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Abstract: The free energy of solvation, 0

SG , in octanol of organic compunds is 

quantitatively predicted from the molecular structure. The model, involving only three 

molecular descriptors, is obtained by multiple linear regression analysis from a data set of 

147 compounds containing diverse organic functions, namely, halogenated and non-

halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, 

ethers and esters; covering a 0
SG  range from about –50 to 0 kJ·mol-1. The model predicts 

the free energy of solvation with a squared correlation coefficient of 0.93 and a standard 

deviation, 2.4 kJ·mol-1, just marginally larger than the generally accepted value of 

experimental uncertainty. The involved molecular descriptors have definite physical 

meaning corresponding to the different intermolecular interactions occurring in the bulk 

liquid phase. The model is validated with an external set of 36 compounds not included in 

the training set.  

Keywords: QSPR, solvation free energy, octanol, organic compounds. 

 

1. Introduction  

Octanol is a straight chain fatty alcohol with eight carbon atoms and molecular formula 

CH3(CH2)7OH which is used as a good surrogate for the lipids in aquatic and animal biota, and for the 

organic matter in soils and sediments. Lipophilicity is widely recognized as one of the key 

physicochemical descriptors used to assess and model the distribution and transport potential of 
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pollutants in biological and environmental compartments, such as solubility in water, octanol-water 

partitioning, bioconcentration in aquatic organisms, and soil or sediment sorption phenomena [1,2]. 

The free energy of solvation in octanol may be used as a measure of the lipophilic nature of chemicals, 

i.e., as a key parameter to quantify their lipophilicity. 
Gibbs free energy is arguably the most important general concept in physical chemistry, as it 

determines equilibrium constants and the direction of spontaneous chemical changes at constant T and 

P. The most theoretical work defines the standard-state free energy of solvation, 0
SG , as the free 

energy change involved in the transfer of 1 mol of solute from the gas phase into certain solvent, 

taking as standard state a concentration 1 mol L-1 in both the gas phase and solution. In addition to its 

fundamental interest, 0
SG  may be combined with other thermodynamic data to predict a variety of 

equilibrium properties, the more important of which are solubility and the partitioning of a solute 

between immiscibles phases; for instance, the calculation octanol-air partition coefficient and the 

octanol-water partition coefficient requires of reliable values of the free energy of solvation in octanol. 

The above coefficients are the critical importance in drug design, extractions and environmental 

applications [3].  

The best developed classical method to compute free energies of solvation is the use of multivariate 

quantitative structure-property relationship (QSPR) models. These methods can be classified into two 

broad categories, namely group contribution methods, which capitalize on the additive-constitutive 

nature of 0
SG , and regression methods, which quantify the weights of different structure descriptors 

on the principle of least square deviation [4].  

The main criticism of QSPR methods relies on the difficulty of the physical interpretation of the 

descriptors involved in the correlation equations; however, even within this limitation QSPR modeling 

represents a good alternative for rapid estimation of a property, since it requires both less 

computational requirements, hardware and software, and much less computation time in comparison to 

quantum mechanical and discrete methods (MD and MC simulations) [5,6].  
Although for octanol related partition coefficients (octanol/water or octanol/air partition 

coefficients) there are numerous QSPR studies reported in literature; the direct prediction of free 

energy of solvation in octanol, by QSPR methodology, has been much less studied preventing to have 

a simple model for the rapid and direct estimation of 0
SG . Currently, free energy of solvation is 

estimated from some derived parameter, such as the Ostwald solubility or octanol/water partition 

coefficient [7].  

In this article, we report a simple QSPR model for predicting free energy of solvation in octanol of 

147 structurally different organic compounds containing diverse organic functions. The model, 

involving only three molecular descriptors, allows the prediction of 0
SG  with a square correlation 

coefficient, R2, of 0.93 and a root-mean-square deviation of 2.41. The model is validated with an 

external set of 36 compounds not included in the training set.  



Int. J. Mol. Sci. 2009, 10             

 

 

1033

2. Experimental  

2.1. Chemical data 

The data set of free energy of solvation in octanol used to develop the model was taken from the 

data reported by Kollman et al. [8]. The data set contains 147 structurally different compounds 

containing diverse organic functions: alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ethers, 

ketones, esters, amines, nitriles, halogenated and nitro hydrocarbons covering a 0
SG  range from about 

– 50 to 0 kJ/mol. The data for the validation set was collected from several literature sources [9-11].  

