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Abstract:



We report the results of a calculation of the normal boiling points of a representative set of 200 organic molecules through the application of QSPR theory. For this purpose we have used a particular set of flexible molecular descriptors, the so called Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals. Although in general the results show suitable behavior to predict this physical chemistry property, the existence of some deviant behaviors points to a need to complement this index with some other sort of molecular descriptors. Some possible extensions of this study are discussed.
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Introduction


One of the topics of continuing interest in structure-property studies is to arrive at simple correlations between the selected properties and the molecular structure. For such considerations the molecular structure is often represented as a simple mathematical object, such as a number, sequence, or a set of selected invariants of matrices, generally referred to as molecular descriptors. Multiple regression analysis is usually used in such studies in the hope that it might point to structural factors that influence a particular property. Of course, regression analysis does not establish a causal relationship between structural components and molecular properties. Nevertheless, it may help one in model building and assist in the design of molecules with prescribed desirable properties, which is an important goal in drug research. In chemistry, anything that can be said about the magnitude of the property and its dependence upon changes in the molecular structure depends on the chemist’s capability to establish valid relationships between structure and property. In many physical-chemistry, organic, biochemical and biological areas, it is increasingly necessary to translate those general relations into quantitative associations expressed in useful algebraic equations known as Quantitative Structure-Activity (-Property) Relationships (QSAR/QSPR). To obtain a significant correlation, it is crucial that appropriate descriptors be employed, whether they be theoretical, empirical or derived from readily available experimental features of the molecular structures. Many descriptors reflect simple molecular properties and thus they can provide some meaningful insights into the physical-chemistry nature of the activity/property under consideration.



Chemical graph theory [1] advocates an alternative approach to QSAR/QSPR studies based on mathematically derived molecular descriptors. Such descriptors, often referred to as topological indices [2], include the well-known Wiener index W [3], the Hosoya index Z [4], and the connectivity index χ [5]. The last three decades have witnessed an upsurge of interest in applications of graph theory in chemistry. Constitutional formulae of molecules are chemical graphs where vertices represent the set of atoms and edges represent chemical bonds [6]. The pattern of connectedness of atoms in a molecule is preserved by constitutional graphs. A graph G = [V,E] consists of a finite nonempty set V of points together with a prescribed set E of unordered pairs of distinct points of V [7].



The correlation and prediction of physical-chemistry properties of pure liquids and of mixtures, such as boiling point, density, viscosity, static dielectric constant, and refractive index, is of practical (process design and control) and theoretical (role of the molecular structure in determining the macroscopic properties of the solvent) relevance to both chemists and engineers. Traditionally, procedures for estimating these properties have been based either on theoretical relationships often making use of empirical parameters that have to be fitted or on empirical relationships derived from additive-constitutive schemes based on atomic groups or bonds contribution within the molecule [8,9,10,11,12]. More recently, the QSPR approach has been applied especially to predict boiling points (BPs), partition coefficients, chromatographic retention indexes, surface tension, critical temperatures, viscosity, refractive index, thermodynamic state functions and static dielectric constant, among other properties. The use of calculated molecular descriptors in QSPR analysis has two main advantages: (a) the descriptors can be univocally defined for any molecular structure or fragment; (b) thanks to the high and well-defined physical information content encoded in many theoretical descriptors, they can clarify the mechanism relating the studied property with the chemical structure. Furthermore, QSPR models based on calculated descriptors help understanding of the inter- and intramolecular interactions that are mainly responsible for the behavior of complex chemical systems and processes.



The normal BP (i.e. the boiling point at 1 atm) is one of the major physical-chemistry properties used to characterize and identify a compound. Besides being an indicator for the physical state (liquid or gas) of a compound, the BP also provides an indication of its volatility. In addition, the BPs can be used to predict or estimate other physical properties, such as critical temperatures, flash points, enthalpies of vaporization, etc. [13,14,15]. The BP is often the first property measured for a new compound and one of the few parameters known for almost every volatile compound. Normal BPs are easy to determine, but when a chemical is unavailable, as yet unknown, or hazardous to handle, a reliable procedure for estimating its BP is required. Furthermore, the rapid and nearly explosive growth of combinatorial chemistry, where literally millions of new compounds are synthesized and tested without isolation, could render such a procedure very useful.



A large number of methods for estimating BPs have been devised and numerous QSPR correlations of normal BPs have been reported and detailed reviews have been given elsewhere [15,16,17,18,19,20,21,22]. The aim of this study is to present the results derived from the use of a particular sort of flexible molecular descriptors to estimate the BPs of a representative set of organic molecules, in order to seek better ways of calculating physical-chemistry properties. Some previous experience with this issue has shown the convenience of resorting to this special sort of molecular descriptor.



The paper is organized in the following way: the next section deals with the basic methodology, presenting some general properties of flexible molecular descriptors and some previous uses of the same. Then, we describe the calculation strategy, after which we give and discuss the results. Finally, our conclusions are presented together with some possible future further extensions of the method.




Molecular Descriptors


The basic algebraic expression of the fundamental principle governing the QSAR/QSPR, i.e. the quantitative formula representing the structure-activity/property relationship, is


P = f({d})



(1)




where P stands for the activity/property, {d} is a set of molecular descriptors and f is an arbitrary function. The commonest and simplest cases are those where {d} is reduced just to one variable and f is a linear function, i..e.


P = a + bd



(2)




with a,b ∈ [image: ], and real numbers a, b are determined by a standard least squares procedure.



