N-(9-Fluorenylmethoxycarbonyl)-L-serine Amide

Zoltán Schmél ${ }^{1}$ and Zoltán Kupihár ${ }^{2}$ *

${ }^{1}$ Department of Pharmaceutical Analysis, ${ }^{2}$ Department of Medicinal Chemistry, University of Szeged, Dóm tér 8., H-6720 Szeged, Hungary. *Phone: +36 625451 45, Fax: +36 624252 62, E-mail:
kupi@.ovrisc.mdche.u-szeged.hu
Received: 10 April 2000 / Accepted: 25 April 2000 / Published: 10 July 2000

The synthesis of N-Fmoc-L-serine amide was performed by the well known Schotten-Baumann acylation method [1]. L-Serine amide hydrochloride ($1.00 \mathrm{~g}, 7.1 \mathrm{mmol}$) and $1.50 \mathrm{~g}(14.2 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were dissolved in dioxane-water $2: 1(45 \mathrm{ml})$. Then a solution of $2.00 \mathrm{~g}(7.7 \mathrm{mmol}, 1.1$ equivalent) of Fmoc chloride in dioxane (20 ml) was added dropwise over 1 h . The reaction mixture was stirred overnight at room temperature. According to TLC analysis, all the starting material was converted. The reaction mixture was evaporated, the resulting solid was triturated with 10% aq. $\mathrm{NaHSO}_{4}(50 \mathrm{ml})$, filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and ether and dried. As the crude product does not dissolve in apolar solvents nor ethyl acetate, crystallization was performed in tetrahydrofuran-ethyl acetate ($1: 3 \mathrm{v} / \mathrm{v}$) to give $1.87 \mathrm{~g}(81 \%)$ of the title compound as a white solid.

Mp.: $155-156{ }^{\circ} \mathrm{C}$.
$[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+13.7$ (c 2.5 , tetrahydrofuran).
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): 3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right) ; 3.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{NH}) ; 4.21(\mathrm{t}, J 6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{O}$); $4.26\left(\mathrm{~d}, J 6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.82(\mathrm{t}, J 5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) ; 7.04\left(\mathrm{~s}, 1 \mathrm{H}, 1 / 2 \mathrm{NH}_{2}\right) ; 7.26(\mathrm{~s}, 1 \mathrm{H}$, $1 / 2 \mathrm{NH}_{2}$); $7.13(\mathrm{~d}, J 8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}) ; 7.32(\mathrm{dd}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic CH), $7.40(\mathrm{dd}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic CH$), 7.72(\mathrm{~d}, J 5.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic CH$), 7.87(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic CH$)$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 125 \mathrm{MHz}$, assignment based on J-modulated spin-echo, HMQC and COSY experiments): $46.6\left(\mathrm{CHCH}_{2}\right) ; 57.0(\mathrm{CHNH}) ; 61.7\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 65.6\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 120.0 ; 125.2 ; 127.0 ; 127.6$ (aromatic CHs); 140.6; 143.8 (aromatic C_{q}); $155.8(\mathrm{CONH}) ; 172.0\left(\mathrm{CONH}_{2}\right)$.

ESI-MS (in methanol- $\mathrm{H}_{2} \mathrm{O}, m / z, \%$): $326.9\left(64,[\mathrm{M}+\mathrm{H}]^{+}\right), 343.9\left(61,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 348.9\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right)$, $653.3\left(3,[2 \mathrm{M}+\mathrm{H}]^{+}\right), 675.3\left(13,[2 \mathrm{M}+\mathrm{Na}]^{+}\right)$.

Anal calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ (326.35): C, $66.25 ; \mathrm{H}, 5.56 ; \mathrm{N}, 8.58$; found $\mathrm{C}, 66.11 ; \mathrm{H}, 5.45 ; \mathrm{N}, 8.55 \%$.

Reference

1. Kocienski, P. Protecting Groups; Georg Thieme Verlag: Stuttgart, 1994: p 204.

Sample availability: available from the authors and MDPI (MDPI ID 18866).
© 2000 MDPI. All rights reserved. Molecules website www.mdpi.org/molecules/

