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Abstract:



On the basis of the inductive QSAR descriptors we have created a neural network-based solution enabling quantification of antibacterial activity in the series of 101 synthetic cationic polypeptides (CAMEL-s). The developed QSAR model allowed 80% correct categorical classification of antibacterial potencies of the CAMEL-s both in the training and the validation sets. The accuracy of the activity predictions demonstrates that a narrow set of 3D sensitive ‘inductive’ descriptors can adequately describe the aspects of intra- and intermolecular interactions that are relevant for antibacterial activity of the cationic polypeptides. The developed approach can be further expanded for the larger sets of biologically active peptides and can serve as a useful quantitative tool for rational antibiotic design and discovery.
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Introduction


QSAR models for antibiotic activity


QSAR studies of antibiotic activity represent an emerging and exceptionally important topic in the area of computed-aided drug design. Although the demand for ‘in silico’ discovery is clear in all areas of human therapeutics, the field of anti-infective drugs has a particular need for computational solutions enabling rapid identification of novel therapeutic leads. As a result, there is an urge for new antibiotics and antivirals driven by critical situations, such as the increased prevalence of multi-drug resistant bacteria and HIV/AIDS, and the emergence or re-emergence of deadly infectious diseases such as Lyme disease, West Nile virus, Hantavirus pulmonary syndrome, Norwalk-like virus, Avian influenza virus, SARS, and novel forms of Cryptococcal infection. On another hand, historically, ‘Big Pharma’ have withdrawn from the field of antimicrobial drug development in favour of more profitable areas. Consequently, very few novel antibacterial therapeutics have emerged over the last decade. At this moment, QSAR studies can help solving this problem by providing the means of rapid design and virtual screening of combinatorial anti-infective libraries, as well as for rational data mining for novel antibiotic candidates.



Few antibacterial QSAR studies have been reported up to date, which could either distinguish compounds possessing antibacterial activity from all other chemicals, or numerically reproduce antibacterial potencies in the series of closely related chemical analogues. These QSAR approaches process a variety of structure-dependent descriptors with machine learning and statistical techniques such as Artificial Neural Networks [1,2,3], Linear Discriminant Analysis, [4,5,6] Binary Logistic Regression [5], Principal Component Analysis and k-means Cluster method [7]. In some cases the results allowed the authors to introduce novel anti-infective leads, however, all of the reported QSAR solutions have been built upon already well - studied classes of traditional antibiotics. In the current work, we apply the QSAR methodology to the newest class of antibacterial therapeutics – the cationic polypeptides, which represent the latest hope in the combat against multi-drug resistant pathogens.




Cationic polypeptides as a novel class of antibacterial therapeutics


A diverse population of antimicrobial peptides (AMP-s) can be found in nature, as they are an essential component of anti-infective defence mechanisms in mammals, amphibians, insects and plants [8,9,10,11]. The majority of AMP-s share several key structural features such as short length (typically 10 to 40 amino acids), amphipathicity (i.e., a molecule has distinct cationic and hydrophobic faces), and helical or cyclic structure. In the recent years, AMP-s have drawn much attention as a potentially effective class of anti-infectious therapeutics. Considering the facts that bacterial resistance to antimicrobial peptides is infrequent [12,13,8], they are non-toxic and non-immunogenic (according to numerous reports, such as [14]), extensive research programs have been established with the aim to exploit the AMP-s as a novel stand-alone class of antibiotics.



Substantial experimental efforts have been invested into discovery and investigation of natural and synthetic cationic polypeptides possessing antibacterial, antiviral, antifungal and/or anti-tumour activities. Nevertheless, only a few very simple structure-activity studies have been reported in the literature, with the results not leading to validated QSAR models. In the current work, we have attempted to fill this gap by creating a QSAR model quantifying antibacterial activity of a broad range of rigorously investigated cationic peptides through the recently developed ‘inductive’ QSAR descriptors.




‘Inductive’ descriptors overview


The ‘inductive’ descriptors have been previously introduced, and are based on the models of inductive and steric effects, inductive electronegativity and molecular capacitance, developed in a series of papers by Cherkasov and co-authors [15,16,17,18,19]. These molecular parameters can be easily accessed from fundamental parameters of bound atoms, such as absolute electronegativities (χ), covalent radii (R) and intramolecular distances (r). The steric Rs and inductive σ* influence of n - atomic group G on a single atom j is:
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(2)







In those cases when the inductive and steric interactions occur between a given atom j and the rest of N-atomic molecule (as sub-substituent), the summation in (1) and (2) is taken over N-1 terms. Thus, the group electronegativity of (N-1)-atomic substituent around atom j is expressed as the following:
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Similarly, steric and inductive effects of a singe atom onto a group of atoms (the rest of the molecule) are defined as:
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In the work [18] an iterative procedure for calculating a partial charge on j-th atom in a molecule was developed, and it is:


 [image: Molecules 09 01034 i006]



(6)




(where Qj reflects the formal charge of an toms j).