Since there are too many possibilities to choose the set of molecular descriptors and besides they can be highly interrelated, this leads to a nasty situation which is termed the nightmare of the regression analysis. Some of these drawbacks include how to make the selection of descriptors, as well as ambiguities of the criteria used to select optimal descriptors and uncertainties when choosing the order in which descriptors are to be orthogonalized. Naturally, none of these difficulties exists for simple regression based on a single molecular descriptor, particularly if the regression is linear. This is one of the major reasons why researchers are striving to find or to design novel descriptors that would produce good correlation for a single molecular property of a set of compounds. However, not many molecular properties can be sufficiently well described by a single descriptor [23].



A quite interesting alternative to surmount these difficulties was proposed long ago by Randic [24] and it consists on defining {d} as a function of one or several variables that are determined during the search for the best correlation. Thus, in contrast to the traditional topological indices, which one can calculate after selecting a set of compounds to be studied and then proceed with statistical analysis, the variable indices are initially non-numerical. Hence, they cannot be calculated in advance for the set of compounds. Instead, one starts with an arbitrary set of values for the yet undetermined variables and, through an iterative procedure, one varies these initial values seeking optimal values that will produce the smallest standard error for the property under consideration. It is clear that the use of variable descriptors (also called flexible descriptors) can only improve correlations over the use of simple indices because if all variables take on a zero value (which is very unlikely), we would obtain the results that coincide with the results based on he traditional rigid molecular descriptors. Current literature shows that the use of variable molecular descriptors dramatically improved regression statistics [23].



Among the different alternatives of choosing flexible molecular descriptors, one of us (A.A.T.) has presented the so called Optimization of Correlation Weights of Local Graph Invariants (OCWLGI) procedure which has proved to be a rather suitable way to apply the method to calculate several biological activities and physical-chemistry properties [25,26,27,28,29,30,31,32,33,34]. The OCWLI may be based on the labeled hydrogen filled graph (LHFG) [35] and the graph of atomic orbitals (GAO) [36]. The OCWLI based upon the LHFGs yield reasonable good models of enthalpies of formation from elements of coordination compounds [37]. Besides, OCWLI based on LHFG have been used to model the Flory-Huggins polymer-solvent interaction parameters [26]. The OCWLI based upon the GAOs give rather good results to predict stability constants of amino acids complexes [36].



Molecular descriptors DCW are calculated by means of the following relationship


 [image: Molecules 09 01019 i001]



(3)




where CW(aok) and CW(1ECk) are correlation weights of the atomic orbitals that are image of the k-th vertex in the GAO and correlation weights of Morgan extended connectivity of first order that have a k-th vertex in the GAO. The Monte Carlo method is then applied to determine optimum correlation weight values which produce the largest possible values of the correlation coefficient between the physical property as a function of the descriptor computed via Eq. (3). Numerical data of the GAO local invariants are listed in Table 1 and an illustrative example is reproduced in Table 2.



Table 2. Calculation of the DCW1 for 1,1,3,3-tetramethyldisilazane (DCW1 = 8.39793)







	
atom

	
Nat

	
EC1

	
ao

	
Nao

	
EC1

	
CW(V)

	
CW(LI)






	
Si

	
1

	
12

	
1s2

	
1

	
86

	
0.155

	
-0.466




	

	

	

	
2s2

	
2

	
86

	
0.104

	
-0.466




	

	

	

	
2p6

	
3

	
86

	
0.222

	
-0.466




	

	

	

	
3s2

	
4

	
86

	
-0.183

	
-0.466




	

	

	

	
3p2

	
5

	
86

	
0.827

	
-0.466




	
N

	
2

	
9

	
1s2

	
6

	
103

	
0.155

	
1.738




	

	

	

	
2s2

	
7

	
103

	
0.104

	
1.738




	

	

	

	
2p3

	
8

	
103

	
4.943

	
1.738




	
H

	
3

	
4

	
1s1

	
9

	
50

	
0.939

	
0.071




	
H

	
4

	
3

	
1s1

	
10

	
33

	
0.939

	
2.507




	
C

	
5

	
7

	
1s2

	
11

	
59

	
0.155

	
0.574




	

	

	

	
2s2

	
12

	
59

	
0.104

	
0.574




	

	

	

	
2p2

	
13

	
59

	
0.704

	
0.574




	
H

	
6

	
4

	
1s1

	
14

	
24

	
0.939

	
-0.381




	
H

	
7

	
4

	
1s1

	
15

	
24

	
0.939

	
-0.381




	
H

	
8

	
4

	
1s1

	
16

	
24

	
0.939

	
-0.381




	
C

	
9

	
7

	
1s2

	
17

	
59

	
0.155

	
0.574




	

	

	

	
2s2

	
18

	
59

	
0.104

	
0.574




	

	

	

	
2p2

	
19

	
59

	
0.704

	
0.574




	
H

	
10

	
4

	
1s1

	
20

	
24

	
0.939

	
-0.381




	
H

	
11

	
4

	
1s1

	
21

	
24

	
0.939

	
-0.381




	
H

	
12

	
4

	
1s1

	
22

	
24

	
0.939

	
-0.381




	
Si

	
13

	
12

	
1s2

	
23

	
86

	
0.155

	
-0.466




	

	

	

	
2s2

	
24

	
86

	
0.104

	
-0.466




	

	

	

	
2p6

	
25

	
86

	
0.222

	
-0.466




	

	

	

	
3s2

	
26

	
86

	
-0.183

	
-0.466




	

	

	

