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Abstract: The sign preference of hydrogen bonded aqueous ionic clusters Χ±(H2O)i (n 
=1-5, Χ = F; Cl; Br) has been investigated using the Density Functional Theory and ab 
initio MP2 method. The present study indicates the anomalously large difference in 
formation free energies between cations and anions of identical chemical composition. 
The effect of vibrational anharmonicity on stepwise Gibbs free energy changes has been 
investigated, and possible uncertainties associated with the harmonic treatment of 
vibrational spectra have been discussed. 
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1. Introduction  

The importance of a clear and insight understanding of ion-induced nucleation phenomena for a 
number of issues related to the Earth climate, air quality, public health and various technologies is well 
established [1-8]. Although the importance of the ion-induced nucleation became recognized long time 
ago, the pronounced ion sign effect on nucleation rates observed in Wilson’s pioneering experiments 
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[1] in the cloud chamber and known as a sign preference has remained a mystery up until now. 
Castleman and Tang [6] stated over 30 years ago that ‘‘understanding the effect of ions would be very 
difficult, or even impossible, if the ion’s specific chemical characteristics had a significant effect on 
their nucleating efficiency”. Recently, Nadykto et al. [5] pointed out that the strong effect of ion 
properties on nucleation rates is essentially quantum in nature, and is controlled by the electronic 
structure of the core ion through the influence on the intermolecular bonding energies during the initial 
steps of cluster formation. While core ions considered in [5] differ in both sign and chemical 
composition, species presented in this study differ in sign only. This allows separating the “sign” and 
“composition” effects and permits explicit treatment of the “pure” sign preference in aqueous systems. 
In the present Communication, the thermochemical properties of aqueous clusters Χ±(H2O)i (n = 1-5, Χ 
= F; Cl; Br) have been studied using the quantum theory at DFT-PW91PW91/6-311++G(3df,3pd) 
level. The main goals of the present Communication are to quantify the effect of the ion sign on the 
thermochemical properties of aqueous clusters of identical chemical composition and to estimate the 
effect of vibrational anharmonicity on the computed free energies. 

2. Methods 

Initial generated structures were treated initially by semi-empirical PM3 method and then by 
PW91PW91/6-31+G*. Finally, the most stable (within ~4 kcal/mole from the lowest energy isomer) 
structures obtained at PW91PW91/6-31+G* level have been optimized at PW91PW91/6-
311++G(3df.3pd) level. PW91PW91/6-311++G(3df,3pd) has been used to obtain both equilibrium 
geometries and thermochemical properties from computed vibrational spectrums.  The PW91PW91 
density functional has been used in the combination with the largest Pople basis set 6-
311++G(3df,3pd) that provides quite small basis set superposition error (BSSE). In order to ensure the 
quality of the obtained DFT results, additional MP2/6-311++G(3df,3pd) calculations, both harmonic 
and anharmonic, have been carried out.  

3. Results and Discussion  

3.1. Difference in Formation Free Energies Between Cations and Anions 
 

The interest to stepwise Gibbs free energy changes as standalone quantities is related directly to 
very high sensitivity of nucleation rates to the thermochemistry of initial cluster growth steps. Figure 1 
presents the geometries of most stable isomers of  Cl+(H2O)i and Cl-(H2O)i. In addition to most stable 
isomers, a number of less stable conformers/local minima located within ~ 5 kcal mol-1 of the most 
stable isomer/global minimum (1-5 for each n) have been identified for all the species F±(H2O)i, 
Cl±(H2O)i, and Br±(H2O)i. Structures of clusters of the same ion sign F+(H2O)i, Cl+(H2O)i and 
Br+(H2O)i, and F-(H2O)i, Cl-(H2O)i and Br-(H2O)i are similar, while structures of the clusters of the 
same composition and different sign are quite different. As may be seen from Figure 1, the water 
molecule in Cl-(H2O)i is bonded to the core ion via H-Cl bond, while that in Cl+(H2O)i is bonded to the 
ions via the shorter O-Cl bond. Similar pattern is observed in the case of F+(H2O)i,and F-(H2O)i, and 
Br+(H2O)i and Br-(H2O)i.  
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Figure 1. Structures and geometric properties of most stable isomers of Cl±(H2O)i, (a) Cl-

(H2O); (b) Cl+(H2O); (c) Cl-(H2O)2; (d) Cl+(H2O)2; (e) Cl-(H2O)3; (f) Cl+(H2O)3; (g) Cl-

(H2O)4; (k) Cl+(H2O)4; (l) Cl-(H2O)5; (m) Cl+(H2O)5. 