Initially, the parameter χ in (6) corresponds to χ0 - an absolute, unchanged electronegativity of an atom As the iterative calculation progresses, the equalized electronegativity χ’ gets updated according to (7).


χ' ≈ χ0 + η0∆N



(7)




where the local chemical hardness η0 reflects the “resistance” of electronegativity to a change of the atomic charge. The ‘inductive’ hardness ηi and softness si of a bound atom i are represented in the following manner:
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The corresponding group parameters are therefore expressed as:
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(10)
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The interpretation of the physical meaning of the ‘inductive’ descriptors was developed by considering a neutral molecule as an electrical capacitor formed by charged atomic spheres [18]. This approximation relates chemical softness-hardness of bound atom(s) with the areas of the facings of an electrical capacitor radically formed by the atom(s) in a molecule (Figure 1), and correlates electronic density with capacitor-accumulated electricity.


Figure 1. Radial shielding on spherical surface of atom A by the neighbouring atom B



[image: Molecules 09 01034 g001]








The validation of Cherkasov’s ‘inductive’ parameters, developed to date, has been rigorously conducted on extensive experimental datasets [15,16,17,18,19,20,21,22,23,24]. Table 1 features 50 ‘inductive’ QSAR descriptors that can be calculated in the framework of equations (1)-(11). It should be noted that in a previous study [25], these molecular parameters allowed creation of the QSAR model enabling 93% correct recognition of low-molecular weight antibacterial compounds.



Table 1. Inductive QSAR descriptors introduced on the basis of equations (1)-(11).







	
Descriptor

	
Characterization

	
Parental formula(s)






	
χ (electronegativity) – based




	
EO_Equalized*

	
Iteratively equalized electronegativity of a molecule

	
Calculated iteratively by (7) where charges get updated according to (6); an atomic hardness in (7) is expressed through (8)




	
Average_EO_Pos*

	
Arithmetic mean of electronegativities of atoms with positive partial charge

	
 [image: Molecules 09 01034 i011] where n+ is the number of atoms i in a molecule with positive partial charge




	
Average_EO_Neg*

	
Arithmetic mean of electronegativities of atoms with negative partial charge

	
 [image: Molecules 09 01034 i012] where n− is the number of atoms i in a molecule with negative partial charge




	
η (hardness) – based




	
Global_Hardness

	
Molecular hardness - reversed softness of a molecule

	
(10)




	
Sum_Hardness*

	
Sum of hardnesses of atoms of a molecule

	
Calculated as a sum of inversed atomic softnesses in turn computed within (9)




	
Sum_Pos_Hardness

	
Sum of hardnesses of atoms with positive partial charge

	
Obtained by summing up the contributions from atoms with positive charge computed by (8)




	
Sum_Neg_Hardness

	
Sum of hardnesses of atoms with negative partial charge

	
Obtained by summing up the contributions from atoms with negative charge computed by (8)




	
Average_Hardness*

	
Arithmetic mean of hardnesses of all atoms of a molecule

	
Estimated by dividing quantity (10) by the number of atoms in a molecule




	
Average_Pos_Hardness*

	
Arithmetic mean of hardnesses of atoms with positive partial charge

	
 [image: Molecules 09 01034 i013]where n+ is the number of atoms i with positive partial charge.




	
Average_Neg_Hardness*

	
Arithmetic mean of hardnesses of atoms with negative partial charge

	
 [image: Molecules 09 01034 i014] where n− is the number of atoms i with negative partial charge.




	
Smallest_Pos_Hardness

	
Smallest atomic hardness among values for positively charged atoms

	
(8)




	
Smallest_Neg_Hardness

	
Smallest atomic hardness among values for negatively charged atoms.

	
(8)




	
Largest_Pos_Hardness*

	
Largest atomic hardness among values for positively charged atoms

	
(8)




	
Largest_Neg_Hardness*

	
Largest atomic hardness among values for negatively charged atoms

	
(8)




	
Hardness_of_Most_Pos*

	
Atomic hardness of an atom with the most positive charge

	
(8)




	
Hardness_of_Most_Neg

	
Atomic hardness of an atom with the most negative charge

	
(8)




	
s (softness) – based




	
Global_Softness

	
Molecular softness – sum of constituent atomic softnesses

	
(11)




	
Total_Pos_Softness

	
Sum of softnesses of atoms with positive partial charge

	
Obtained by summing up the contributions from atoms with positive charge computed by (9)




	
Total_Neg_Softness*

	
Sum of softnesses of atoms with negative partial charge

	
Obtained by summing up the contributions from atoms with negative charge computed by (9)




	
Average_Softness

	
Arithmetic mean of softnesses of all atoms of a molecule

	
(11) divided by the number of atoms in molecule




	
Average_Pos_Softness

	
Arithmetic mean of softnesses of atoms with positive partial charge

	
 [image: Molecules 09 01034 i015] Where n+ is the number of atoms i with positive partial charge.