2.2. Computational methodology 

Initial three-dimensional geometries for all 147 chemicals in their ground state were generated 

using the Hyperchem 7.0 molecular modeling package [12]. Subsequent quantum chemical 

calculations in gas phase were performed using the AMPAC program [13] with AM1 

parameterization. The output files of AMPAC containing the refined geometries and electron wave 

functions of individual compounds were loaded into the CODESSA program [14] in order to calculate 

a total of 453 molecular descriptors. This pool of descriptors was reduced by objective feature 

selection in order to remove those descriptors that do not provide useful information for the prediction 

of 0
SG . Pairwise correlations between descriptors were examined so that only one descriptor was 

retained from a pair contributing similar information. Finally, with this reduced pool of descriptors the 

best multiple linear regression model was searched with SigmaStat [15] by fitting the descriptors to the 

experimental data and respective correlation analysis. 

3. Results and Discussion  

In this study, a total of 453 molecular descriptors were calculated for all 147 compounds. The 

molecular descriptors can be grouped as constitutional, geometric, topological, electrostatic, and 

quantum chemical. However, bearing in mind that the main interactions between uncharged molecules 

are originated by polar, dispersion and hydrogen-bonding interactions; we have focused on descriptors 

encoding those features, and in this way the number of potential descriptors useful for the prediction of 
0
SG  was reduced to 119. 

The best multiple linear regression model found involves only the following three molecular 

descriptors: the gravitation index (GI), HA dependent HDCA-2, and the number of fluorine atoms 

(NF); which will be defined further on. The resulting equation is: 

FIS NHAGG 09.477.29033.046.00   (1) 

and its respective statistics is shown in Tables 1 and 2. The statistical parameters are the following: R 

the correlation coefficient, RCV the leave-one-out crossvalidated correlation coefficient, Rdf the 

correlation coefficient adjusted for degrees of freedom, s the standard deviation, F the Fisher test 

value, P the probability to retain the null hypothesis, i.e. the independent variables have no predictive 

value and therefore the observed relationship occurred just by chance; and VIF, the variation inflation 
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factor, is a measurement of the collinearity between the independent variables. If the VIF value is 1, 

there is no collinearity. If its value is large, about 10 or more, serious collinearity is present. 

 

Table 1. Statistical parameters for the best QSPR model. 

 
Coefficien

t 

Std. 

Error 
P-value t-test 

Std. 

Coeff. 
VIF 

Constant 0.46 0.55 0.401 0.86   

GI -0.033 8.96x10-4  0.001 -36.91 -0.81 1.02 

HA -29.77 1.11  0.001 -26.75 -0.58 1.03 

NF 4.09 0.25  0.001 16.37 0.36 1.05 

R2 = 0.93 , R2
CV = 0.93 , R2

df = 0.93 , s = 2.41 

 

The squared correlation coefficient value, R2, indicates that the model as fitted explains 93% of the 

variability of the property. The squared crossvalidated correlation coefficient, R2
CV, provides an 

estimation of the stability of the obtained regression model, i.e. the sensitivity of the model to the 

elimination of any single data point. For the model the value of this parameter is equal to the squared 

correlation coefficient value indicating a good stability of the regression model. The correlation 

coefficient adjusted for degrees of freedom is a useful figure for comparing models with different 

numbers of independent variables. In determining whether the model can be simplified, all the P-

values on the independent variables are less than 0.001, which means that all descriptors are 

statistically significant at the 99% confidence level. Therefore, it is concluded that all the independent 

variables included in the model are relevant. The standardized coefficients represent the change in 

response for a change of one standard deviation in a predictor. The use of these standardized 

coefficients removes the problem of the predictor´s underlying scale of units. On the other hand, the 

VIF values, equal to 1, confirm the orthogonality of the involved descriptors.  

Table 2. Analysis of variance of the best QSPR model. 

Analysis of Variance 

 DF SS MS F P 

Regression 3 11700 3900 670  0.001 

Residual 143 832 5.82   

Total 146 12533 85.84   
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The P-value for the correlation is less than 0.001, therefore there is a statistically significant 

relationship between the property and the independent variables at the 99% confidence level. 

