¹H and ¹³C-NMR Spectroscopic Study of Some 1*H*-4,5-Dihydroimidazolium Salts

Alejandra Salerno and Isabel A. Perillo

Departamento de Química Orgánica. Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. Junín 956 (1113), Argentina

E-mail: iperillo@ffyb.uba.ar

Abstract: The ¹H y ¹³C-NMR spectra of some 1,3 and 1,2,3-trisubstituted 1*H*-4,5-dihydroimidazolium salts are analyzed.

Introduction

1H-4,5-Dihydroimidazolium salts are typical cyclic amidinium compounds where the cation is resonance stabilized and the positive charge can be delocalized either on the nitrogen atoms or on the C_2 :

NMR spectra analysis and its comparison with the corresponding saturated compounds (imidazolidines 2), allows to reach conclusions about the contribution of such structures.

Experimental

¹H and ¹³C NMR spectra were recorded on a Bruker MSL-300 spectrometer using deuterochloroform as the solvent.

Molecules **2000**, *5*

Results and Discussion

The ¹H and ¹³C-NMR spectroscopic study of a series of 1,3-di and 1,2,3-trisubstituted 1*H*-4,5-dihydroimidazoliom salts **1** (Table) is presented.

		T -	T7-
R_1	R_2	R_3	X ⁻
C_6H_5	Н	C_6H_5	Cl ⁻
p-CH ₃ C ₆ H ₄	Н	p-CH ₃ C ₆ H ₄	Cl
p-Cl-C ₆ H ₄	Н	CH_2 - C_6H_5	Cl
C_6H_5	C_6H_5	CH ₃	I-
p-CH ₃ C ₆ H ₄	C_6H_5	CH ₃	I ⁻
p-CH ₃ OC ₆ H ₄	C_6H_5	CH ₃	I ⁻
p-NO ₂ C ₆ H ₄	C_6H_5	CH ₃	I-

Table 1.

In order to assign the heterocyclic hydrogens and carbons in the 1,2-diaryl-3-methyl substituted compounds, the spectroscopic study of the parent 1H-4,5-dihydroimidazoles 3 and their salts 4 had been carried out.

$$R_1-N$$
 R_2
 R_2
 R_2
 R_2
 R_3

The unequivocal assignment of the hydrogen and carbon signals of the 1,2,3-trisubstituted salts has been done by the HMQC and HMBC spectra.

The important electronic deficit at the level of the heterocyclic ring in compounds 1 has been clearly demonstrated by comparison of the spectroscopic features of the salts 1 with the corresponding imidazolidines 2. The iminium structure contribution (A,C) was analyzed according to the chemical shifts and the heteronuclear ${}^{1}J^{13}C$ -H coupling constants of the heterocyclic ring carbons and N-CH₃.