Next Article in Journal
1,3-Dipolar Cycloaddition Reactions of Substituted Benzyl Azides with Acetylenic Compounds
Previous Article in Journal
Mn (Br8TPPS) Supported on Amberlite IRA-400 as a Robust and Efficient Catalyst for Alkene Epoxidation and Alkane Hydroxylation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Chemistry of the Genus Plectranthus

Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589, P.O. Box 80203, Saudi Arabia
*
Author to whom correspondence should be addressed.
Molecules 2002, 7(2), 271-301; https://doi.org/10.3390/70200271
Submission received: 21 May 2001 / Revised: 11 September 2001 / Accepted: 15 February 2002 / Published: 28 February 2002

Abstract

:
This review presents the phytochemical constituents of the genus Plectranthus reported up to 1999. Only a tetrameric derivative of caffeic acid was isolated from P. japonicus, but a group of long-chain alkylphenols, of possible taxonomic significance in the genus, was also isolated. As a genus of the subfamily Nepetoideae, Plectranthus is free from iridoid glycosides and rich in essential oil (i.e. > 0.5% volatile oil on a dry weight basis). Diterpenoids are the more common secondary metabolites in Plectranthus. The majority of them are highly modified abietanoids. This seems to be similar to the pattern of diterpenoids observed for Salvia, but no clerodane diterpenoids were found in Plectranthus.

Introduction

Labiatae is a large family that occurs worldwide and has species that are adapted to almost all habitats and altitudes. The genus Plectranthus L' He'r. belongs to subfamily Nepetoideae of tribe Ocimeae [1]. It comprises about eighty species worldwide, as indicated in this review. Taxonomically, Coleus Lour. is the closest to Plectranthus [2]. Coleus species are now generally accepted as belonging to either Plectranthus or to Solenostemon Thonn. (eds.) [3], and some confusion can arise distinguishing between Plectranthus and Coleus species [4,5]. In Plectranthus, the upper lip of the flower is unusually four-lobed and the large shoe-shaped lower lip is formed from a single lobe, while in Labiatae the upper lip often consisting of two lobes and the lower consisting of three [6].
Many Plectranthus species are plants of economic and medicinal interest. Several species may be grown as ornamentals, such as P. tenuiflorus in Saudi Arabia. The tubers of an unidentified Plectranthus species are eaten in Swaziland [7]. Livingstone potato tubers, P. esculentus is cultivated in tropical Africa for its edible tubers [8,9]. P. floribundus is cultivated in Nigeria for its edible tubers, also relished in Natal [10,11]. In Polynesia, the seed-oil of P. amboinicus is applied to the ear for treatment of acute edematous otitis acuta [12]. The leaf extract of P. tenuiflorus is also used in Saudi Arabia to treat ear infections [13]. The leaves of P. asirensis are used as an antiseptic dressing for wounds in Saudi Arabia [13]. The leaves of P. caninus are chewed in Africa to relieve toothache [14]. In East Africa the leaves of P. elegans are used as a vermicide [14]. P. vettiverioides is prescribed in Indian ayurvedic medicine as a remedy for vomiting and nausea [15]. The East African medicinal plant P. barbatus is used as a remedy for stomachache and as a purgative. It is also resistant to insect attack, and an aphid antifeedant diterpene has been isolated from it [16].
The chemistry of Plectranthus is still not well known. This is the first review of chemical constituents of Plectranthus species. The main phytochemical constituents of the genus Plectranthus are diterpenoids, essential oils and phenolics.

Diterpenoids

About 140 diterpenoids were identified from the colored leaf-glands of Plectranthus species. The majority of them are highly modified abietanoids, in addition to some phyllocladanes (structures D140-D146), ent-kaurenes (structures D147-D154) and a seco-kaurene (structure D155). The abietanoids, in turn, could be classified, according to structure variation, into royleanones (structures D1-D37), spirocoleons (structures D38-D66), vinylogous quinones (also named extended quinines, structures D67-D76), quinone methides (structures D77-D93), acylhydroquinones (structures D94-D117), (4→3) abeo-acylhydroquinones (structures D118, D119), phenolic abietanoids (structures D120-D122), 1,4-phenanthraquinones (structures D123-D127), dimeric abietanoids (structures D128-D136) and seco-abietanoids (structures D137-D139). Distribution of these diterpenoids and other constituents in species of Plectranthus are shown in Table 1. The names of these diterpenoids are listed in Table 2.

