Next Article in Journal
Microwave Assisted Regioselective Bromomethoxylation of Alkenes Using Polymer Supported Bromine Resins
Previous Article in Journal
Synthesis of New Lipophilic Phosphonate and Phosphonamidate Analogues of N-Acetylmuramyl-L-alanyl-D-isoglutamine Related to LK 423
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Synthesis of Platinum Complexes from N-Benzyl-1,3-Propanediamine Derivatives, Potential Antineoplastic Agents

by
Mauro Vieira De Almeida
1,*,
Ana Paula Soares Fontes
1,
Richard Nilton Berg
1,
Eloi Teixeira César
2,3,
Emanoel De Castro Antunes Felício
1 and
José Dias De Souza Filho
3
1
Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora-MG, Brazil
2
Colégio de Aplicação João XXIII, Juiz de Fora-MG, Brazil
3
Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
*
Author to whom correspondence should be addressed.
Molecules 2002, 7(4), 405-411; https://doi.org/10.3390/70400405
Submission received: 17 August 2001 / Revised: 8 April 2002 / Accepted: 30 April 2002 / Published: 30 April 2002

Abstract

:
This work describes the synthesis of seven new platinum complexes having N-benzyl 1,3-propanediamine derivatives as ligands. They were prepared by the reaction of K2[PtCl4] with the appropriate ligand in water. These complexes are analogs of cisplatin, and are potential antineoplastic agents.

Introduction

The discovery of the anticancer activity of the coordination compound cis-diaminedichloroplatinum(II) (cisplatin) [1], and its successful clinical use, represents important progress for inorganic medicinal chemistry. Cisplatin has been approved for commercial use in the United States since 1979 [2], being used by itself or in combination with other chemotherapeutic agents to treat several types of cancer, such as testicular, ovarian, head and neck [3,4,5]. For example, testicular carcinoma, which once had a high mortality rate, can now be cured in 85% of the cases [6].
However, the use of the cisplatin in the clinic is limited by its narrow activity spectrum, cellular resistance, and some serious side effects [7,8,9], such as nephrotoxicity, ototoxicity and neurotoxicity. Since then, the search for new platinum anticancer drugs has continued, and in 1987 the compound cis-diamine(1,1-cyclobutanedicarboxylate)platinum(II), carboplatin [10,11], was approved for commercial purposes. Carboplatin has been shown to be less nephrotoxic and emetogenic than cisplatin, however, it is also active against a limited number of tumors, and it is not effective in cell resistant lines.
Two others compounds have been approved for use in some countries. Oxaliplatin, trans-L-(diaminocyclohexane)oxalatoplatinum(II) has been approved for the treatment of colorectal cancer in France, and nedaplatin, cis-diamine-glycolateplatinum(II) has received approval for use in Japan. However, they have yet to demonstrate significant advantages over cisplatin or carboplatin [12]. Thus, it is very important to develop new platinum complexes that could effectively act in a larger number of tumors. At the same time those complexes should present less severe side effects and they should be active in resistant cells lines.
In this context, complexes having N-substituted ethylenediamine ligands have shown activity against several types of tumors [13,14]. Considering the activity displayed by these complexes and since aromatic compounds have shown the possibility of intercalation between DNA bases [15], we have recently reported the synthesis of a series of platinum complexes with ethylenediamine derivatives [16]. In this paper we report the preparation and characterization of analogous complexes having N-benzyl 1,3-propanediamine derivatives as ligands. The synthesis and characterization of these ligands have been recently reported elsewhere [17].

