4,7,7-Trimethyl-bicyclo [2.2.1]heptan-2-ol

Badia Ait Allal, Larbi El Firdoussi, Smail Allaoud and Abdellah Karim

Laboratoire de Chimie de Coordination Faculté des Sciences SemLalia, BP 2390 Marrakech Maroc. Fax: 212444374 08, E-mail: elfirdoussi@ucam.ac.ma

Received: 10 January 2001 / Accepted: 15 May 2001 / Published: 25 May 2001

A mixture of $\mathrm{Pd}(\mathrm{acac})_{2}(41.26 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{CuCl}_{2}(168 \mathrm{mg}, 1.25 \mathrm{mmol})$ [1] in 10 mL of 1,2-dimethoxyethan (DME) was stirred for 30 mn at $80^{\circ} \mathrm{C}$ under oxygen atmosphere, was added a -pinene ($425 \mathrm{mg}, 3.12 \mathrm{mmol}$). The mixture was stirred for another 18 h at he same temperature. The evolution of reaction was controlled by GC. When the reaction was completed, 5 mL of water and hexane/EtOAc (1:1, 20 mL) were added. The phases were separated and the aqueous one was extracted with hexane/EtOAc $(1: 1,4 \times 20 \mathrm{~mL})$, and the combined organic phases were washed with water, dried over MgSO_{4}. Removal of the solvent under reduced pressure and purification of the residue by flash chromatography, using hexane as eluent, gave the compound 2 (45%) as a colorless oil [2].
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(6 \mathrm{H} ; 8-\mathrm{Me}$ and $9-\mathrm{Me}) 0.92(\mathrm{~s} ; 3 \mathrm{H} ; 10-\mathrm{Me}) 1.30(3 \mathrm{H}, \mathrm{m}) 1.70(2 \mathrm{H}, \mathrm{m})$ $2,06(1 \mathrm{H}, \mathrm{m}) 2.45(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}) 4.16\left(1 \mathrm{H}\right.$, ddd; $\left.\mathrm{J}_{2 \mathrm{ax}, 3 \mathrm{ax}} 10.8 \mathrm{~J}_{2 \mathrm{ax}, 1 \text { eq }} 4.2 \mathrm{~J}_{2 \mathrm{ax}, 3 \mathrm{eq}} 2.4 \mathrm{~Hz}, 2-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $13.27\left(\mathrm{CH}_{3}, \mathrm{C}-10\right)$; 18.48 and $20.58\left(\mathrm{CH}_{3}, \mathrm{C}-8\right.$ and $\left.\mathrm{C}-9\right) 28.03$ and 28.12 $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right.$ and C-5) $40.16\left(\mathrm{CH}_{2}, \mathrm{C}-3\right) 44.92(\mathrm{CH}, \mathrm{C}-1) 47.86$ (quat, C-7) 50.83(quat, C-4); 68.01(CH, $\mathrm{C}-2$).

References

1. EL Firdoussi, L.; Baqqa A.; Allaoud, S.; Aitallal, B.; Karim, A.; Castanet, Y.; Mortreux, A. J. Mol. Cat. 1998, 135, 11.
2. Bohlmann, F.; Zeisberg, R. Organic Magnetic Resonance1975, 7, 426.

Sample Availability: Available from the authors and from MDPI.
© 2001 MDPI. All rights reserved. Molecules website http://www.mdpi.org/molecules/