Diterpenoids isolated from Plectranthus

Molecules 07 00271 i001
Molecules 07 00271 i002
Molecules 07 00271 i003
Molecules 07 00271 i004
Molecules 07 00271 i005
Molecules 07 00271 i006
Molecules 07 00271 i007
Molecules 07 00271 i008
Molecules 07 00271 i009
Molecules 07 00271 i010
Molecules 07 00271 i011
Molecules 07 00271 i012
Molecules 07 00271 i013

Essential oils

Plectranthus is one of the oil-rich genera belonging to the subfamily Nepetoideae [17]. Table 1 lists Plectranthus species that have been investigated for essential oils. The main constituents of essential oils of Plectranthus are mono- and sesquiterpenes. For example, constituents of essential oil of P. rugosus [18], as eluted from fused silica capillary column, are α-pinene, camphene, β-pinene, sabinene, 3‑carene, myrcene, α-phellandrene, α-terpinene, limonene, β-phellandrene, cis-β-ocimene, γ-terpinene, trans-β-ocimene, p-cymene, terpinolene, thujone, 1-nonen-3-ol, α-copane, β-bourbonene, β-cubebene, linalool, caryophyllene, terpinen-4-ol, humulene, γ-muurolene, germacrene D, piperitone epoxide, α‑muurolene, bicyclogermacrene, δ-cadinene, γ-cadinene, α-curcumene, caryophyllene oxide, T‑cadinol, torreyol and α-cadinol. On the same GC column (fused silica capillary), essential oil of P. amboinicus [19] was separated into α-pinene, camphene, 1-octen-3-ol, β-pinene, myrcene, α‑phellandrene, Δ-3-carene, α-terpinene, p-cymene, limonene, (Z)-β-ocimene, (E)-β-ocimene, α‑phelandrène, γ-terpinene, α-terpinolene, linalool, camphor, 1-terpinen-4-ol, α-terpineol, thymol, carvacrol, α-cubebene, β-cubebene, β-elemene, β-caryophyllene, α-bergamotene, (Z)- β-farnesene, α‑humulene, β-guaiene, (-)-α-selinene, β-bisabolene, δ-cadinene, caryophyllene oxide, δ-cadinol, α‑cadinol, farnesol, calamenol and (-)-4β-7β-aromadendrandiol. Also on fused silica capillary column, essential oil of P. fruticosus [20] gave α-thuyene, sabinene, γ-terpinene, β-bourbonene, linalool, terpinen-4-ol, sabinyl acetate, α-humulene, aromadendrene, α-cubebene, β-bisabolene, γ-cadinene, α‑elemene, trans-farnesol and trans-copaene.

Long-chain alkylphenols

A group of long-chain alkylphenols, of possible taxonomic significance in the genus, has been isolated [28,29]. Long-chain alkylphenols L1-L8, L10-L12 were isolated from P. albidus and showed a significant in vitro antioxidant activity [28]. Antioxidant activity guided fractionation of extracts of P. sylvestris [29] and HPLC separation yielded the oxygenated long-chain alkylcatechols L9, L13-L18.

Long-chain alkylphenols

Molecules 07 00271 i014
Molecules 07 00271 i015

Miscellaneous constituents

Only one aristolane sesquiterpene, namely 1(10)-aristolen-13-al (M1), was isolated from P. hereroensis [30]. Five triterpenoids, named plectranthoic acid (M2), acetylplectranthoic acid (M3), plectranthadiol (M4), plectranthoic acid A (M5) and plectranthoic acid B (M6), in addition to β‑sitosterol were isolated from P. rugosus [31,32]. From the same species Misra et al. [85] isolated the triterpenoids oleanolic acid (M7), ursolic acid (M8) and betulin (M9), in addition to β-sitosterol and hexacosanol.
Flavonoids seem to be rare in Plectranthus. Only two flavonoids were identified, 4',7-dimethoxy-5,6-dihydroxyflavone (M10) from P. ambiguus [33] and chrysosplenetin (M11) from P. marruboides [34]. From P. mollis (= P. incanus), Mahmoud et al. reported the isolation of vernolic and cyclopropenoid fatty acids [35]. From P. japonicus (= Rabdosia japonica), a tetrameric derivative of caffeic acid was isolated [36].