	
Average_Neg_Softness

	
Arithmetic mean of softnesses of atoms with negative partial charge

	
 [image: Molecules 09 01034 i016] where n− is the number of atoms i with negative partial charge.




	
Smallest_Pos_Softness

	
Smallest atomic softness among values for positively charged atoms

	
(9)




	
Smallest_Neg_Softness

	
Smallest atomic softness among values for negatively charged atoms

	
(9)




	
Largest_Pos_Softness

	
Largest atomic softness among values for positively charged atoms

	
(9)




	
Largest_Neg_Softness

	
Largest atomic softness among values for positively charged atoms

	
(9)




	
Softness_of_Most_Pos

	
Atomic softness of an atom with the most positive charge

	
(9)




	
Softness_of_Most_Neg

	
Atomic softness of an atom with the most negative charge

	
(9)




	
q (charge)- based

	

	




	
Total_Charge

	
Sum of absolute values of partial charges on all atoms of a molecule

	
 [image: Molecules 09 01034 i017] where all the contributions ∆Ni derived within (6)




	
Total_Charge_Formal*

	
Sum of charges on all atoms of a molecule (formal charge of a molecule)

	
Sum of all contributions (6)




	
Average_Pos_Charge*

	
Arithmetic mean of positive partial charges on atoms of a molecule

	
 [image: Molecules 09 01034 i018] where n+ is the number of atoms i with positive partial charge




	
Average_Neg_Charge*

	
Arithmetic mean of negative partial charges on atoms of a molecule

	
 [image: Molecules 09 01034 i019] where n− is the number of atoms i with negative partial charge




	
Most_Pos_Charge*

	
Largest partial charge among values for positively charged atoms

	
(6)




	
Most_Neg_Charge

	
Largest partial charge among values for negatively charged atoms

	
(6)




	
σ* (inductive parameter) – based




	
Total_Sigma_mol_i

	
Sum of inductive parameters σ*(molecule→atom) for all atoms within a molecule

	
 [image: Molecules 09 01034 i020] where contributions  [image: Molecules 09 01034 i021] are computed by equation (2) with n=N-1 – i.e. each atom j is considered against the rest of the molecule G




	
Total_Abs_Sigma_mol_i

	
Sum of absolute values of group inductive parameters σ*(molecule→atom) for all atoms within a molecule

	
 [image: Molecules 09 01034 i022]




	
Most_Pos_Sigma_mol_i*

	
Largest positive group inductive parameter σ*(molecule→atom) for atoms in a molecule

	
(2)




	
Most_Neg_Sigma_mol_i

	
Largest (by absolute value) negative group inductive parameter σ*(molecule→atom) for atoms in a molecule

	
(2)




	
Most_Pos_Sigma_i_mol

	
Largest positive atomic inductive parameter σ*(atom→molecule) for atoms in a molecule

	
(5)




	
Most_Neg_Sigma_i_mol*

	
Largest negative atomic inductive parameter σ*(atom→molecule) for atoms in a molecule

	
(5)




	
Sum_Pos_Sigma_mol_i

	
Sum of all positive group inductive parameters σ*( molecule →atom) within a molecule

	
 [image: Molecules 09 01034 i023] where  [image: Molecules 09 01034 i021] >0 and n+ is the number of N-1 atomic substituents in a molecule with positive inductive effect (electron acceptors)




	
Sum_Neg_Sigma_mol_i*

	
Sum of all negative group inductive parameters σ*( molecule →atom) within a molecule

	
 [image: Molecules 09 01034 i024] where  [image: Molecules 09 01034 i021] <0 and n− is the number of N-1 atomic substituents in a molecule with negative inductive effect (electron donors)




	
Rs (steric parameter) – based




	
Largest_Rs_mol_i

	
Largest value of steric influence Rs(molecule→atom) in a molecule

	
(1) where n=N-1 - each atom j is considered against the rest of the molecule G




	
Smallest_Rs_mol_i*

	
Smallest value of group steric influence Rs(molecule→atom) in a molecule

	
(1) where n=N-1 - each atom j is considered against the rest of the molecule G




	
Largest_Rs_i_mol

	
Largest value of atomic steric influence Rs(atom→molecule) in a molecule

	
(4)




	
Smallest_Rs_i_mol

	
Smallest value of atomic steric influence Rs(atom→molecule) in a molecule

	
(4)




	
Most_Pos_Rs_mol_i

	
Steric influence Rs(molecule→atom) ON the most positively charged atom in a molecule

	
(1)




	
Most_Neg_Rs_mol_i*

	
Steric influence Rs(molecule→atom) ON the most negatively charged atom in a molecule

	
(1)




	
Most_Pos_Rs_i_mol

	
Steric influence Rs(atom→molecule) OF the most positively charged atom to the rest of a molecule

	
(4)




	
Most_Neg_Rs_i_mol

	
Steric influence Rs(atom→molecule) OF the most negatively charged atom to the rest of a molecule

	
(4)








* – descriptors selected for building the antibiotic peptide QSAR model.