Results and Discussion

We have prepared the required ligands in satisfactory yields by treating 1,3-propanediamine with the corresponding benzyl halide in ethanol at room temperature for 48 h (Scheme 1). In the preparation of these ligands, we have observed the formation of N,N’dibenzylated compounds as well. Thus, during the purification process of ligand a, we have also isolated the corresponding N,N’-dibenzyl 1,3- propanediamine, compound f.
The dichloroplatinum(II) complexes 1-7 were obtained by reaction of the corresponding ligands with potassium tetrachloroplatinate(II) in water at room temperature for 48 hours, and were isolated by simple filtration. For these compounds, one may observe in the IR spectra absorptions corresponding to νPt-N e νPt-Cl at 550 and 325 cm-1, respectively, in addition to the absorptions observed for the ligand. In the 1H-NMR spectra one observes that there is a downfield shift for the signals corresponding to NH and NH2 relative to the free ligands. The 195Pt-NMR spectra for all the complexes show only one signal in the vicinity of δ-2240 for all the complexes. The chemical shift values are expected based on data for similar compounds described in the literature. For instance, the 195Pt-NMR spectrum of [Pt(DACH)Cl2] shows a signal at δ -2287 (DACH=1,2-diaminocyclohexane) [18]. The results of elemental analysis for all complexes prepared are in agreement with the calculated values.
Scheme 1.
Scheme 1.
Molecules 07 00405 g001