Miscellaneous constituents

Molecules 07 00271 i016
Molecules 07 00271 i017
Molecules 07 00271 i018

Conclusions

Although the genus Plectranthus comprises many plants of medicinal and economic interest [80], its chemistry remains poorly known. Caffeic acid and its derivatives are of widespread occurrence in the Labiatae family and of particular attention as chemotaxonomic markers. Chlorogenic acid appears to be of almost universal occurrence within this family, whereas rosmarinic acid is restricted to the subfamily Nepetoideae [81]. Only a tetrameric derivative of caffeic acid was isolated from P. japonicus [36]. But a group of long-chain alkylphenols, of possible taxonomic significance in the genus, was isolated [28,29]. Generally, the subfamily Lamioideae is rich in iridoid glycosides, whereas they are absent from the Nepetoideae [82]. No iridoid glycosides were isolated from Plectranthus.
Generally, Plectranthus species are essential-oil-rich (i.e. > 0.5% volatile oil on a dry weight basis), in agreement with the general situation that the Nepetoideae are oil-rich, whilst the Lamioideae are oil-poor [83].
Diterpenoids are the more common secondary metabolites in Plectranthus. The majority of them are highly modified abietanoids, in addition to some phyllocladanes and ent-kaurenes. It seems to be similar to the pattern of diterpenoids of Salvia [84], but no clerodane diterpenoids were found in Plectranthus.
Table 1. Alphabetical list of Plectranthus species and compounds isolated from them.
Table 1. Alphabetical list of Plectranthus species and compounds isolated from them.
Plectranthus speciesIsolated chemical constituentsReferences
Abyssinian P. sp.D1, D5, D9, D10, D12-D14, D21, D3037
P. albidusL1-L8, L10-L1228
P. aliciae───62
P. alloplectus───63
P. ambiguusD141-D146, flavonoid M1033
P. amboinicusEssential oil19
P. argentatusD4, D5, D8, D21, D25, D101, D102, D11238
P. asirensis───13
P. australis───64
P. barbatusD29, D65, D75, D76, D115, D11739
D6516
P. burorum───65
P. caninusD108, D10940
D59-D6486
P. ciliatus───61
P. coestaD14841
D14742
P. coetsa───66
P. coetsoidesD147, D149-D15443
P. coleoidesEssential oil25
P. cyrpiculoides───67
P. defoliatusEssential oil26
P. eckloniiD86, M12-M1568
P. edulisD17, D18, D21, D22, D23, D24, D38-D48, D50, D55, D56, D66, D67, D69, D70, D94-D100, D106, D107, D118, D119, D137, D13844
D11845
P. elegansD93, D12046
P. esculentus───69
P. fasciculatos───70
P. floribundus───11
P. fruticosusEssential oil20
P. gandicalyx───65
P. garckeanus───65
P. geradianus───71
P. glandulosusEssential oil23
P. glaucocalyxAn antimicrobial diterpenoid47
P. grandidentatusD68, D101, D102, D128-D13448
D5, D1149
P. gratus───63
P. hadiensis───67
P. hereroensisD9, D35, D3650
D3751
D9, D1652
Sesquiterpene M130
P. hilliardiae───61
P. incanus (= P. mollis)Essential oil27, 79
Fatty acids35
P. inflexus───72
P. japonicusD15553
Caffeic acid derivative36
P. japonicus var. glaucocalyx───77
P. kapatensis───65
P. lanuginosusD17, D30-D34, D45, D47, D52-D54, D57, D58, D67, D71, D74, D88-D90, D100, D103, D110, D11154
P. lucidus───62
P. madagascariensisEssential oil24
P. malvinus───62
P. marrubioidesFlavonoid M1134
P. melissoides───79
P. mollis (= P. incanus)───79
P. mollis───79
P. myrianthusD12848
D2, D4, D96, D98, D10187
P. neochilus───73
P. nilgherricusD82, D83, D139, D14088
P. oribiensis───61
P. ornatus───74
P. parviflorusD77, D82-D8655
P. pentheri───62
P. porpeodon───65
P. pseudobarbatus───65
P. puberulentus───65
P. purpuratusD72, D73, D77, D79, D91, D92, D121, D122, D14056
P. purpuratus subsp. montanus───62
P. purpuratus subsp. tongaensis───62
P. reflexus───61
P. rugosusEssential oil18
Triterpenoids M2-M6 & β-sitosterol31, 32
Triterpenoids M7-M9, β-sitosterol & hexacosanol85
P. saccatus subsp. pondoensis───62