Results and Discussion


Experimental data


In the current work, we have used the ‘inductive’ descriptors to investigate structure-activity relationships in a series of antibiotic peptides called CAMEL-s. These compounds represent derivatives from the hybrid polypeptide CAMEL0 previously created by the respective fusion of the C- and N-terminus sequences of natural peptides Cecropin and Melittin. Despite the rather limited variability in amino acid sequences among these leucine-rich peptides, their antibacterial activity ranges over several orders of magnitude. It has been experimentally demonstrated that the CAMEL-s exhibit high activity against various strains (including the drug-resistant ones) of Gram-positive and Gram-negative bacteria, including Bacteroides, Bordetella, Campylobacter, Corynebacterium, Klebsiella, Listeria, Moraxella, Pastuerella, Taylorella, Yersinia, Rhodococcus, Staphylococcus and Streptococcus [26,27,28]. The minimal inhibitory concentrations for the series of 101 CAMEL-s against the listed microorganisms have been previously averaged to produce the mean antibiotic potency parameters [26,27,28]. These values extracted from the SAPD database [29] have been collected into Table 2 and subjected to QSAR analysis with the ‘inductive’ descriptors.



Table 2. Training Set of Camels in the 90/10 Split: the Mean Experimental Potencies vs. Predicted Potencies Using a Neural Network with Eight Hidden Nodes. The experimental potencies are average potencies against 24 Gram-positive and Gram-negative bacterial strains. The Camels are sorted according to ascending experimental potencies.







	
Identity

	
Peptide sequence (NH2 corresponds to the amidated C-terminus group)