Experimental

General

IR spectra were obtained on a Bomem FT IR MB-102 spectrometer in KBr pellets. 1H-NMR (200 and 400 MHz), 13C-NMR (50 and 100 MHz) and 195Pt-NMR (86 MHz) spectra were recorded on Bruker Advance DRX 200 and DRX 400 spectrometers at the Federal University of Minas Gerais, Brazil. Elemental analyses were done at the State University of São Paulo, Brazil. All chemicals were reagent grade and were used without further purification.
Synthesis of ligands: N-Benzylpropane-1,3-diamine (a), N-(2-chlorobenzyl)propane-1,3-diamine (b), N-(4-chlorobenzyl)propane-1,3-diamine (c), N-(4-nitrobenzyl)propane-1,3-diamine (d), N-(4-methoxy-benzyl)propane-1,3-diamine (e), N,N’-dibenzylpropane-1,3-diamine (f) and N-(3-nitrobenzyl)-propane-1,3-diamine (g).
To 1,3-propanediamine (3.34 mL; 40 mmols) in ethanol (20 mL), the corresponding benzyl halide (20 mmol) was slowly added during 8 h. The reaction mixture was stirred for 48 h at room temperature, after which time, the complete consumption of the starting material was evidenced by TLC (eluent: 8:2 hexane/ethyl acetate). A saturated sodium hydroxide (30 mmol) solution in ethanol was then slowly added. The solvent was evaporated under reduced pressure, and the residue purified on silica gel 60 G (0.2-0.5 mm), using 9:1 dichloromethane/methanol as eluent. Yields: (a) 2.65 g (81%); (b) 2.89 g (73%); (c) 2.81 g (71%); (d) 3.26 g (78%); (e) 2.67 g (69%); (g) 4.9 g (69 %) for compound g. The N,N’-dibenzylated compound (f) was also isolated in 10% yield in the preparation of compound a.
Compound a: IR νmax. KBr (cm-1): 3238, 3025, 2982, 2907, 2763, 1599, 1438, 1176, 975, 745; 1H‑NMR (200 MHz; TFA-d1) δ: 2.12 (m, 2H, CH2); 3.09 (m, 4H, CH2N); 4.06 (s, 2H, CH2Ph); 7.15 (m, 5H, Ph); 13C-NMR (50 MHz, TFA-d1) δ: 26.17; 40.25; 47.06; 55.60 (CH2);108.50; 114.14; 120.77; 125.41 (Ph); MS (m/z, %): 165 (100.00); 148 (1.73); 134 (1.15); 120 (1.00).
Compound b: IR νmax. KBr (cm-1): 3285, 3063, 2931, 1573, 1470, 1117, 1050, 751; 1H-NMR (200 MHz; pyridine-d5) δ: 1,88 (m, 2H, CH2); 2.77 (t, 2H, CH2NH2); 2.99 (t, 2H, CH2NH); 4,39 (s, 2H, CH2Ph); 7,16 (m, 2H, H4, H5); 7,28; 7,59 (2d, 2H, H3, H6, J3-4= 7,6 Hz, J6-5= 7,3 Hz); 13C-NMR (50 MHz; pyridine-d5) δ: 32.31; 40.31; 47.57; 51.24 (CH2); 127.64; 128.48; 129.60; 130.36; 133.71; 138.87 (Ph); MS (m/z, %): 199 (100.00); 182 (6.36); 125 (1.00).
Compound c: IR νmáx. KBr (cm-1): 3439, 3050, 2934, 2788, 1578, 1498, 1438, 1091, 1018, 805; 1H‑NMR (200 MHz; DMSO-d6) δ: 2.07 (m, 2H, CH2); 2.86 (m, 4H, CH2N); 4.07 (s, 2H, CH2Ph); 7.48; 7.61 (2d, 4H, Ph); 13C-NMR (50 MHz; DMSO-d6) δ: 23.91; 36.29; 43.87; 49.46 (CH2); 128.48; 131.89; 132.05; 133.37 (Ph); MS (m/z, %): 199 (100.00); 182 (12.71); 125 (76.88).
Compound d: IR νmax. KBr (cm-1): 3380, 3090, 2955, 1603, 1519, 1351, 1107, 850, 740; 1H-NMR (200 MHz; D2O) δ: 2.00 (m, 2H, CH2); 3.00 (m, 4H, CH2N); 4.21 (s, 2H, CH2Ph); 7.57; 8.19 (2d, 4H, Ph); 13C-NMR (50 MHz; D2O) δ: 24.20; 36.58; 44.58; 50.47 (CH2); 124.11; 130.59; 139.59; 147.86 (Ph); MS (m/z, %): 210 (86.12); 193 (52.60); 179 (10.40); 165 (17.34); 136(34.68).