P. saccatus var. longitubus───61
P. sanguineusD3, D4-D7, D9, D15, D21, D25, D26, D68, D99, D102, D128-D131, D13957
P. schimperi───65
P. sp. from the borders of Lake Kiwu, RwandaD19-D21, D27-D29, D49, D51, D75, D76, D104, D105, D113-D116, D123-D127D123-D12658
59
P. spectabilis───63
P. stenophyllus───75
P. stocksii───79
P. strigosusD77, D78, D82-D8760
P. sylvestrisL9, L13-L1829
P. tenuiflorusEssential oil21,22
P. vestitusEssential oil76
P. vettiveroides───78
P. zatarhendi───67
P. zatarhendi var. tomentosus───67
P. zuluensis───61
Table 2. Names of diterpenoids encountered in Plectranthus species.
Table 2. Names of diterpenoids encountered in Plectranthus species.
Diterp.Name of diterpenoidDiterp.Name of diterpenoid
D1RoyleanoneD79(11-Hydroxy-19-isovaleroyloxy-5,7,9(11),13-abietatetraen-12-one)
D26β, 7α-Dihydroxy-royleanoneD80Fuerstione
D37-O-FormylhorminoneD813β-Acetoxyfuerstione
D46β-Hydroxy-7α-formyloxyroyleanoneD82Parviflorone C
D56β-Hydroxy-7α-acetoxyroyleanoneD83Parviflorone E
D66β-HydroxyroyleanoneD84Parviflorone B
D75,6-Dihydrocoleone UD85Parviflorone D
D86β-Formyloxy-7α-hydroxyroyleanoneD86Parviflorone F
D9HorminoneD87Parviflorone G
D107α-AcetoxyroyleanoneD88Lanugone M
D116β-Hydroxy-7α-acyloxyroyleanoneD89Lanugone L
D12Taxoquinone (= 7β-Hydroxyroyleanone)D90Lanugone N
D137-OxoroyleanoneD916α,11-Dihydroxy-19-isovaleroyloxy-7, 9(11), 13-abietatrien-12-one
D148α,9α-Epoxy-7-oxoroyleanoneD926α,11-Dihydroxy-19-senecioyloxy-7,9(11), 13-abietatrien-12-one
D156β,7α-Dihydroxy(allyl)royleanoneD9311-Hydroxy-12-oxo-7,9(11),13-abietatriene
D167α,12-Dihydroxy-17(15°16)-abeo-abieta-8,12,16-trien-11,14-dioneD94(2'ξ,3aR,10bR)-8-(2'-Acetoxy-1'-methyl-ethyl)-3,3a-dihydro-7,9,10-trihydroxy-3a, 10b-dimethyl-1H-phenanthro[10,1bc]-furan-4(2H),6(10bH)-dione
D17Lanugone AD9516-O-Acetylcoleon C
D18(4bS,7R,8aR)-7-Formyloxy-4b,5,6,7,8,8a-hexahydro-3-hydroxy-4b,8,8-trimethyl-2-(2-propenyl)phenanthren-1,4-dioneD96Coleon U
D19Plectranthone FD97Coleon C
D20Plectranthone GD98
D216β,7α-DihydroxyroyleanoneD9916-O-Acetylcoleon D
D22(4bS,7R,8aR,9S,10S)-7-Formyloxy-4b,5,6, 7,8,8a,9,10-octahydro-3,9,10-trihydroxy-4b, 8,8-trimethyl-2-(2-propenyl)-phenanthren-1,4-dioneD100(15S)-Coleon D
D23(4bS,7R,8aS,9S,10S)-4b,5,6,7,8,8a,9,10-Octahydro-3,9,10-trihydroxy-4b,7-dimethyl-8-methyliden-2-(2-propenyl)-phenanthren-1,4-dioneD101Coleon V
D24(2'ξ,4bS,7R,8aS,9S,10S)-4b,5,6,7,8,8a,9, 10-Octahydro-3,9,10-trihydroxy-2-(2'-hydroxypropyl)-4b,7-dimethyl-8-meth-ylidenphenanthren-1,4-dioneD102Coleon U
D25Coleon-U-quinoneD103(15S)-Coleon C
D268α,9α-Epoxy-8,9-dihydrocoleon-U-quinoneD104(15S)-2α-Acetoxycoleon C
D27Plectranthone HD105(15S)-Coleon H
D28Plectranthone ID106(2'ξ,4aS,10aS)-1,2,3,4,4a,10a-Hexahydro-5,6,8-trihydroxy-7-(2'-hydroxypropyl)-1,1,4a-trimethylphenanthren-9,10-dione
D29Plectranthone JD107(2'ξ,4aR)-2,3,4,4a-Tetrahydro-5,6,8,10-tetrahydroxy-7-(2'-hydroxypropyl)-1,1,4a-trimethylphenanthren-9(1H)-one
D306,7-DidehydroroyleanoneD108Coleon T
D31Lanugone BD109Coleon S
D32Lanugone CD110Lanugone R
D33Lanugone DD111Lanugone S
D34Lanugone ED1125,6-Dihydrocoleon U
D353β-Acetoxy-6β,7α,12-trihydroxy-17-(15°16);18(4°3)-bisabeo-abieta-4(19), 8.12,16-tetraen-11,14-dioneD113(15S)-2α-Acetoxycoleon D
D3616-AcetoxyhorminoneD114(15S)-Coleon I
D3716-Acetoxy-7α,12-dihydroxy-8,12-abieta-dien-11,14-dioneD115Plectrinone B
D38(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3',10'-Diacetoxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-9'-hydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD116(16S)-Plectrinone A
D39(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3'- Acetoxy,10'-formyloxy-4'b,5',6',7',8',8'a,9',10'-octahydro-9'-hydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD117(16R)-Plectrinone A
D40(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-10'-Acetoxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD118Edulone A