	
3p2

	
27

	
86

	
0.827

	
-0.466




	
H

	
14

	
4

	
1s1

	
28

	
50

	
0.939

	
0.071




	
C

	
15

	
7

	
1s2

	
29

	
59

	
0.155

	
0.574




	

	

	

	
2s2

	
30

	
59

	
0.104

	
0.574




	

	

	

	
2p2

	
31

	
59

	
0.704

	
0.574




	
H

	
16

	
4

	
1s1

	
32

	
24

	
0.939

	
-0.381




	
H

	
17

	
4

	
1s1

	
33

	
24

	
0.939

	
-0.381




	
H

	
18

	
4

	
1s1

	
34

	
24

	
0.939

	
-0.381




	
C

	
19

	
7

	
1s2

	
35

	
59

	
0.155

	
0.574




	

	

	

	
2s2

	
36

	
59

	
0.104

	
0.574




	

	

	

	
2p2

	
37

	
59

	
0.704

	
0.574




	
H

	
20

	
4

	
1s1

	
38

	
24

	
0.939

	
-0.381




	
H

	
21

	
4

	
1s1

	
39

	
24

	
0.939

	
-0.381




	
H

	
22

	
4

	
1s1

	
40

	
24

	
0.939

	
-0.381











Table 1. Correlation weights for calculating DCW0 and DCW1








 DCW1 







	
1s1

	
0.939




	
1s2

	
0.155




	
2s2

	
0.104




	
2p2

	
0.704




	
2p3

	
4.943




	
2p4

	
0.748




	
2p5

	
-2.191




	
2p6

	
0.222




	
3s2

	
-0.183




	
3p2

	
0.827




	
3p3

	
4.546




	
3p4

	
5.322




	
3p5

	
0.939




	
3p6

	
8.663




	
3d10

	
9.470




	
4s2

	
8.444




	
4p5

	
8.422




	
0012

	
5.903




	
0015

	
-2.827




	
0018

	
0.150




	
0020

	
0.376




	
0021

	
1.669




	
0024

	
-0.381




	
0027

	
2.112




	
0030

	
1.574




	
0033

	
2.507




	
0035

	
0.685




	
0036

	
1.462




	
0038

	
1.577




	
0039

	
0.219




	
0042

	
0.224




	
0045

	
0.033




	
0048

	
1.204




	
0050

	
0.071




	
0051

	
1.528




	
0053

	
1.086




	
0054

	
1.323




	
0057

	
1.983




	
0059

	
0.574




	
0060

	
0.469




	
0062

	
0.669




	
0063

	
-0.236




	
0066

	
-0.161




	
0069

	
0.737




	
0070

	
-2.190




	
0075

	
3.355




	
0078

	
3.944




	
0079

	
0.582




	
0080

	
0.582




	
0081

	
2.970




	
0082

	
0.904




	
0084

	
0.646




	
0086

	
-0.466




	
0087

	
-0.007




	
0089

	
0.376




	
0090

	
2.254




	
0091

	
4.903




	
0094

	
-0.955




	
0096

	
2.028




	
0097

	
-1.506




	
0098

	
4.564




	
0099

	
1.506




	
0100

	
5.589




	
0101

	
3.285




	
0102

	
-5.967




	
0103

	
1.738




	
0105

	
1.969




	
0108

	
0.273




	
0109

	
4.121




	
0110

	
2.223




	
0111

	
2.796




	
0112

	
1.653




	
0116

	
4.641




	
0120

	
-2.254




	
0122

	
0.616




	
0124

	
1.832




	
0134

	
1.828
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Since the complete and detailed description of these flexible descriptors has been given before, we refer the reader interested in further minutiae to the specific papers where these details were largely reported [25,26,27,28,29,30,31,32,33,34].




Results and Discussion


We have chosen a representative set of 200 organic molecules of varied composition to study their normal boiling points (NBPs). These molecules, with both linear and cyclic structures, comprise ketones, acids, esters, aldehydes, nitriles, amines, alcohols, and hydrocarbons and a wide variety of atoms, such as C, H, O, N, Si, Cl, Br, F, P, S. The list of molecules is given in Table 3, together with their NBPs and the extended connectivity of zero- and first-order descriptors in the GAOs (DCW0 and DCW1, respectively).



Table 3. Organic molecules, experimental NBPs (Celsius degrees) and DCWs.