Compound e: IR νmax. KBr (cm-1): 3244, 3007, 2934,1614, 1542, 1513, 1479, 1249, 1180, 1030, 811; 1H-NMR (200 MHz; D2O) δ: 1.45 (m, 2H, CH2); 2.39 (m, 2H, CH2NH2); 2.55 (m, 2H, CH2NH); 3.48 (s, 2H, CH2Ph); 3.59 (s, 3H, OCH3); 6.73; 7.06 (2d, 4H, Ph); 13C-NMR (50 MHz, D2O) δ: 28.74; 38.18; 45.07; 51.52 (CH2); 55.24 (OCH3); 113.96; 130.10; 130.61; 158.8 (Ph); MS (m/z, %): 195 (94.79); 178 (0.58); 164 (1.73); 150 (1.00); 136 (1.00); 121 (100.00).
Compound f: IR νmax. KBr (cm-1): 3159, 3037, 2981, 1590, 1444, 1280, 1213, 1073, 944, 913, 860, 775, 738, 690, 607; 1H-NMR (200 MHz; TFA d1) δ: 2.55 (m, 2H, CH2); 3.36 (m, 4 H, CH2NH); 4.30 (sl, 4 H, CH2Ph); 7.41 (s, 10 H, Ph); 7.81 (sl, 2H, NH); 13C-NMR (50 MHz, TFA d1) δ: 25.73; 47.34; 55.61 (CH2); 128.86; 129.78; 131.05; 133.11 (Ph); MS (m/z, %): 255 (100.00); 148 (1.00); 134 (1.00).
Compound g: IR νmax. KBr (cm-1): 3399, 3080, 2944, 1598, 1537, 1462, 1354, 1102, 939, 736; 1H‑NMR (200 MHz; DMSO d6) δ: 2.01 (m, 2H, CH2); 2.96 (t, 2H, CH2NH2); 3.12 (t, 2H, CH2NH); 4.24 (s, 2H, CH2Ph); 7.69 (m, 1H, H5); 8.06; 8.23 (2d, 2H, H4, H6); 8.48 (s, 1H, H2); 13C-NMR (50 MHz; DMSO d6) δ: 23.93; 36.33; 44.14; 49.33 (CH2); 123.74; 125.14; 130.21; 134.75; 137.13; 147.73 (Ph); MS (m/z, %): 210 (100.00); 193 (43.93); 179 (1.15); 165 (7.51); 136 (26.01).
Synthesis of complexes: (N-Benzylpropane-1,3-diamine)dichloroplatinum(II) (1), [N-(2-chlorobenzyl)-propane-1,3-diamine]dichloroplatinum(II) (2); [N-(4-chlorobenzyl)propane-1,3-diamine]dichloro-platinum(II) (3); [N-(4-nitrobenzyl)propane-1,3-diamine]dichloroplatinum(II) (4); [N-(4-methoxy-benzyl)propane-1,3-diamine]dichloroplatinum(II) (5); (N,N’-dibenzylpropane-1,3-diamine)dichloro-platinum (II) (6) and [N-(3-nitrobenzyl)propane-1,3-diamine]dichloroplatinum(II) (7):
To K2[PtCl4] (0.415 g; 1 mmol) in water (5 mL), the appropriate ligand (1 mmol) dissolved in water (5 mL) was slowly added. After stirring for 48 h at room temperature, the product was isolated by filtration and dried. Yields: 0.22 g (52 %) for compound 1; 0.31 g (66 %) for compound 2; 0.17 g (37 %) for compound 3; 0.14 g (67 %) for compound 4; 0.17 g (38 %) for compound 5; 0.17 g (34 %) for compound 6 and 0.25 g (53 %) for compound 7.
Compound 1: IR νmax. KBr (cm-1): 3207, 3135, 3031, 2946, 2879, 1598, 1456, 1048, 748, 701, 517, 328; 1H-NMR (400 MHz; DMSO-d6) δ: 1.63 (m, 2H, CH2); 2.50; 2.63 (2m, 4H, CH2NH2, CH2NH); 4.00; 4.41 (2dd, 2H, H7, H7’, J7-7’= 13 Hz, J7-NH= 3 Hz, J7’-NH= 4 Hz); 5.12; 6.00 (2sl, 3H, NH2, NH); 7.58 (m, 5H, Ph); 13C-NMR (100 MHz, DMSO-d6) δ: 23.45; 42.41; 46.74; 55.78 (CH2); 128.24; 128.62; 129.50; 130.55; 131.20 (Ph); 195Pt-NMR (86 MHz, DMSO-d6) δ: - 2254; Anal. Calcd. for C10H16N2Cl2Pt·2HCl: C: 23.85; H: 3.57; N: 5.56; found: C: 23.35; H: 3.43; N: 5.56.