D41(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3'- Acetoxy-4'b,5',6',7',8',8'a,9',10'-octahydro-9',10'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD119(1'S,10bS)-7,9,10-Trihydroxy-8-(2'-hydroxy-1'-methylethyl)-3,10b-dimethyl-1H-benzo[g]cyclopenta[de][1]benzopyran-4(2H),6(10bH)-dione
D42(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-10'-Formyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD1207α,11-Dihydroxy-12-methoxy-8,11,13-abietatriene
D43(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-4'b,5', 6',7',8',8'a,9',10'-Octahydro-3',9',10'-tri-hydroxy-2,4'b,7'-trimethyl-8'-methyliden-spiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD12111,12-Dihydroxy-19-isovaleroyloxy-8,11,13-abietatrien-7-one
D44(2R,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-9-Acetoxy-7'-formyloxy-4'b,5',6',7',8',8'a, 9',10'-octahydro-3',10'-dihydroxy-2,4'b, 8',8'-tetramethylspiro[cyclopropan-1,2' (1'H)-phenanthren]-1',4'(3'H)-dioneD12211,12-Dihydroxy-19-senecioyloxy-8,11,13-abietatrien-7-one
D45Lanugon GD123Plectranthone B
D46(2R,2'S,3'R,4'bS,7'R,8'aR,9'S)-7'-Formyl-oxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,8',8'-tetramethylspiro-[cyclopropan-1,2'(1'H)-phenanthren]-1',4' (3'H)-dioneD124Plectranthone A
D47Lanugone FD125Plectranthone C
D48(2R,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7',10'-Bisformyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,8',8'-tetra-methylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD126Plectranthone D
D49Plectranthone KD127Plectranthone E
D50(2R,2'S,3'R,4'bS,7'ξ,8'aR,9'S,10'S)-7',10'-Diacetoxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD128Grandidone A
D51Plectranthone LD1297-Epigrandidone A
D52Lanugone HD130Grandidone B
D53Lanugone ID1317-Epigrandidone B
D54Lanugone JD132Grandidone D
D55(2S,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7-Formyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-diacetoxy-10'-hydroxy-2,4'b,8', 8'-tetramethylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD1337-Epigrandidone D
D56(2S,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7',10'-Bisformyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,8',8'-tetra-methylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dioneD134Grandidone C
D57Lanugone KD135Nilgherron A
D58Lanugone K'D136Nilgherron B
D59Coleon RD137(3R)-6,9-Dihydroxy-3,4-dimethyl-7-(1-methylethyl)-3-(2-propenyl)naphtho[2,3-b]- furan-2-(3H),5,8-trione
D60Coleon MD138(2'ξ,3R)-7-(2'-Acetoxy-1'-methylethyl)-6,9-dihydroxy-3,4-dimethyl-3-(2''-propenyl)-naphtho[2,3-b]furan-2-(3H),5,8-trione
D617,12-Diacetylcoleon JD139Sanguinon A
D62Coleon ND140(16R)-17,19-Diacetoxy-16-hydroxy-13β-kauran-3-one
D63Coleon QD141(16R)-2α-Senecioyloxy-3α-acetoxyphyllocladan-16,17-diol
D64Coleon PD142(16R)-2α-Senecioyloxy-3α,17-diacetoxy-16-hydroxyphyllocladane
D65PlectrinD143(16R)-2α-Isovaleroyloxy-3α-acetoxyphyllocladan-16,17-diol
D66Coleon ZD144(16R)-2α-Isovaleroyloxy-3α,17-diacetoxy-16-hydroxyphyllocladane
D67(15S)-Lanugone OD145(16R)-3α-Acetoxyphyllocladan-16,17-diol
D6814-HydroxytaxodioneD146(16R)-2α-Senecioyloxy-16,17-dihydroxyphyllocladan-3-one
D69(4bS,8aS)-2-(2-Acetoxypropyl)-4b,5,6,7,8, 8a-hexahydro-1,4-dihydroxy-4b,8,8-tri-methylphenanthren-3,9-dioneD147Plecostonol (= coetsidin A)
D70(2'ξ,4bS,8aS)-4b,5,6,7,8,8a-Hexahydro-1,4-dihydroxy-2-(2'-hydroxypropyl)-4b,8,8-trimethylphenanthren-3,9-dioneD148Coestinol
D71Lanugone PD149Coetsidin B
D7219-IsovaleroyloxytaxodioneD150Coetsidin C
D7319-SenecioyloxytaxodioneD151Coetsidin D
D74Lanugone QD152Coetsidin E
D75Coleon FD153Coetsidin F
D76(16S)-Coleon ED154Coetsidin G
D77Parviflorone A (= 11-hydroxy-19-senecioyl-oxy-5,7,9(11),13-abietatetraen-12-one)D155Rabdosin B
D78Parviflorone H