	
n

	
CAS

	
Molecule

	
DCW0

	
DCW1

	
NBPexp






	
1

	
15933-59-2

	
1,1,3,3-Tetramethyldisilalazane

	
5.460

	
8.398

	
99.000




	
2

	
105-54-4

	
Butanoic acid, ethyl ester

	
5.543

	
11.949

	
120.000




	
3

	
623-27-8

	
1,4-Benzenedicarboxaldehyde

	
16.537

	
18.618

	
245.000




	
4

	
7212-44-4

	
1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl

	
14.389

	
17.084

	
68.000




	
5

	
705-86-2

	
5-Hydroxydecanoic acid lactone

	
8.596

	
13.405

	
117.000




	
6

	
620-22-4

	
Benzonitrile, 3-methyl-

	
12.826

	
16.075

	
99.000




	
7

	
621-33-0

	
3-Ethoxyaniline

	
12.735

	
25.122

	
248.000




	
8

	
150-76-5

	
Mequinol

	
14.584

	
23.498

	
243.000




	
9

	
109-52-4

	
Pentanoic acid

	
9.042

	
14.320

	
185.000




	
10

	
75-55-8

	
Aziridine, 2-methyl-

	
1.529

	
9.325

	
66.000




	
11

	
586-39-0

	
3-Nitrosostyrene

	
21.317

	
14.385

	
56.000




	
12

	
224-41-9

	
Dibenz[a,j]anthracene

	
39.917

	
53.421

	
531.000




	
13

	
105-05-5

	
Benzene, 1,4-diethyl-

	
11.384

	
19.030

	
184.000




	
14

	
110-42-9

	
Decanoic acid, methyl ester

	
8.330

	
13.914

	
108.000




	
15

	
111-69-3

	
Hexanedinitrile

	
6.906

	
8.394

	
295.000




	
16

	
1112-55-6

	
Silane , tetraethyl-

	
10.654

	
11.853

	
130.000




	
17

	
1719-57-9

	
Silane, chloro(chloromethyl)dimethyl-

	
5.129

	
10.177

	
115.000




	
18

	
123-31-9

	
Hydroquinoline

	
18.082

	
28.959

	
285.000




	
19

	
100-02-7

	
Phenol, 4-nitro-

	
23.197

	
25.692

	
279.000




	
20

	
2548-87-0

	
2-Octenal, (E)-

	
7.837

	
15.141

	
84.000




	
21

	
6166-86-5

	
2,4,6,8,10-Pentamethylcyclopentasiloxane

	
10.191

	
15.986

	
168.000




	
22

	
2031-79-0

	
1,1,3,3,5,5-Hexaethylcyclotrisiloxane

	
5.493

	
10.852

	
117.000




	
23

	
3862-73-5

	
Trifluoroaniline

	
4.605

	
2.796

	
92.000




	
24

	
15980-15-1

	
1,4-Oxathiane

	
3.112

	
11.780

	
147.000




	
25

	
108-41-8

	
Benzene, 1-chloro-3-methyl-

	
11.575

	
16.747

	
160.000




	
26

	
78-81-9

	
1-Propanamine, 2-methyl

	
2.006

	
6.152

	
64.000




	
27

	
7087-68-5

	
Diisopropylethylamine

	
6.556

	
12.133

	
127.000




	
28

	
17477-29-1

	
Propyldimethylchlorosilane

	
3.718

	
9.954

	
113.000




	
29

	
75-35-4

	
Ethylene, 1,1-dichloro-

	
5.812

	
-4.704

	
30.000




	
30

	
91-64-5

	
Coumarin

	
17.928

	
20.526

	
298.000




	
31

	
328-87-0

	
4-Chloro-3-cyanobenzotrifluoride

	
6.405

	
11.573

	
210.000




	
32

	
616-25-1

	
1-Penten-3-ol

	
6.438

	
12.844

	
114.000




	
33

	
75-85-4

	
2-Butanol, 2-methyl-

	
4.231

	
9.165

	
102.000




	
34

	
138-86-3

	
Limonene

	
10.367

	
10.009

	
170.000




	
35

	
333-41-5

	
Diazinon

	
4.486

	
6.708

	
83.000




	
36

	
15570-12-4

	
meta-Methoxybenzenethiol

	
16.490

	
22.256

	
223.000




	
37

	
198-55-0

	
Perylene

	
37.005

	
50.768

	
495.000




	
38

	
192-97-2

	
Benzo[e]pyrene

	
37.005

	
50.768

	
492.000




	
39

	
205-99-2

	
Benzo[b]fluoranthene

	
37.005

	
52.659

	
481.000




	
40

	
218-01-9

	
Chrysene

	
32.121

	
45.048

	
448.000




	
41

	
217-59-4

	
Triphenylene

	
32.121

	
47.211

	
425.000




	
42

	
611-32-5

	
Quinoline, 8-methyl-

	
16.427

	
22.665

	
143.000




	
43

	
76783-59-0

	
Ethyl-3-trifluoromethylbenzoate

	
6.641

	
15.738

	
101.000




	
44

	
76-86-8

	
Triphenylchlorosilane

	
28.953

	
39.379

	
378.000




	
45

	
1241-94-7

	
Phosphoric acid, 2-ethylhexyldiphenylester

	
26.200

	
33.929

	
375.000




	
46

	
2943-75-1

	
N-octyltriethoxysilane

	
9.043

	
15.458

	
98.000




	
47

	
594-72-9

	
Ethane,1,1-dichloro-1-nitro-

	
11.751

	
11.958

	
124.000




	
48

	
62-73-7

	
Dimethyl-2,2-dichlorovinyl phosphate

	
10.283

	
20.471

	
140.000




	
49

	
123-15-9

	
Pentanol, 2-methyl-

	
4.196

	
8.437

	
119.000




	
50

	
6640-27-3

	