Compound 2: IR νmax. KBr (cm-1): 3238, 3211, 3134, 3067, 2993, 2940, 1601, 1447, 1180, 1054, 1035, 860, 748, 551, 435, 315; 1H-NMR (200 MHz; DMSO-d6) δ: 1.96 (m, 2H, CH2); 2.37 (m, 2H, CH2NH2); 2.79 (sl ,2H, CH2NH); 4.09; 4.84 (2m, 2H, H7, H7’); 5.78; 6.63 (2m, 3H, NH2, NH); 7.42; 7.44 (2d, 2H, H3, H6); 7.51; 8.22 (2t, 2H, H4, H5); 13C-NMR (50 MHz, CDCl3) δ: 22.99; 41.81; 51.20; 54.21 (CH2); 127.28; 129.57; 131.03; 132.16; 133.86; 135.19 (Ph); 195Pt-NMR (86 MHz, DMSO-d6) δ: - 2250; Anal. Calcd. for C10H15Cl3N2Pt: C: 25.85; H: 3.25; N: 6.03; found: C: 26.26; H: 3.48; N: 5.71.
Compound 3: IR νmax. KBr (cm-1): 3244, 3207, 3135, 3030, 2934, 2879, 1596, 1575, 1492, 1180, 1092, 1013, 848, 815, 527, 493, 320; 1H-NMR (400 MHz; DMSO-d6) δ: 1.75 (m, 2H, CH2); 2.49; 2.70 (2m, 4H, CH2NH2, CH2NH); 3.92; 4.33 (2dd, 2H, H7, H7’, J7-7’= 12 Hz, J7-NH= 4 Hz, J7’-NH= 4 Hz); 5.20; 6.16 (2sl, 3H, NH2, NH); 7.44; 7.52 (2d, 4H, Ph); 13C-NMR (100 MHz, DMSO-d6) δ: 23.10; 42.39; 47.70; 55.07 (CH2); 128.13; 128.42; 131.89; 132.03 (Ph); 195Pt-NMR (86 MHz, DMSO-d6) δ: - 2248; Anal. Calcd. for C10H15N2Cl3Pt: C: 25.85; H: 3.25; N: 6.03; found: C: 26.37; H: 3.27; N: 5.91.
Compound 4: IR νmax. KBr (cm-1): 3258, 3228, 3111, 2951, 2935, 1609, 1516, 1459, 1350, 1190, 1109, 848, 706, 530, 327; 1H-NMR (400 MHz; DMSO- d6) δ: 1.88 (m, 2H, CH2); 2.75 (sl, 2H, CH2NH2); 2.85 (t, 2H, CH2NH); 4.00; 4.46 (2m, 2H, H7, H7’); 5.17; 6.37 (2sl, 3H, NH2, NH); 8.04; 8.28 (2d, 4H, Ph); 13C-NMR (100 MHz, DMSO-d6) δ: 23.17; 42.53; 49.05; 55.22 (CH2); 123.10; 131.69; 132.55; 147.03 (Ph); 195Pt-NMR (86 MHz, DMSO-d6) δ: - 2236; Anal. Calcd. for C10H15N3Cl2O2Pt: C: 25.27; H: 3.18; N: 8.84; found: C: 25.05; H: 3.38; N: 8.56.
Compound 5: IR ν KBr (cm-1): 3245, 3216, 3168, 3144, 3004, 2938, 1611, 1513, 1460, 1253, 1177, 1030, 817, 554, 329; 1H-NMR (400 MHz; DMSO-d6) δ: 1.49 (m, 2H, CH2); 2.40; 2.49 (2m, 4H, CH2NH2, CH2NH); 3.72 (s, 3H, OCH3); 3.92; 4.33 (2dd, 2H, H7’, H7’); 5.12; 5.85 (2sl, 3H, NH2, NH); 6.88; 7.32 (2d, 4H, Ph); 13C-NMR (100 MHz, CDCl3) δ: 23.06; 42.43; 47.05; 55.14 (CH2); 55.22 (OCH3);113.58; 131.07; 131.87; 132.45; 158.86 (Ph); 195Pt-NMR (86 MHz, DMSO-d6) δ: - 2256; Anal. Calcd. for C11H18N2Cl2OPt: C: 28.71; H: 3.94; N: 6.09; found: C: 28.77; H: 4.03; N: 5.93.
Compound 6: IR ν KBr (cm-1): 3159, 3012, 2980, 1576, 1498, 1453, 1433, 1211, 994, 748, 697, 523, 325, 315; 1H-NMR (400 MHz; DMSO-d6) δ: 2.08 (m, 2H, CH2); 3.03 (sl, 4H, CH2NH); 4.14 (sl, 4H, CH2Ph); 7.44; 7.56 (2d, 10H, Ph); Anal. Calcd. for C17H22N2Cl2Pt·4H2O: C: 34.46; H: 5.10; N: 4.72; found: C: 34.60; H: 4.67; N: 4.84.
Compound 7: IR ν KBr (cm-1): 3229, 3208, 3127, 3049, 2953, 1596, 1529, 1450, 1352, 1140, 1048, 813, 736, 702, 472, 324; 1H-NMR (400 MHz; DMSO-d6) δ: 1.71 (m, 2H, CH2); 2.64; 2.66 (2t, 4H, CH2NH2, CH2NH); 3.94; 4.44 (2sl, 2H, H7, H7’); 5.15; 6.42 (2sl, 3H, NH2, NH); 7.68 (sl ,1H, H5); 8.08; 8.22 (2d, 2H, H4, H6, J4-5= J5-6= 6.8 Hz); 8.51 (s, 1H, H2); 13C-NMR (100 MHz, DMSO-d6) δ: 23.10; 42.52; 49.19; 58.13 (CH2); 122.74; 125.24; 125.26; 129.46; 137.25; 147.38 (Ph); 195Pt-NMR (86 MHz, DMSO-d6) δ: - 2241; Anal. Calcd. for C10H15N3Cl2O2Pt ·H2O: C: 24.34; H: 3.44; found: C: 24.46; H: 2.94.

