methylpentyl]disulfide

Jean-Marc Poudrel and Peter Karuso *

Department of Chemistry, Macquarie University, NSW 2109 Sydney, Australia. Ph. +61-2-9850-8290, fax +61-2-9850-8313, E-mail: pkaruso@alchemist.chem.mq.edu.au, www.chem.mq.edu.au/~vislab

Received: 4 July 2000 / Accepted: 5 August 2000 / Published: 25 December2000

Disulfides that mimic the pentapeptide Phe-D-Leu-Gly-D-Leu-Phe can be obtained in high yield from the corresponding thioacetate via the intermediate mercaptan by prolonged standing in alkali [1]. To a stirred solution of $\mathbf{1}(0.370 \mathrm{~g}, 1.20 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL})$ was added dropwise a 1 M solution of sodium methanoate in methanol $(1.2 \mathrm{~mL})$. The reaction mixture was stirred overnight and neutralised by dropwise addition of a 1 M solution of $\mathrm{HCl}(1.2 \mathrm{~mL})$. Methanol was evaporated under reduced pressure and the residue taken up with ethyl acetate (50 mL), washed with water $(2 \times 10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure afforded the title compound as a white solid in 95% yield ($0.303 \mathrm{~g}, 0.570 \mathrm{mmol}$).
M.p. $86-87^{\circ} \mathrm{C}$.
$[\alpha]_{D^{20}}=+48.0^{\circ}\left(\mathrm{c} 2.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
TLC (hexane/ethyl acetate 80:20): Rf 0.71.
IR (KBr, cm ${ }^{-1}$): 3355 (br, s, NH), 1695 (s, C=O), 1535 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1010 (m, C-O).
UV (CH3CN, e): l=197 (21350), 204 (19700), 257 (980).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.18$ (d, J=8.4 Hz, 2H, NH), 3.96 (m, 2H, Ha), 2.96 (dd, $\mathrm{J}=14 \mathrm{~Hz}$ and $\mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHS}$), 2.71 (dd, $\mathrm{J}=13.6 \mathrm{~Hz}$ and $\mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHS}), 1.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Hg}), 1.19$ (m, 4H, Hb), $0.90(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{Hd})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 156.0(\mathrm{C}=\mathrm{O}), 136.5$ (quat. arom.), 128.4 and $128.0\left(\mathrm{CH}\right.$ arom.), $66.5\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Ph}), 49.0\left(\mathrm{CH}_{2} \mathrm{~S}\right), 45.4(\mathrm{Ca}), 42.4(\mathrm{Cb}), 24.8(\mathrm{Cg}), 23.0$ and $21.0(\mathrm{Cd})$.

ES-MS (m/z): 533 (M+H, 100\%), 425 (29\%), 266 (77\%), 234 (55\%), 91 (28\%).
Anal. calc. for ($\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}$): C 63.12, H 7.57, N 5.26; found: C 63.10, H 7.73, N 5.04.
Acknowledgments: The authors gratefully acknowledge financial support from the French and Australian governments and from Macquarie University.

References

1. Corelli, F.; Crescenza, A.; Dei, D.; Taddei, M.; Botta, M. Tetrahedron Asymmetry 1994, 5, 1469-1472.

Sample availability : Available from the authors and from MDPI.
© 2000 MDPI. All rights reserved. Molecules website www.mdpi.org/molecules/