Phenol, 2-chloro-4- methyl-

	
16.248

	
19.546

	
195.000




	
51

	
537-92-8

	
N-(3-tolyl)acetic acid amide

	
17.896

	
30.207

	
303.000




	
52

	
105-99-7

	
Hexanedioic acid, dibutyl ester

	
13.754

	
22.346

	
305.000




	
53

	
77-35-2

	
Phenanthrene, 9,10-dihydro-

	
22.529

	
27.241

	
168.000




	
54

	
2713-33-9

	
3,4-Difluorophenol

	
9.143

	
13.615

	
85.000




	
55

	
111-83-1

	
Octane, 1-bromo-

	
5.899

	
14.924

	
201.000




	
56

	
101-68-8

	
Benzene, 1,1'-methylene bis(4-isocyanato)-

	
26.548

	
29.352

	
200.000




	
57

	
597-49-9

	
3-Ethyl-3-pentanol

	
5.346

	
14.104

	
141.000




	
58

	
18395-90-9

	
di-tert-Butyldichlorosilane

	
10.980

	
18.381

	
190.000




	
59

	
107-12-0

	
Propanenitrile

	
2.677

	
5.531

	
97.000




	
60

	
1825-62-3

	
Silane, ethoxytrimethyl

	
3.096

	
5.122

	
75.000




	
61

	
56-55-3

	
Benz[a]anthracene

	
32.121

	
40.882

	
438.000




	
62

	
243-17-4

	
2,3-Benzofluorene

	
30.666

	
38.282

	
402.000




	
63

	
57-11-4

	
Octadecanoic acid

	
16.287

	
21.581

	
183.000




	
64

	
98-03-3

	
Thiophenecarboxaldehyde

	
10.468

	
15.608

	
198.000




	
65

	
605-39-0

	
2,2'-Dimethylbiphenyl

	
20.976

	
28.363

	
258.000




	
66

	
831-91-4

	
Benzene, [(phenylmethyl)thio]

	
19.804

	
23.867

	
197.000




	
67

	
761-65-9

	
Formamide, N,N-dibutyl-

	
11.705

	
17.359

	
120.000




	
68

	
348-54-9

	
Benzeneamine, 2-fluoro-

	
8.870

	
14.610

	
182.000




	
69

	
136-77-6

	
Hexylresorcinol

	
21.636

	
31.606

	
333.000




	
70

	
100-53-8

	
Benzenemethanethiol

	
16.543

	
18.999

	
194.000




	
71

	
191-30-0

	
1,2,9,10-Dibenzopyrene

	
44.801

	
59.414

	
595.000




	
72

	
109-73-9

	
1-Butanamine

	
3.292

	
6.593

	
78.000




	
73

	
100-69-6

	
Pyridine, 2-ethenyl-

	
10.659

	
13.058

	
79.000




	
74

	
1712-70-5

	
1-Chloro-4-isopropenylbenzene

	
14.368

	
18.139

	
214.500




	
75

	
95-56-7

	
Phenol, 2-bromo-

	
18.076

	
25.834

	
195.000




	
76

	
2984-50-1

	
Oxirane, hexyl-

	
4.137

	
8.771

	
63.000




	
77

	
100-43-6

	
Pyridine, 4-ethenyl-

	
10.659

	
8.905

	
62.000




	
78

	
919-31-3

	
Propanenitrile, 3-(triethoxysilyl)-

	
8.813

	
13.961

	
224.000




	
79

	
874-60-2

	
4-Methylbenzoic acid chloride

	
15.476

	
24.765

	
225.000




	
80

	
80-62-6

	
2-Propenoic acid, 2-methyl-, methyl ester

	
6.665

	
5.278

	
100.000




	
81

	
645-49-8

	
(Z)-Stilbene

	
22.354

	
27.371

	
307.000




	
82

	
103-84-4

	
Acetamide, N-phenyl-

	
17.128

	
27.646

	
304.000




	
83

	
106-49-0

	
para-Toluidine

	
11.770

	
24.079

	
200.000




	
84

	
90-90-4

	
Methanone, (4-bromophenyl)phenyl-

	
28.011

	
30.846

	
350.000




	
85

	
519-73-3

	
Triphenylmethane

	
29.768

	
34.483

	
359.000




	
86

	
832-69-9

	
Phenanthrene, 1-methyl-

	
25.093

	
35.107

	
359.000




	
87

	
60-29-7

	
Ethoxyethane

	
1.085

	
5.886

	
35.000




	
88

	
539-74-2

	
Propanoic acid, 3-bromo-ethyl ester

	
7.978

	
16.094

	
135.000




	
89

	
598-31-2

	
2-Propanone, 1-bromo-

	
6.456

	
13.853

	
137.000




	
90

	
571-61-9

	
Naphthalene, 1,5-dimethyl-

	
18.065

	
25.165

	
265.000




	
91

	
1885-14-9

	
Carbonochloridic acid, phenyl ester

	
15.117

	
17.640

	
74.000




	
92

	
754-05-2

	
Silane, ethenyltrimethyl-

	
3.945

	
3.490

	
55.000




	
93

	
238-84-6

	
1,2-Benzofluorene

	
30.666

	
42.448

	
407.000




	
94

	
99-08-1

	
Benzene, 1-methyl-3-nitro-

	
11.770

	
23.077

	
230.000




	
95

	
7209-38-3

	
1,4-bis(3-Aminopropyl)piperazine

	
19.905

	
11.808

	
150.000




	
96

	
1558-33-4

	
Silane, dichloro(chloromethyl)methyl-

	
5.349

	
10.947

	
121.000




	
97

	
65-85-0

	
Benzoic acid

	
17.310

	
21.998

	
249.000




	
98

	
132-64-9

	
Dibenzofuran

	
21.822

	
26.034

	
154.000




	
99

	
213-46-7

	
Picene (benzo[a]chrysene)