Conclusions

This work describes the synthesis and characterization of new platinum(II) complexes obtained from derivatives of 1,3-propanediamine, used as ligands. All the complexes were fully characterized and their biological properties are being investigated to determine their possible use as anticancer agents.

Acknowledgments

To CNPq and CAPES for the fellowships. To Dr. Ana Maria Ferreira and Wendel A. Alves for helpful suggestions.

References

  1. Rosenberg, B.; Van Camp, L.; Trosco, J. E.; Mansour, V. H. Nature 1969, 222, 385.
  2. Kepler, B. K. New J. Chem. 1990, 14, 389.
  3. Krakoff, I. H. Platinum and Other Metal Coordination Compounds in Cancer Chemoterapy: Clinical Applications of Platinum Complexes. Nicolini, M., Ed.; Martinus Nijhoff Publishing: Boston, 1998; p. 351. [Google Scholar]
  4. Loehrer, P. J.; Williams, S. D.; Einhorm, L. H. J. Natl. Cancer Inst. 1988, 80, 1373.
  5. Loehrer, P. J.; Iinhorm, L. H. Ann. Intern. Med. 1984, 100, 704.
  6. Barnard, C. F. J.; Clear, M. J.; Hydes, P. C. Chem. Britain 1986, 22, 1001.
  7. Krakoff, I. H. Cancer Treat. Resp. 1979, 63, 1623.
  8. Vermorken, J. B.; Pinedos, H. M. Neth. J. Med. 1982, 25, 270.
  9. Vonhoff, D. D.; Schilky, R.; Reichert, C. M. Cancer Treat. Resp. 1979, 63, 1527.
  10. Calvert, A. H.; Harland, S. J.; Newell, D. R.; Siddik, Z. H.; Jones, A. C.; McElwain, T. J.; Raju, S.; Wiltshaw, E.; Smith, I. E.; Baker, J. M.; Peckhan, M. J.; Harrap, K. R. Cancer Chemoter. Pharmaco. 1982, 9, 140.
  11. Egorin, M. J.; Van Echo, D. A.; Olman, E. A.; Whitacre, M. Y.; Forrest, A. J. Cancer Res. 1985, 45, 6502.
  12. Wong, E.; Giandomenico, M. Chem. Rev. 1999, 99, 2456.
  13. Beumont, K. P.; McAuliffe, C. A.; Cleare, M. J. Chem. Biol. Interact 1976, 14, 179.
  14. Paul, A. K.; Srivastava, T. S.; Chavan, S. J.; Chitnis, M. P.; Desai, S.; Rao, K. K. J. Inorg. Biochem. 1996, 61, 179.
  15. Farrel, N. P. Transition Metal Complexes as Drugs and Chemoterapeutic Agents; Kluwer Academic Publishers: Dordrecht, 1989; p. 18. [Google Scholar]
  16. De Almeida, M. V.; Cesar, E. T.; Felício, E. C. A.; Fontes, A. P. S.; Gero, M. R. J. Braz. Chem. Soc. 2000, 11(2), 154.
  17. De Almeida, M. V.; Cesar, E. T.; Fontes, A. P. S.; Felício, E. C. A; Berg, R. N. Ciência & Engenharia 2001, 10(1), 7.
  18. Vollano, J. F.; Al-Baker, S.; Dabrowiak, J. C.; Schurig, J. E. J. Med. Chem. 1987, 30, 716.
  • Sample Availability: Samples of ligands a-f and compounds 1, 3 and 5 are available from MDPI

Share and Cite

MDPI and ACS Style

De Almeida, M.V.; Fontes, A.P.S.; Berg, R.N.; César, E.T.; De Castro Antunes Felício, E.; De Souza Filho, J.D. Synthesis of Platinum Complexes from N-Benzyl-1,3-Propanediamine Derivatives, Potential Antineoplastic Agents. Molecules 2002, 7, 405-411. https://doi.org/10.3390/70400405

AMA Style

De Almeida MV, Fontes APS, Berg RN, César ET, De Castro Antunes Felício E, De Souza Filho JD. Synthesis of Platinum Complexes from N-Benzyl-1,3-Propanediamine Derivatives, Potential Antineoplastic Agents. Molecules. 2002; 7(4):405-411. https://doi.org/10.3390/70400405

Chicago/Turabian Style

De Almeida, Mauro Vieira, Ana Paula Soares Fontes, Richard Nilton Berg, Eloi Teixeira César, Emanoel De Castro Antunes Felício, and José Dias De Souza Filho. 2002. "Synthesis of Platinum Complexes from N-Benzyl-1,3-Propanediamine Derivatives, Potential Antineoplastic Agents" Molecules 7, no. 4: 405-411. https://doi.org/10.3390/70400405

Article Metrics

Back to TopTop