References

  1. Cantino, P.D.; Harley, R.M.; Wagstaff, S.J. Genera of Labiatae: Status and Classification. In Advances in Labiate Science; Harley, R.M., Reynolds, T., Eds.; Royal Botanic Gardens: Kew, 1992; p. 511. [Google Scholar]
  2. Codd, L.F. Munich. Bot. Staatssamml. Mitt 1971, 10, 245.
  3. Rudall, P.J.; Clark, L. The Megagametophyte in Labiatae. In Advances in Labiate Science; Harley, R.M., Reynolds, T., Eds.; Royal Botanic Gardens: Kew, 1992; p. 65. [Google Scholar]
  4. Morton, J.K. Novon 1998, 8, 265.
  5. Van Jaarsveld, E.J.; Edwards, T.J. Bothalia 1997, 27, 1.
  6. Collenette, S. Flowers of Saudi Arabia; Scorpion Publishing Ltd.: London, 1985; p. 266. [Google Scholar]
  7. A-Ogle, B. Mitt. Inst. Allg. Bot. Hamburg 1990, 23b, 895.
  8. Purseglove, J.W. Tropical Crops. Dicotyledons; Longman Scientific & Technical: Burnt Mill, 1987; p. 719. [Google Scholar]
  9. Temple, V.J.; Ojobe, T.O.; Onobun, C.E. J. Sci. Food Agr. 1991, 56, 215.
  10. Holland, J.H. The Useful Plants of Nigeria. Bull. Misc. Inform. Kew Addit 1915, Ser.. 9, 527.
  11. Perrot, E. Matières Premières Usuelles du Règne Vègètal; Masson: Paris, 1944; Tome Second; pp. 1089–2343. [Google Scholar]
  12. Zepernick, B. Arzneipflanzen der Polynesier; Dietrich Reimer, Berlin; 1972; p. 307. [Google Scholar]
  13. Abulfatih, H.A. Medicinal Plants in Southwestern Saudi Arabia; Al Thaghr Press: Khamis, 1987; p. 162. [Google Scholar]
  14. Kokwaro, J.O. Medicinal Plants of East Africa; East African Literature Bureau: Kampala, 1976; p. 384. [Google Scholar]
  15. Dash, V.B.; Kashyap, V.L. Materia Medica of Ayurveda based on Ayurveda Saukhyan of Todarananda; Concept Publishing Company: New Delhi, 1987; p. 711. [Google Scholar]
  16. Kubo, I.; Matsumoto, T.; Tori, M.; Asakawa, Y. Chem. Lett. 1984, 1513.
  17. Cantino, P.; Sanders, R. Syst. Bot 1986, 11, 163.
  18. Weyerstahl, P.; Kaul, V.K.; Meier, N.; Weirauch, M.; Marschall, H. Planta Med. 1983, 48, 99.
  19. Vera, R.; Mondon, J.M.; Pieribattesti, J.C. Planta Med. 1993, 59, 182.
  20. Fournier, G.; Paris, M.; Dumitresco, S.M.; Pages, N.; Boudene, C. Planta Med. 1986, 486.
  21. Smith, R.M.; Bahaffi, S.O.; Albar, H.A. J. Essent. Oil Res. 1996, 8, 447. [CrossRef]
  22. Mwangi, J.W.; Lwande, W.; Hassanali, A. Flav. Fragr. 1993, 8, 51. [CrossRef]
  23. Zollo, P.H.A.; Biyiti, L.; Tchoumbougnang, F.; Menut, C.; Lamaty, G.; Bouchet, P. Flav. Fragr. 1998, 13, 107.
  24. Ascensao, L.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Schripsem, J.; Deans, S.G.; Scheffer, J.C.J. International J. Plant Sci. 1998, 159, 31. [CrossRef]
  25. Buchbauer, G.; Jirovetz, L.; Wasicky, M.; Nikiforov, A. J. Essent. Oil Res. 1993, 5, 311. [CrossRef]
  26. Hari, L.; Bukuru, J.; Pooter, H.L.; Demyttenaere, J.R.; Fierens, H. J. Essent. Oil Res. 1996, 8, 87. [CrossRef]
  27. Shah, G.C.; Bhandari, R.; Mathela, C.S. J. Essent. Oil Res. 1992, 4, 57. [CrossRef]
  28. Burgi, C.; Rüedi, P. Helv. Chim. Acta 1993, 76, 1890. [CrossRef]