	
Experimental Potency

	
Predicted Potency




	
CAMEL118

	
KWKLFlgIlAVLKVL-NH2

	
0.159

	
0.335




	
CAMEL17

	
KWnLngnInAVLKVL-NH2

	
0.209

	
0.176




	
CAMEL38

	
KWKgeleIeAeLKVL-NH2

	
0.376

	
0.172




	
CAMEL107

	
gWKLglKIlnVLKVL-NH2

	
0.496

	
1.216




	
CAMEL20

	
KWKLFKKnnnnnKhn-NH2

	
0.498

	
1.49




	
CAMEL116

	
KWhLFllIlAVLKVL-NH2

	
0.514

	
0.405




	
CAMEL34

	
KrgLFKKgGAVLKgL-NH2

	
0.528

	
1.227




	
CAMEL18

	
KWhLrnKIGAVrnnL-NH2

	
0.537

	
1.183




	
CAMEL16

	
KhKLFKKIGAhrKrn-NH2

	
0.553

	
1.445




	
CAMEL39

	
hWhLhKhrGArhKVL-NH2

	
0.677

	
1.184




	
CAMEL134

	
gWeLgeeIlnVLKVL-NH2

	
0.708

	
0.16




	
CAMEL115

	
KWhLFlKIlAVLKVL-NH2

	
0.741

	
1.646




	
CAMEL50

	
KWKLFKKhGnVrKVL-NH2

	
0.771

	
1.747




	
CAMEL10

	
KnKrnKKIGAVLKVL-NH2

	
0.848

	
1.216




	
CAMEL14

	
KhnLFKgIGAVLlVL-NH2

	
0.922

	
1.121




	
CAMEL51

	
KWKLFKKIGnrnKVL-NH2

	
0.947

	
1.631




	
CAMEL113

	
lWKLFlhIlAVLKVL-NH2

	
0.962

	
0.162




	
CAMEL26

	
KnKLeKKIGAVLKVL-NH2

	
1.027

	
1.339




	
CAMEL52

	
KWKLgKgIGAVgKVL-NH2

	
1.033

	
1.08




	
CAMEL58

	
KWKLFnrIGhnrKVn-NH2

	
1.049

	
1.739




	
CAMEL137

	
gWrLFrgIrAVLnVL-NH2

	
1.074

	
0.296




	
CAMEL54

	
KWgLFKnIGAVLhVn-NH2

	
1.156

	
0.223




	
CAMEL57

	
rWKLnnnIGArLKVL-NH2

	
1.206

	
0.977




	
CAMEL33

	
hWKLFKKIGhVnKrL-NH2

	
1.34

	
1.937




	
CAMEL60

	
hWKrFlrIGhnLnVn-NH2

	
1.495

	
1.385




	
CAMEL11

	
KWKLFKKIGgVggVL-NH2

	
1.593

	
2.133




	
CAMEL120

	
gWKLFlKIlAVLKVL-NH2

	
1.598

	
0.785




	
CAMEL13

	
gWKLFKnrGAVLKhL-NH2

	
1.605

	
2.444




	
CAMEL8

	
KWKLFnKrGAVLKVL-NH2

	
1.605

	
2.404




	
CAMEL19

	
rWKnFKnIrAnLrVL-NH2

	
1.742

	
2.017




	
CAMEL56

	
KWKLFgKnGrnLlVL-NH2

	
1.814

	
0.826




	
CAMEL138

	
gWrLFKgIrAVLnVL-NH2

	
1.826

	
1.157




	
CAMEL41

	
KWKLFKKgavlkvlt-NH2

	
1.891

	
3.518




	
CAMEL47

	
KWKLFKKrnAVLKVL-NH2

	
1.964

	
2.497




	
CAMEL44

	
KWKLFKKIGAnLKVL-NH2

	
2.07

	
3.032




	
CAMEL12

	
KWKLFKrIGAVhKrL-NH2

	
2.242

	
1.675




	
CAMEL53

	
hWKLFKKIhAVrKhL-NH2

	
2.244

	
1.495




	
CAMEL112

	
KWKLFlhIlAVLKVL-NH2

	
2.245

	
1.178




	
CAMEL32

	
KWKLFrKIGAVhrVL-NH2

	
2.306

	
2.906




	
CAMEL29

	
lWKLFKKhGAVLKVL-NH2

	
2.422

	
4.74




	
CAMEL36

	
KWhLnKrIhAVLKrL-NH2

	
2.587

	
2.129




	
CAMEL1

	
KWKLFKKgigavlkv-NH2

	
2.649

	
1.83




	
CAMEL35

	
KWKLFrrIGAVLKhr-NH2

	
2.706

	
1.816




	
CAMEL30

	
KrKrFrKIGAVLKVL-NH2

	
2.747

	
1.849




	
CAMEL15

	
KWKLFKlrGrVrKVL-NH2

	
2.879

	
3.728




	
CAMEL31

	
KWKLFKKIGlgLgVL-NH2

	
3.148

	
2.325




	
CAMEL2

	
KWKLFKKlkvlttgl-NH2

	
3.246

	
3.974




	
CAMEL126

	
lWrLlKhIlrVLKVL-NH2

	
3.259

	
3.974




	
CAMEL55

	
KWlLFKKIGAVLlnh-NH2

	
3.425

	
3.229




	
CAMEL37

	
lrKLFKKIrAVLlVr-NH2

	
3.617

	
3.407




	
CAMEL125

	
lWrLlKKIlrVLKVL-NH2

	
3.822

	
4.82




	
CAMEL119

	
gWKLFKlIGAVLKVL-NH2

	
3.86

	
3.429




	
CAMEL28

	
KWKLgKKIGAVLgVL-NH2

	
3.946

	
3.055




	
CAMEL114

	
KWKLFhKIlAVLKVL-NH2

	
4.105

	
4.843




	
CAMEL61

	
KWKLFKKavlkvltt-NH2

	
4.105

	
3.995




	
CAMEL111

	
KWKLFhlIGAVLKVL-NH2

	
4.165

	
3.484




	
CAMEL49

	
nWKLFhKIGAVLKVL-NH2

	
4.187

	
4.819




	
CAMEL25

	
KWKLrKKIGAVLKVL-NH2

	
4.262

	
3.762




	
CAMEL43

	
KWKgFKKIGAVLKVL-NH2

	
4.319

	
4.359




	
CAMEL105

	
gWKLgKKIGrVLKVL-NH2

	
4.336

	
5.555




	
CAMEL124

	
KWKLFKlIrAVLKVL-NH2

	
4.533

	
5.078




	
CAMEL7

	
KWKLFKKIGAVLhnL-NH2

	
4.534

	
3.614




	
CAMEL121

	
gWKgFKKIGrVLKVL-NH2

	
4.759

	
5.465




	
CAMEL27

	
KWKLFKKIGAVLnrL-NH2

	
4.869

	
4.987




	
CAMEL3

	
KWgLFKKIGAVLKVL-NH2

	