	
39.917

	
57.587

	
525.000




	
100

	
191-07-1

	
Coronene

	
46.773

	
57.883

	
525.000




	
101

	
287-92-3

	
Cyclopentane

	
2.787

	
2.793

	
50.000




	
102

	
2782-91-4

	
Thiourea, tetramethyl-

	
15.021

	
29.789

	
245.000




	
103

	
109-07-9

	
Piperazine, 2-methyl-

	
5.612

	
11.565

	
155.000




	
104

	
7005-72-3

	
Benzene, 1-chloro-4-phenoxy-

	
21.923

	
31.152

	
284.000




	
105

	
532-27-4

	
Ethanone, 2-chloro-1-phenyl-

	
15.937

	
19.618

	
244.000




	
106

	
91-57-6

	
Naphthalene, 2-methyl-

	
17.298

	
22.531

	
241.000




	
107

	
109-01-3

	
Piperazine, 1-methyl-

	
5.461

	
12.701

	
138.000




	
108

	
591-35-5

	
Phenol, 3,5-dichloro-

	
17.553

	
23.380

	
233.000




	
109

	
454-89-7

	
Benzaldehyde, 3-(trifluoromethyl)-

	
4.909

	
10.983

	
83.000




	
110

	
99-04-7

	
Benzoic acid, 3-methyl-

	
18.077

	
24.559

	
263.000




	
111

	
120-72-9

	
Indole

	
14.205

	
20.915

	
253.000




	
112

	
109-86-4

	
Ethanol, 2-methoxy-

	
4.991

	
10.296

	
125.000




	
113

	
617-84-5

	
N,N-Diethylformamide

	
9.476

	
14.478

	
176.000




	
114

	
129-00-0

	
Pyrene

	
29.210

	
36.066

	
360.000




	
115

	
86-74-8

	
Carbazole

	
22.000

	
31.584

	
355.000




	
116

	
79-06-1

	
Acrylamide

	
6.990

	
8.215

	
125.000




	
117

	
589-18-4

	
Benzene methanol, 4-methyl-

	
14.733

	
21.268

	
217.000




	
118

	
123-07-9

	
Phenol, 4-ethyl-

	
14.733

	
23.994

	
218.000




	
119

	
75-78-5

	
Silane, dichlorodimethyl-

	
3.553

	
5.152

	
70.000




	
120

	
120-80-9

	
1,2-Benzenediol

	
18.082

	
24.434

	
245.000




	
121

	
123-92-2

	
1-Butanol, 3-methyl-, acetate

	
5.371

	
8.225

	
142.000




	
122

	
626-39-1

	
Benzene, 1,3,5-tribromo-

	
22.739

	
27.936

	
271.000




	
123

	
89-99-6

	
Benzenemethanamine, 2-fluoro-

	
9.428

	
10.347

	
73.000




	
124

	
366-18-7

	
2,2'-Dipyridine

	
17.702

	
28.255

	
273.000




	
125

	
75-05-8

	
Acetonitrile

	
2.119

	
5.271

	
81.000




	
126

	
77-81-6

	
Tabun

	
7.771

	
24.781

	
246.000




	
127

	
7691-02-3

	
CH2CHOS(CH3)(CH3)NS(CH3)(CH3)CHCH2

	
12.366

	
14.725

	
160.000




	
128

	
615-67-8

	
1,4-Benzenediol, 2-chloro-

	
20.155

	
25.666

	
263.000




	
129

	
591-93-5

	
1,4-Pentadiene

	
4.173

	
-2.541

	
26.000




	
130

	
350-46-9

	
Benzene, 1-fluoro-4-nitro-

	
16.391

	
14.681

	
205.000




	
131

	
108-90-7

	
Benzene, chloro-

	
10.807

	
16.761

	
132.000




	
132

	
95-78-3

	
Benzenamine, 2,5-dimethyl-

	
12.537

	
21.017

	
218.000




	
133

	
557-11-9

	
Urea, allyl-

	
8.105

	
11.476

	
163.000




	
134

	
557-17-5

	
Methyl propyl ether

	
1.085

	
6.407

	
39.000




	
135

	
110-06-5

	
di-tert-Butyldisulfide

	
13.140

	
19.686

	
200.000




	
136

	
594-70-7

	
Propane, 2-methyl-2-nitro-

	
8.789

	
15.359

	
127.000




	
137

	
5582-62-7

	
(Propargyloxy)trimethylsilane

	
5.693

	
10.843

	
110.000




	
138

	
1072-43-1

	
Thiirane, methyl-

	
1.410

	
6.658

	
72.000




	
139

	
124-07-2

	
Octanoic acid

	
10.714

	
15.996

	
237.000




	
140

	
919-30-2

	
1-Propanamine, 3-(triethoxysilyl)-

	
8.314

	
12.139

	
122.000




	
141

	
623-00-7

	
4-Bromobenzoic acid nitrile

	
16.727

	
19.293

	
235.000




	
142

	
100-44-7

	
Benzyl chloride

	
12.036

	
16.857

	
177.000




	
143

	
109-55-7

	
1,3-Propanediamine, N,N-dimethyl-

	
8.400

	
10.048

	
133.000




	
144

	
598-72-1

	
2-Bromopropanoic acid

	
11.173

	
11.912

	
203.000




	
145

	
822-86-6

	
Cyclohexane, 1,2-dichloro-(trans)