  29. Juch, M.; Rüedi, P. Helv. Chim. Acta 1997, 80, 436. [CrossRef]
  30. Rodriguez, B.; Delatorre, M.C.; Simoes, M.F.; Bbatista, O.; Nascimento, J.; Duarte, A.; Mayer, R. Phytochemistry 1995, 38, 905.
  31. Razdan, T.K.; Kachroo, V.; Harkar, S.; Koul, G.L. Tetrahedron, 1982; 38, 991.
  32. Razdan, T.K.; Kachroo, V.; Harkar, S.; Koul, G.L.; Dhar, K.L. Phytochemistry 1982, 21, 409.
  33. Liu, G.; Rüedi, P. Phytochemistry 1996, 41, 1563.
  34. Hensch, M.; Eugster, C.H. Helv. Chim. Acta 1972, 55, 1610. [CrossRef]
  35. Mahmood, C.; Daulatabad, J.D.; Mirajkar, A.M. J. Chem. Techn. Biotechn. 1989, 45, 143.
  36. Agata, I.; Hatano, T.; Nishibe, S.; Okuda, T. Phytochemistry 1989, 28, 2447.
  37. Rüedi, P. Helv. Chim. Acta 1984, 67, 1116. [CrossRef]
  38. Adler, A.C.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1984, 67, 1523.
  39. Rüedi, P. Helv. Chim. Acta 1986, 69, 972. [CrossRef]
  40. Arihara, S.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1977, 60, 1443. [CrossRef]
  41. Phadnis, A.P.; Patwardhan, S.A.; Gupta, A.S. Indian J. Chem. B 1987, 26, 15.
  42. Phadnis, A.P.; Patwardhan, S.A.; Gupta, A.S.; Dhaneshwar, N.N.; Tavale, S.S.; Gururow, T.N. J. Chem. Soc., Perkin Trans. I 1986, 655.
  43. Huang, H.; Xu, Y.; Sun, H. Phytochemistry, 1989; 28, 2753.
  44. Künzle, J.M.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1987, 70, 1911. [CrossRef]
  45. Buchbauer, G.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1978, 61, 1969. [CrossRef]
  46. Dellar, J.E.; Cole, M.D.; Waterman, P.G. Phytochemistry 1996, 41, 735.
  47. Vichkanova, S.A.; Rubinchik, M.A. Farmacol. Toksikol. 1966, 29, 605, CA. 1967, 66, 36350r.
  48. Uchida, M.; Miyase, T.; Yoshizaki, F.; Bieri, J.H.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1981, 64, 2227. [CrossRef]
  49. Teixeira, A.P.; Batista, O.; Simoes, M.F.; Nascimento, J.; Duarte, A.; dela Torre, M.C.; Rodriguez, B. Phytochemistry 1997, 44, 325.
  50. Batista, O.; Simoes, M.F.; Nascimento, J.; Riberio, S.; Duarte, A.; Rodriguez, B.; dela Torre, M.C. Phytochemistry 1996, 41, 571.
  51. Batista, O.; Simoes, M.F.; Duarte, A.; Valdeira, M.L.; dela Torre, M.C.; Rodriguez, B. Phytochemistry, 1995; 38, 167.
  52. Batista, O.; Duarte, A.; Nascimento, J.; Simoes, M.F.; dela Torre, M.C.; Rodriguez, B. J. Nat. Prod. 1994, 57, 858. [CrossRef]
  53. Wang, M.T.; Liu, C.J.; Li, J.C. Phytochemistry, 1990; 29, 664.
  54. Schmidt, J.M.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1982, 65, 2136. [CrossRef]
  55. Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1978, 61, 709. [CrossRef]
  56. Katti, S.B.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1982, 65, 2189.
  57. Matloubi-Moghadam, F.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1987, 70, 975. [CrossRef]
  58. Adler, A.C.; Rüedi, P.; Prewo, R.; Bieri, J.H.; Eugster, C.H. Helv. Chim. Acta 1986, 69, 1395.
  59. Adler, A.C.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1984, 67, 1003.