4.989

	
3.87




	
CAMEL81

	
KWKLFKKvlkVLttg-NH2

	
5.297

	
4.455




	
CAMEL106

	
gWKLFKKIGrVLKVL-NH2

	
5.318

	
5.577




	
CAMEL127

	
gWKLFKKIGrVLrVL-NH2

	
5.47

	
5.13




	
CAMEL130

	
lWKLFKKIrrlLKVL-NH2

	
5.49

	
4.547




	
CAMEL128

	
lWKLFKKIGrVLKVL-NH2

	
5.493

	
5.375




	
CAMEL131

	
lWKLFrKIrrlLrVL-NH2

	
5.504

	
5.682




	
CAMEL104

	
gWKLgKKIlrVLrVL-NH2

	
5.562

	
5.771




	
CAMEL108

	
KWKLgKKIlnVLKVL-NH2

	
5.566

	
4.905




	
CAMEL109

	
gWrLgKKIlrVLKVL-NH2

	
5.572

	
5.7




	
CAMEL123

	
lWKLFKKIrrVLrVL-NH2

	
5.614

	
5.656




	
CAMEL0

	
KWKLFKKIGAVLKVL-NH2

	
5.712

	
5.14




	
CAMEL42

	
hWKLFKKIGAVLKVL-NH2

	
5.712

	
4.706




	
CAMEL102

	
gWKLgKKIlrVLKVL-NH2

	
5.725

	
5.674




	
CAMEL6

	
nWKLFKKIGAVLKVL-NH2

	
5.803

	
5.205




	
CAMEL23

	
KWhLFKKIGAVLKVL-NH2

	
5.81

	
4.7




	
CAMEL101

	
KWKLgKKIlrVLKVL-NH2

	
5.845

	
5.465




	
CAMEL103

	
gWKLglKIlrVLKVL-NH2

	
5.879

	
5.238




	
CAMEL22

	
gWKLFKKIGAVLKVL-NH2

	
5.946

	
5.363




	
CAMEL110

	
gWKLgKKIlnVLKVL-NH2

	
6.043

	
5.637




	
CAMEL129

	
lWKLFKKInrVLKVL-NH2

	
6.045

	
5.212




	
CAMEL4

	
KWKLFhKIGAVLKVL-NH2

	
6.072

	
4.877




	
CAMEL24

	
KWKLFKhIGAVLKVL-NH2

	
6.167

	
4.88




	
CAMEL132

	
gWKLgKhIlnVLKVL-NH2

	
6.182

	
5.035




	
CAMEL48

	
KWKLgKKIGAVLKVL-NH2

	
6.323

	
5.026




	
CAMEL136

	
vWrLiKKIlrVfKgL-NH2

	
6.613

	
5.374




	
CAMEL135

	
gWrLiKKIlrVfKgL-NH2

	
6.665

	
5.559











Factors governing bioactivity of CAMEL-s


The common mode of action of antimicrobial peptides is disruption of bacterial cell membranes via electrostatic and hydrophobic interactions [1,3,4,12,14,29,30,31,32,33,34,35,36]. It is believed that amphipatic peptides can penetrate or form pores in the cell membranes through the insertion into the lipid bilayer mediated by hydrophobic forces, while their electrostatic interaction with phospholipid headgroups leads to membrane disruption. Cationic peptides exhibit high affinity only toward negatively charged surfaces of bacterial cells while they do not tend to interact with eukaryotic cells surfaces composed mostly of zwitterionic phospholipids. It has been demonstrated that antimicrobial activity of polypeptides can be influenced by their helicity, hydrophobicity and amphipathicity [5,37,38,39,40,41,42,43,44]. Nonetheless, the exact nature of this correlation is still unclear and the understanding of the factors influencing the AMP activity is incomplete. We postulate that a set of the developed ‘inductive’ descriptors can adequately reflect those structure-dependent properties of CAMEL-s pertaining to their antibacterial activity. The reasoning for this stems from the fact that the parameters calculated within (1)–(11) cover a very broad range of proprieties of bound atoms and molecules related to their size, polarizability, electronegativity, compactness, mutual inductive and steric influence and distribution of electronic density, etc.




Descriptors calculation and selection


All 50 inductive QSAR descriptors (presented in detail in Table 1) have been calculated for all 101 CAMEL molecules under study. To compute the ‘inductive’ descriptors we have used the custom SVL-scripts implemented in the MOE package [45]. It should be noted that all of the produced parameters are 3D-sensitive and depend on the structure of polypeptides. The CAMEL-s were initially built in the alpha-helical conformations (the helicity was confirmed by a number of secondary structure predictors) which were further optimized by the MMFF9f molecular mechanic simulations.