	
6.936

	
13.335

	
193.000




	
146

	
67-71-0

	
Dimethylsulfone

	
4.844

	
22.383

	
238.000




	
147

	
56-33-7

	
1,1,3,3-Tetramethyl-1,3-diphenyldisiloxane

	
20.964

	
14.576

	
155.000




	
148

	
112-57-2

	
Tetraethylenepentamine

	
18.198

	
37.473

	
340.000




	
149

	
4333-56-6

	
Cyclopropyl bromide

	
4.918

	
9.457

	
69.000




	
150

	
80-10-4

	
Diphenyldichlorosilane

	
20.633

	
31.348

	
305.000




	
151

	
96-23-1

	
2-Propanol, 1,3-dichloro-

	
8.921

	
25.525

	
174.000




	
152

	
110-89-4

	
Piperidine

	
3.373

	
8.827

	
106.000




	
153

	
95-77-2

	
Phenol, 3,4-dichloro-

	
17.553

	
23.879

	
145.000




	
154

	
123-54-6

	
Acetylacetone

	
7.922

	
10.594

	
140.000




	
155

	
91-01-0

	
Benzenemethanol, α-phenyl-

	
23.734

	
31.844

	
297.000




	
156

	
115-19-5

	
3-Butyn-2-ol, 2-methyl-

	
6.271

	
14.827

	
104.000




	
157

	
78-84-2

	
Propanal, 2-methyl-

	
3.082

	
6.660

	
63.000




	
158

	
104-54-1

	
2-Propen-1-ol, 3-phenyl-

	
16.878

	
23.577

	
250.000




	
159

	
420-56-4

	
Silane, fluorothiomethyl-

	
-1.061

	
-2.005

	
57.000




	
160

	
98-02-2

	
2-Furanmethanethiol

	
14.039

	
16.547

	
155.000




	
161

	
3970-62-5

	
3-Pentanol, 2,2-dimethyl-

	
4.617

	
18.157

	
132.000




	
162

	
92-84-2

	
Phenothiazine

	
21.133

	
32.840

	
371.000




	
163

	
93-99-2

	
Benzoic acid, phenyl ester

	
23.751

	
27.643

	
298.000




	
164

	
109-67-1

	
1-Pentene

	
2.703

	
3.244

	
30.000




	
165

	
451-40-1

	
Ethanone, 1,2-diphenyl-

	
23.901

	
24.618

	
320.000




	
166

	
625-30-9

	
2-Pentanamine

	
2.563

	
7.876

	
91.000




	
167

	
2051-60-7

	
1,1'-Biphenyl, 2-chloro-

	
21.515

	
27.031

	
274.000




	
168

	
2425-79-8

	
Oxirane,2,2'[1,4-butanediylbis(oximethylene)]bis-

	
7.299

	
13.704

	
155.000




	
169

	
623-73-4

	
Ethyldiazoacetate

	
8.784

	
18.857

	
140.000




	
170

	
103-11-7

	
2-Propenoic acid, 2-ethylhexyl ester

	
9.070

	
15.387

	
215.000




	
171

	
107-05-1

	
1-Propene, 3-chloro-

	
4.122

	
4.570

	
44.000




	
172

	
108-31-6

	
2,5-Furandione

	
11.122

	
13.982

	
200.000




	
173

	
57-06-7

	
Allylisothiocyanate

	
6.281

	
4.360

	
150.000




	
174

	
77-75-8

	
Meparfynol (1-pentyne-3-ol, 3-methyl)

	
6.828

	
17.020

	
121.000




	
175

	
229-87-8

	
Phenanthridine

	
23.456

	
34.557

	
349.000




	
176

	
5510-99-6

	
Phenol, 2,6-bis(1-methylpropyl)-

	
16.829

	
33.099

	
255.000




	
177

	
3544-25-0

	
4-Aminophenylacetic acid nitrile

	
14.885

	
25.592

	
312.000




	
178

	
501-65-5

	
Diphenylethylene

	
19.928

	
22.715

	
170.000




	
179

	
994-49-0

	
Hexaethyldisiloxane

	
2.852

	
17.928

	
129.000




	
180

	
189-64-0

	
Dibenzo[a,h]pyrene

	
44.801

	
59.141

	
596.000




	
181

	
127-19-5

	
Acetamide, N,N-dimethyl-

	
9.128

	
7.664

	
165.000




	
182

	
14548-46-0

	
Phenyl, 4-pyridyl ketone

	
22.473

	
25.002

	
315.000




	
183

	
1897-45-6

	
Tetrachloroisophthalonitrile

	
23.673

	
28.057

	
350.000




	
184

	
135-01-3

	
Benzene, 1,2-diethyl-

	
11.384

	
16.301

	
183.000




	
185

	
109-77-3

	
Malononitrile

	
5.234

	
5.889

	
220.000




	
186

	
1008-88-4

	
Pyridine, 3-phenyl-

	
18.572

	
22.606

	
269.000




	
187

	
3741-00-2

	
Cyclopentane, pentyl-

	
4.844

	
9.432

	
181.000




	
188

	
109-92-2

	
Ethene, ethoxy-

	
2.554

	
2.070

	
33.000




	
189

	
636-30-6

	
Benzenamine, 2,4,5-trichloro-

	
17.220

	
22.555

	
270.000




	
190

	
2916-68-9

	
Trimethyl-2-hydroxyethylsilane

	
6.001

	
5.437

	
90.000




	
191

	
126-73-8

	
Tri-n-butylphosphate

	
8.164

	
15.583

	
180.000




	
192

	
69-72-7

	
Benzoic acid, 2-hydroxy-

	
21.983

	
30.500

	
211.000




	
193

	
771-51-7

	
1H-indole-3-acetonitrile

	
21.226

	
29.641

	
157.000




	
194

	
624-83-9

	
Methane, isocyanato-

	
2.312

	
13.655

	
37.000




	
195

	
191-24-2

	
Benzo[ghi]perylene

	
41.889

	
54.326

	
542.000




	
196

	
107-02-8

	
2-Propenal

	
3.253

	
6.809

	
53.000




	
197

	
622-97-9

	
Benzene, 1-ethenyl-4-methyl-

	
12.296

	
12.533

	
175.000




	
198

	
762-49-2

	
Ethane, 1-bromo-2-fluoro-

	
0.212

	
10.710

	
71.000




	
199

	
5263-87-6

	
Quinoline, 6-methoxy-

	
16.835

	
25.734

	
193.000




	
200

	
108-01-0

	
Ethanol, 2-(dimethylamino)-

	
10.248

	
14.465

	
133.000












First we have calculated the complete set via zero- and first-order descriptors, thus obtaining the following linear relationships:


NBP = 50.24 + 10.91 DCW0

n = 200, r = 0.8910, S = 53.7, F = 763



(4)






NBP = 25.83 + 8.87 DCW1

n = 200, r = 0.892, S = 56.0, F = 783



(5)




where the statistical parameters have the usual meanings.



