## (4-hydroxybenzylidene)-4-ferrocenylaniline

## Ping Hu, Ke-Qing Zhao* and Hong-Bo Xu

Department of Chemistry, Sichuan Normal University, Chengdu, 610066, China
Tel./Fax: 86-28-4764743. Email: zkq2@yahoo.com (Present e-mail: zhao@hrz2.hrz.tu-darmstadt.de)
Received: 28 May 2001 / Accepted: 14 December 2001 /Published: 20 December 2001
Keywords: liquid crystal, non-linear optical material, metallomesogen, ferrocene, 4-ferrocenylaniline, 4-hydroxybenzaldehyde, condensation reaction, (4-hydroxybenzylidene)-4-ferrocenylaniline, Schiff 's base

(4-Hydroxybenzylidene)-4-ferrocenylaniline has a free hydroxyl group and it can react with carboxylic acids to form esters and it is thus a key intermediate for the synthesis of mono-substituted ferrocenecontaining liquid crystal [1] with Schiff's base and ester group. It can be synthesized by the condensation reaction of 4-ferrocenylaniline with 4-hydroxybenzaldehyde.

A stirred mixture of 4-ferrocenylaniline [2] ( $8.31 \mathrm{~g}, 30 \mathrm{mmol}$ ) and 4-hydroxybenzaldehyde $(3.73 \mathrm{~g}$, 30 mmol ) in 50 ml ethanol is heated under reflux for 2 h . The mixture is cooled and the precipitated product is collected by filtration as a yellow powder $(10.5 \mathrm{~g}, 91 \%)$. The product is pure enough for analysis and for further use without further purification.
M.p: ca. $270^{\circ} \mathrm{C}$ (blackens and decomposes before melting).
$\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3465,3070,1645,1584,1530$.
${ }^{1}$ HNMR (DMSO- $\left.{ }_{6}, 300 \mathrm{~Hz}\right): 10.11(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 8.53(1 \mathrm{H}, \mathrm{S}, \mathrm{CH}=\mathrm{N}), 4.02\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.35-4.79(4 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 6.88-7.80\left(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}\right), 7.16-7.56\left(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{Fc}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$.

Elemental analysis for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FeNO}$, calculated: C, $71.88 ; \mathrm{H}, 4.95$; N, 3.65\%.
Found: C, 71.23; H, 4.84; N, 3.55\%.

## References

1. Espinet, P.; Esteruelas, M. A.; Oro, L. A.; Serrono, J. L.; Sola, E. Coor. Chem. Rev. 1992, 117, 215. 2. Hu, P.; Zhao, K.-Q.; Xu, H.B. Molecules 2001, 6, M250.

Sample Availability: Available from the authors and from MDPI.
© 2001 MDPI. All rights reserved. Molecules website http://www.mdpi.org/molecules/