It should be mentioned here, that some inductive descriptors may reflect related or similar molecular/atomic properties and can be correlated in certain cases (even though the analytical representation of those descriptors does not directly imply their co-linearity). Moreover, most of the CAMEL-s have very similar three-dimensional structures and, therefore, special precautions were taken in selecting the appropriate ‘inductive’ descriptors for the QSAR model. Hence, to eliminate the cross-correlation among the independent variables, we pre-computed pairwise regressions between all pairs of the 50 QSAR parameters for CAMEL-s. We subsequently removed those descriptors that linearly correlated with R≥0.9. As a result of this procedure, only 20 parameters were selected for further simulation (for more information refer to the Legend of Table 1). The descriptors are: Average Electronegativities of the Negatively/Positively Charged Atoms, Molecular (equalized) Electronegativity, Total Formal Charge, Average Atomic Hardness, Sum of Atomic Hardnesses, Average Negative/Positive Charges, Largest Positive Charge, Average Atomic Hardnesses of Negatively/Positively Charged Atoms, Hardness of the Most Positively Charged Atom, Largest Hardness among the Negatively/Positively Charged Atoms, Sum of Softnesses of Negatively Charged Atoms, Steric Effect on the Most Negatively Charged Atom, Most Negative Inductive Constant of an Atom in Molecule, Largest Positive Inductive Effect on an Atom in Molecule, The Smallest Steric Effect on a Atom in Molecule, Sum of all Negative Inductive Effects on Atoms in Molecule.



The averaged values of these 20 indices were also separately calculated for antibacterial CAMEL-s conventionally sub-divided into three activity groups: very active (with the mean potency above 4), mild (potency between 2 and 4) and moderate antibacterials (potency < 2). The ‘inductive’ descriptors averaged within these three groups are plotted in Figure 2. Although the curves for moderate and very active peptides are very close for the most part, all three categories of CAMEL-s can be clearly distinguished by the selected QSAR parameters.


Figure 2. Distribution of the averaged values of the ‘inductive’ indices among ‘Very active’, ‘Moderately active’ and ‘Mild’ CAMEL polypeptides under investigation.
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Therefore, it is reasonable to assume that the ‘inductive’ QSAR descriptors can effectively be used for the numerical quantification of the average potency of the CAMEL-s.




Composition of the training and the testing (validation) sets


In order to relate the ‘inductive’ descriptors to the experimental mean potencies of the peptides, we have employed the method of Artificial Neural Networks (ANN). Machine-learning approaches, particularly ANN, represent one of the essential parts of the modern QSAR, and the detailed description of the corresponding methodologies can be found elsewhere [e.g., in 46].



For this study, we chose the standard back-propagation configuration for the ANN and we used the Stuttgart Neural Network Simulator package [47] to implement the model. For effective training of the network (primarily to avoid overfitting), we used the training sets of 91 compounds randomly selected as 90 percent of the available CAMEL-s. Such random sampling has been performed 20 times and, thus, 20 independent QSAR models have been created in order to evaluate the average predictive ability of the method. One of the training sets with 91 CAMEL peptides is presented in Table 2.





The remaining 10 polypeptides, featured in Table 3, were used as the corresponding testing group to access the method’s predictive ability. For each polypeptide in the training and testing sets, we have transformed 20 network input descriptors into the normalized values varying from 0 to 1. Similarly, the output parameters from the ANN (mean antibacterial potencies) were normalized to [0:1] range.



Table 3. Validation (testing) Set of Camels in the 90/10 Split: Experimental Mean Potencies vs. Predicted Potencies by a Neural Network with Eight Hidden Nodes.







	
Identity

	
A.A. Sequence

	
Experimental Potency

	
Predicted Potency






	
CAMEL59

	
KgKggKKgGrggKVL-NH2

	
1.077

	
1.030




	
CAMEL40

	
gWlLhrnIGnVLhrL-NH2

	
1.387

	
1.167




	
CAMEL5

	
KWKLFKKnGAVLKVL-NH2

	
1.408

	
2.076




	
CAMEL139

	
gWKLFKgIrAVLnVL-NH2

	
1.497

	
1.524




	
CAMEL117

	
lWhLFlKIlAVLKVL-NH2

	
1.515

	
0.194




	
CAMEL140

	
gWrLlKKIleVLKVL-NH2

	
4.136

	
1.203




	
CAMEL45

	
KWKnFKKIGAVLKVL-NH2

	
4.249

	
4.149




	
CAMEL122

	
lWKLFKKIrrVLKVL-NH2

	
6.142

	
5.593




	
CAMEL9

	
KWrLFKnIGAVLKVL-NH2

	
6.292

	
2.917




	
CAMEL46

	
KWKLFKgIrAVLKVL-NH2

	
6.45

	
4.825













QSAR model for CAMEL-s antibiotic potency


To quantify the antibacterial potencies of the CAMEL-s from the training sets, for each of them we built ANN consisting of 20 input, 8 hidden and 1 output nodes (as indicated on Figure 3).


Figure 3. Configuration of the Artificial Neural Network with 20 input, 8 hidden and 1 output nodes used in the study.
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During the learning phase, the normalized values of the selected 20 ‘inductive’ descriptors for each training peptide are fed to the ANN along with the experimental potencies. The relationship between the 20 input parameters and potency is established by recursively correcting the weights attributed to each parameter in such a way that the training potencies converge to the experimental potencies. The training was conducted with the learning rate of 0.8 and the learning update threshold of 0.2, while the input patterns were shuffled, and the initial weights were randomly assigned between 0 and 1. Random noise ranging from -0.002 to 0.002 was added to the ANN inputs to avoid the entrapment of the learning function in a local minimum. The theoretical antibacterial activities of 91 CAMEL-s from the representative training sample estimated during the learning phase are shown in Table 2 and plotted against the experimental numbers in Figure 4.