The statistical data is moderately satisfactory and when Eqs.(4) and (5) are used to predict NBPs there are relatively large deviations for a significant number of molecules.



We then proceed to a more usual calculation procedure when dealing with a large number of molecules, which consists of defining two disjoint sets: a training set to determine the regression equation and a test set to perform true predictions. Results are as follows:


NBP = 49.16 + 10.89 DCW0

n = 150, r = 0.8841, S = 55.1, F = 530 (training set)

n = 50, r = 0.9120, S = 49.3, F = 237 (test set)



(6)






NBP = 23.72 + 8.96 DCW1

n = 150, r = 0.9328, S = 42.5, F = 530 (training set)

n = 50, r = 0.8766, S = 57.6, F = 237 (test set)



(7)







These results are somewhat better than the previous ones and large deviations occur for a smaller number of molecules. Since the choice of the molecules comprising the training and test sets are somewhat arbitrary, we have tested several partitions of the compounds, but final results are not markedly dependent on the way used to choose the molecules in both sets.



Since there are some large deviant behaviors, we have resorted to removing these molecules (just five, from the total 200 molecules: numbers 11, 15, 56, 98 and 146 according to the identification number n from Table 3). Results are the following ones:


NBP = 43.25 + 11.41 DCW0

n = 145, r = 0.9199, S = 46.8, F = 787 (training set)

n = 50, r = 0.9120, S = 46.6, F = 237 (test set)



(8)







If molecules 4, 15, 53, 91 and 98 are removed, statistical results are


NBP = 22.50 + 9.10 DCW1

n = 145, r = 0.9530, S = 36.1, F = 1414 (training set)

n = 50, r = 0.8765, S = 53.9, F = 159 (test set)



(9)







These results show that by taking out some deviant molecules, the results improve remarkably and somewhat better predictions can be obtained.



A final numerical test was made to define training and test sets based on the clustering approach [38]. The k-Means Cluster Analysis (k-MCA) may be used in training and testing (or predictive) series design [39,40]. The idea consists of carrying out a partition of the series of compounds into several statistically representative classes of chemicals. Thence, one may select from the number of all these classes of training and predicting series. This procedure ensures that any chemical classes (as determined by the clusters derived form the k-MCA will be represented in both series of compounds (i.e. training and test sets). It permits the design of both training and predicting series, which are representative of the entire experimental universe.





NBP = 53.09 + 11.39DCW0

n = 158, r = 0.9586, S = 34.8, F = 1770 (complete set)



(10)









NBP = 54.28 + 11.45 DCW0

n = 126, r = 0.9633, S = 33.3, F = 1599 (training set)

n = 32, r = 0.9391, S = 39.1, F = 224 (test set)



(11)









NBP = 23.50 + 9.119 DCW1

n = 144, r = 0.9592, S = 33.9, F = 1633 (training set)

n = 37, r = 0.9564, S = 34.8, F = 376 (test set)



(12)







These last results are the best ones among the different equations presented before and they represent a suitable improvement with respect to the first ones defined by Equations (4-9). An additional possibility for doing these calculations would be to employ both descriptors together, but this is not possible since they are strongly correlated, as shown in Figure 1.


Figure 1. DCW1 (vertical axis) versus DCW0 (horizontal axis). Regression equation: DCW1 = 2.978 + 1.222 DCW0.



[image: Molecules 09 01019 g001]






We cannot make any direct comparison with other theoretical results since, to the best of our knowledge, the standard literature does not register any calculation for this particular molecular set. This is quite sensible, since the molecules are quite diverse and it is well known that working with molecular sets comprising similar molecules gives results that are better than those derived from a quite dissimilar set of molecules, as it is the present case. However, our aim has been precisely this: to make a regression approach for quite different molecules via quite simple linear equations based on a single molecular descriptor to predict NBPs. A complete listing of NBP results derived from using Eqs. (4-12) is available upon request from the corresponding author.






Conclusions


We have presented results on NBPs for a quite diverse molecular set based upon simple linear regression equations depending on a single molecular descriptor in order to test the capability of a special kind of such parameter: a flexible molecular descriptor. Results are very encouraging and they show the power of such types of topological variables. In fact, although there are some large deviations when employing the complete initial molecular set comprising very diverse organic molecules, the average deviations are quite sensible ones. In order to judge the relative merits of the present approach one must take into consideration that a single figure is representing a physical-chemistry property (i.e. NBPs), which evidently depends on many molecular features which cannot be encoded in a single topological descriptor. In order to reproduce a given property, it is necessary to resort to a many variables regression equation, each of them taking into account a different molecular feature. Furthermore, usually one employs a set comprising similar molecules, but our main purpose has not been to make exact numerical predictions, but rather to show the real possibilities of a particular kind of flexible topological descriptor. We consider this objective has been fully met. The next step is to complement these calculations using a several variables approach, based on choosing other molecular descriptors in order to add other physical molecular features which are not included into the OCWLI. Work along this line of research is under way and results will be presented elsewhere very soon.
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