  60. Adler, A.C.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1984, 67, 1531.
  61. Potgieter, C.J.; Edwards, T.J.; Miller, R.M.; VanStaden, J. Plant Syst. Evol. 1999, 218, 99.
  62. VanJaarsveld, E.J.; Edwards, T.J. Bothalia 1997, 27, 1.
  63. Forster, P.I. Haseltonia 1996, 47.
  64. Boudarga, K.; Dexheimer, J. Agronomie, (France). 1990; 10, 417.
  65. Morton, J.K. Novon, 1998; 8, 265.
  66. Sharma, A.D.; Munjal, R.L. Indian J. Mycol. Plant Pathol. 1979, 8, 230.
  67. Herppich, W.B.; Herppich, M. Flora Morphol. Geobot. Oekophysiol. Jena 1996, 191, 401.
  68. Uchida, M.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1980, 63, 225. [CrossRef]
  69. Kyesmu, P.M.; Akueshi, C.O. Nigerian J. Botany 1989, 2, 1.
  70. Forster, P.I. Haseltonia, 1998; 14.
  71. Singh, A.K. Balwant. Vidyapeeth. J. Agric. Sci. Res. 1977, 16, 77.
  72. Tanaka, H. J. Jap. Bot. 1972, 47, 250.
  73. Stirton, C.H. Bothalia, 1977; 12, 229.
  74. Ascensao, L.; Mota, L.; Castro, M.D. Annals Bot. 1999, 84, 437.
  75. Brummitt, R.K.; Seyani, J.H. Kew Bull. London 1987, 42, 687.
  76. Thoppil, J.E. Acta Pharm. 1997, 47, 213.
  77. Zhang, Y.; Sha, D.; Sha, M.; Yuan, C. Chung. Kuo. Chung. Yao. Tsa. Chih. 1991, 16, 679.
  78. Singh, N.P.; Sharma, B.D. J. Bombay Nat. Hist. Soc. Madras 1982, 79, 712.
  79. Shah, V.; Bhat, S.V.; Bajwa, B.S.; Dornauer, H.; de Souza, N.J. Planta Med. 1980, 39, 183.
  80. Rivera Nunez, D.; Obon de Castro, C. The ethnobotany of old world Labiatae. In Advances in Labiate Sciences; Harley, R.M., Reynolds, T., Eds.; Royal Botanic Gardens: Kew, 1992; p. 455. [Google Scholar]
  81. von Litvienko, V.I.; Popova, T.P.; Simonjan, A.V.; Zoz, I.G.; Sokolov, V.S. Planta Med, 1975; 27, 372.
  82. Kooiman, P. Acta Bot. Neerl. 1972, 21, 417.
  83. Cantino, P.D.; Sanders, R.W. Syst. Bot. 1986, 11, 163.
  84. Rodriguez-Hahn, L.; Esquivel, B.; Cardenas, J.; Ramamoorthy, T.P. The distribution of diterpenoids in Salvia. In Advances in Labiate Sciences; Harley, R.M., Reynolds, T., Eds.; Royal Botanic Gardens: Kew, 1992; p. 335. [Google Scholar]
  85. Misra, P.S.; Misra, G.; Nigam, S.K.; Mitra, C.R. Lloydia, 1971; 34, 265.
  86. Arihara, S.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1983, 66, 429.
  87. Miyase, T.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1977, 60, 2770. [CrossRef]
  88. Miyase, T.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta 1977, 60, 2789. [CrossRef]
  • Sample availability: Not applicable

Share and Cite

MDPI and ACS Style

Abdel-Mogib, M.; Albar, H.A.; Batterjee, S.M. Chemistry of the Genus Plectranthus. Molecules 2002, 7, 271-301. https://doi.org/10.3390/70200271

AMA Style

Abdel-Mogib M, Albar HA, Batterjee SM. Chemistry of the Genus Plectranthus. Molecules. 2002; 7(2):271-301. https://doi.org/10.3390/70200271

Chicago/Turabian Style

Abdel-Mogib, M., H. A. Albar, and S. M. Batterjee. 2002. "Chemistry of the Genus Plectranthus" Molecules 7, no. 2: 271-301. https://doi.org/10.3390/70200271

Article Metrics

Back to TopTop