Figure 4. Predicted Potencies vs. Experimental Mean Potencies in the Training Set.
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As it can be seen from the data, the ‘inductive’ descriptors allowed reproducing the average antibacterial activity of 91 CAMEL-s in the presented set of the training compounds with rather good accuracy. Considering that the examined potencies represent some averaged, not well standardized properties, the resulting QSAR predictions can be viewed as very adequate. To investigate the predictive power of the developed ANN-based solution, and to ensure that no overtraining occurred, we examined the network’s performance on the testing compounds from Table 3. The normalized patterns of the independent variables for 10 CAMEL-s not used for the learning phase were passed through the trained ANN. The pre-estimated node–associated weights of the networks were used to compute the theoretical potencies of the validation compounds. The resulting output parameters collected in Table 3 demonstrate that with the exception of two peptides (CAMEL-s 9 and 140), the predicted CAMEL potencies accurately reproduce the experimental data, thereby validating the QSAR model generated here. It should be noted that similar ANN performance has been observed on all 20 training/testing random pairs of peptide datasets (the results for compounds from Table 2 and Table 3 are actually one of the least accurate among the studied).



To assess the predictive ability of the developed approach in the categorical context (which is more appropriate for such non-standardized data with considerable uncertainty), we have also transformed the continuous outputs from the training and testing procedures into the discrete categorical format. Using the previously outlined conditional classification of the studied polypeptides, the performance of the neural network was assessed by comparing the categorical classification of the outputs from the neural network with the categories corresponding to the experimental potencies. For the cases in which the experimental potency and the predicted potency correspond to the same activity category the prediction of activity was considered to be correct.



Based on this simple assessment, the correct predictions by the developed QSAR model can be considered as 79% accurate for the presented training set (72 out of 91 CAMEL-s were correctly assigned) and 80% accurate for the testing set in Table 3 (8 correct predictions out of 10). The significant deviations of the predicted potencies from the experimental potencies for two validation peptides – CAMEL 9 and CAMEL 140, indicate that the ANN-based approach underestimated the potency of these compounds.



Thus, the computed mean potency of CAMEL9 (2.917) is much lower than the corresponding experimental activity (6.292). This can, perhaps, be attributed to the non-exact character of the potency parameters and the model’s discrepancies. Similarly, for CAMEL140, we predicted its potency to be 1.203 rather than 4.136. In this case, the error could be attributed to the very uncharacteristic composition of this peptide. It contains the negatively charged glutamic acid (E) residue which could not be adequately captured by the neural network which is trained on the set of peptides not containing this structural feature (only one peptide from the training set has E in the sequence). Despite the occasional misclassification, the developed ANN predictor has not missed by more than one class of antibacterial activity or, in other words, it did not place any peptides with high activity to the class of mild therapeutics and vice versa.



The accuracy of the created QSAR model can, possibly, be further improved by pre-processing the data for most adequate training and testing sets selection [48] or by using more powerful machine learning techniques. To summarize the section, it is possible to conclude, that the developed QSAR model operating by the ‘inductive’ descriptors and utilizing the ANN algorithm can accurately quantify the antibacterial potency of the studies synthetic cationic polypeptides and can effectively place them into groups of active, moderate and mild anti-infective compounds.





Conclusions and Further Directions


The evolution of bacterial strains into multi-drug resistant organisms progresses at an alarming rate. For this reason, it is crucial to discover novel non-specific antibiotics (such as cationic polypeptides) that are active against a number of different strains of microbes, including the resistant ones. The role of QSAR models for the antimicrobial polypeptides cannot be overestimated as such predictive solutions can significantly rationalize the selection, design and refinement efforts for these drugs. The developed QSAR approach utilizing the ‘inductive’ descriptors and based on the Artificial Neural Network algorithm can be used for these purposes and can be further expanded to cover a wider range of cationic peptides active against pathogens.



The approach can also be enhanced by utilizing purely statistical techniques in conjunction with the inductive QSAR descriptors which allows interpreting contributions from individual structural factors to the potency of the AMP-s. Despite the fact that the developed ANN-based method does not currently allow us to exactly evaluate the contributions of the individual QSAR descriptors, it is clear that the employed ‘inductive’ parameters adequately reflect those aspects of intra- and intermolecular interactions which govern antibacterial activity of the cationic polypeptides.



Hence, the developed methodology can further be applied to other important classes of cationic peptides, such as those active against viruses, fungi or tumours, and can provide excellent computational guidance for discovery of novel and potent therapeutic leads.
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