   (a)          (b) 

   
   (c)          (d) 

  
   (e)        (f) 
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Figure 1. Cont. 

   (g)          (k) 

   
   (l)          (m) 

   
 

The difference in the cluster structure has direct impact on the stepwise Gibbs free energy changes 
associated with the addition of water molecules to the ionic clusters. Figure 2 presents the stepwise 
Gibbs free energies associated with X±(H2O)i-1+ (H2O) ⇔ X±(H2O)i reaction. 

As seen from Figure 2, cations have great growth advantage over anions. The difference in the 
Gibbs free energy is largely associated with the formation enthalpy and it decreases dramatically with 
the number of molecules in the clusters. The sign preference at the first growth steps is very strong, 
and the difference in the stepwise Gibbs free energy changes ΔG0,1 for F±(H2O)i, Cl±(H2O)i and 
Br±(H2O)i reaches ~140, 45 and 65 kcal mole-1, respectively. This means that cations are much more 
efficient as nucleators of unary water vapours than anions of identical chemical composition. The 
stepwise changes in the Gibbs free energies correlate quit well with the mean ion sizes. For example, 
the hydration of the smallest ion F+(H2O) of 0.149 nm in size (based on the volume calculation) is 
much stronger than that of bigger Cl-(H2O) (0.262 nm), Cl+(H2O) (0.2 nm), Br-(H2O) (0.283 nm), 
Br+(H2O)(0.23 nm) and F- (H2O) (0.194 nm). 
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Figure 2. Comparison of experimental and theoretical values of the stepwise Gibbs free 
energy change ∆Gn-1,n for X±(H2O)i-1+ (H2O) ⇔ X±(H2O)i reactions (a, b, c), and the 
difference in the Gibbs free energy δ(j) between j-mers formed over core ions of opposite 
sign (d). Curves and symbols of refer to theoretical results and experimental data, 
respectively. Experimental data and theoretical data for F-(H2O)n, Cl-(H2O) and Br-(H2O)n, 
were adopted from [11] , [5] and [10], respectively. The calculations were performed at the 
ambient temperature of 298.15 K and ambient pressure of 101.3 KPa. 
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Figure 2. Cont. 
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It is important to note that the sign preference of Cl±(H2O)n obtained in molecular-based studies 
using empirical interaction potential (TI4P) has a different sign. Moreover, the difference between 
quantum results and Monte-Carlo model predictions using empirical TIP4P water model is excessively 
large. While the Monte Carlo model [12-13] predicts the thermochemistry of Cl-(H2O)n in a good 

(d) 

(c) 
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agreement with the present results and experimental data, its deviation in Gibbs free energy for 
Cl+(H2O)n [13] from the present study exceeds several tens of kcal mole-1.  
 
3.2. Vibrational Anharmonicity  
 

Ongoing discussion [7-8] about the validity of the commonly used harmonic approximation 
motivated us to perform additional analysis of harmonic and anharmonic cluster spectra and validate 
them against available experimental data. Tables 1, 2 and 3 present the comparison of the theoretical 
PW91PW91/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) results obtained using the harmonic 
approximation with anharmonic results and experimental data. 
 

Table 1. Experimental and theoretical frequencies of F-(H2O) (cm-1). Subscripts H and A 
refer to harmonic and anharmonic calculations, respectively.  

 
 F-(H2O)      F-(H2O)2  

PW91H PW91A MP2H MP2A Expa Expb PW91H PW91A Expa 

1 3768 3556 3952 3770 3690 3687 3776 3578 3700 
2 1844 1783 2069 953      
3 1623 1609 1715 1625  1650 2717 2375 2520 
4 1157 1178 1242 1260  1083-1250 2506 2236 2435 
5 569 598 595 586      
6 436 401 412 441      

a [18]; b [17] 
 

Table 2. Experimental and theoretical frequencies of Cl-(H2O) (cm-1). Subscripts H and A 
refer to harmonic and anharmonic calculations, respectively.  

 
Cl-(H2O) Cl-(H2O)2

 

PW91H PW91H MP2H MP2A Exp. PW91H PW91A exp.1 exp.2 

1 3770 3567 3952 3764 3698a,3690a, 3699c     

2 3069 2740 3376 3161 3285a,3130a, 3130c 3618 3431 3700a 3686a 

3 1626 1612 1678 1743 1650b 3418 3092 3317a 3375a 

4 763 782 794 795 745c 3037 2720 3245a 3130a 

5 394 352 387 366      

6 215 204 200 196 210a ,155a     

a [15] compilation of experimental data; b [16] compilation of experimental data; c[17]. 
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Table 3. Experimental and theoretical frequencies of Br-(H2O) (cm-1). Subscripts H and A 
refer to harmonic and anharmonic calculations, respectively.  

  PW91H PW91A MP2H MP2A Expa 

1 3769 3575 3948  3759  3689 
2 3223 2871 3506  3257  3270 
3 1619 1578 1669  1633  1642 
4 668 675 699  690  664 
5 323 345 328  310   
6 161 159 158  155  158 

a [17] 
 

Figure 3. Ratio of anharmonic ZPE to harmonic ZPE. 
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Table 4. Ratio of anharmonic ZPE to harmonic ZPE. 

Cl-(H2O) 0.979  Cl-(H2O) MP2 0.985  
Cl-(H2O)2 0.979      
Br-(H2O) 0.982  Br-(H2O) MP2 0.983  
Br-(H2O)2 0.985      
F-(H2O) 0.949  F-(H2O) MP2 0.966  
F-(H2O)2 0.945      
Cl+(H2O) 0.984  Cl+(H2O)MP2 0.981  
Cl+(H2O)2 0.977      
Br+(H2O) 0.981  Br+(H2O)MP2 0.984  
Br+(H2O)2 0.985      
F+(H2O) 0.980  F+(H2O) MP2 0.981  

F+(H2O)2 0.979      
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Tables 1, 2 and 3 show clearly that the performance of the harmonic approximation implemented in 
the framework of the PW91PW91/6-311++G(3df,3pd) method is well beyond satisfactory in all the 
cases studied here. It is important to note that the application of the anharmonic correction [19] does 
not lead to any substantial improvement in the theoretical predictions.  

Another important indication of the reasonable performance of the harmonic approximation 
implemented in the frame of DFT PW91PW91/6-311++G(3df,3pd) method has been obtained from the 
comparison of Zero Point Energies (ZPE) computed using the harmonic and anharmonic 
approximation. As seen from Figure 3 and Table 4, the difference between the harmonic and 
anharmonic ZPE typically does not exceed 2-3 %. This finding is in excellent agreement with the 
recent MP2 study [14] of pure water clusters. Another important detail is that DFT results are in good 
agreement with ab initio MP2 predictions. The contribution of the vibrational anharmonicity to the 
computed Gibbs free energies does not exceed 0.03-0.2 kcal mol-1. This leads us to conclude that 
anharmonicity is unlikely a source of large uncertainties in the computed Gibbs free energies in all the 
cases studied here.  

3. Conclusions  

The present study leads us to the following conclusions: 

(a) The effect of ion sign on the formation free energies of aqueous ionic clusters of identical 
chemical composition is very strong. For example, the difference in the stepwise Gibbs free 
energy changes ΔG0,1 for F±(H2O)i, Cl±(H2O)i and Br±(H2O)i reaches ~ 140, 65 and 45 kcal 
mole-1, respectively. It is important to note that the positive sign preference found for unary 
water vapours does not contradict with the opposite (negative) sign preference observed in 
recent experiments in binary sulfuric acid-water vapours [20-22]. In contrast to unary clusters, 
whose stability is controlled by the affinity of water monomers to ions, the stability of more 
complex binary clusters studied by Froyd and Lovejoy [20,21] and Sorokin et al. [22] is 
controlled by two somewhat competing factors : affinities of H2O and H2SO4 to the ions. While 
the affinity of water to cations is stronger than that to anions, the affinity of H2SO4, the key 
binary nucleation precursor, to ions exhibits the opposite behavior. This leads, due to the very 
large difference in the affinity of H2SO4 between anions and cations, to the negative sign 
preference observed in the experiments [23]. 

 
(b) The harmonic approximation implemented in the framework of the DFT works well in the case 

of aqueous ionic clusters. Both DFT and ab initio MP2 studies show that the effect of 
vibrational anharmonicity is mild, and is unlikely a source of large uncertainties in computed 
free energies.  
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