However, it is also observed from this Table that the value of the constant is less than the respective 

error and the respective P-value to retain the null hypothesis is quite large, indicating the constant has 

no additional predictive value over and above that contributed by the independent variables. On the 

other hand, the generally accepted value of experimental uncertainty for the free energy of solvation is 

about 1.7 kJ•mol-1 [16], value greater than the value of the constant. For all these reasons the constant 

can be eliminated from the model without loss of predictive quality and without need of refitting 

because the orthogonality of the involved descriptors assure the correlation coefficients and statistics 

remain the same. Therefore, the model is reduced to: 

FIS NHAGG 09.477.29033.00   (2) 

The experimental and calculated values of 0
SG  along with the values of the descriptors involved in 

the model are shown in Table 3. The respective scatter plot is shown in Figure 1. 

Table 3. Molecular descriptors and values of experimental and calculated 0
SG  for the 

training set. 

Name GI 

HA 

dependent 

HDCA-2 

NF 

0
SG  exp. 

(kJ•mol-1) 

0
SG  calc. 

(kJ•mol-1) 

Standardized 

residual 

Alkanes       

Ethane 122.30 0.00 0 -2.68 -4.04 0.56 

Propane 204.48 0.00 0 -5.27 -6.75 0.61 

Cyclopropane 251.65 0.00 0 -6.69 -8.30 0.67 

2-Methylpropane 285.71 0.00 0 -6.07 -9.43 1.39 

2,2-Dimethylpropane 366.02 0.00 0 -7.28 -12.08 1.99 

n-Butane 286.70 0.00 0 -7.78 -9.46 0.70 

Cyclopentane 407.86 0.00 0 -11.09 -13.46 0.98 

n-Pentane 368.90 0.00 0 -10.25 -12.17 0.80 

n-Hexane 451.10 0.00 0 -12.59 -14.89 0.95 

Cyclohexane 492.57 0.00 0 -14.48 -16.25 0.74 

Methylcyclohexane 574.01 0.00 0 -13.43 -18.94 2.29 

n-Heptane 533.30 0.00 0 -15.65 -17.60 0.81 

n-Octane 615.51 0.00 0 -17.49 -20.31 1.17 

Chlorotrifluoromethane 495.97 0.00 3 -8.24 -4.10 -1.72 

Dichlorodifluoromethane 503.91 0.00 2 -5.23 -8.45 1.34 

Fluorotrichloromethane 521.24 0.00 1 -11.00 -13.11 0.88 

1,1,2-Trichloro-1,2,2-

trifluoroethane 
818.05 0.00 3 

-10.63 -14.73 1.70 

1-Bromo-1-chloro-2,2,2-

trifluoroethane 
832.16 0.00 3 

-13.68 -15.19 0.63 
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Table 3. Cont. 

Name GI 

HA 

dependent 

HDCA-2 

NF 

0
SG  exp. 

(kJ•mol-1) 

0
SG  calc. 

(kJ•mol-1) 

Standardized 

residual 

Alkanes       

Bromotrifluoromethane 596.15 0.00 3 -3.14 -7.40 1.77 

Dichloromethane 300.40 0.00 0 -12.84 -9.91 -1.21 

Trichloromethane 427.79 0.00 0 -15.94 -14.12 -0.76 

Chloroethane 250.24 0.00 0 -10.79 -8.26 -1.05 

1,1,1-Trichloroethane 501.12 0.00 0 -15.44 -16.54 0.46 

1,1-Difluoroethane 340.12 0.00 2 -4.73 -3.04 -0.70 

1,1,2-Trichloroethane 507.54 0.00 0 -18.95 -16.75 -0.91 

1-Chloropropane 332.45 0.00 0 -12.80 -10.97 -0.76 

2-Chloropropane 329.56 0.00 0 -11.88 -10.88 -0.42 

Bromomethane 293.94 0.00 0 -10.17 -9.70 -0.20 

Dibromomethane 550.46 0.00 0 -17.49 -18.17 0.28 

Tribromomethane 801.73 0.00 0 -23.51 -26.46 1.22 

Bromoethane 370.65 0.00 0 -12.13 -12.23 0.04 

2-Bromopropane 453.05 0.00 0 -14.23 -14.95 0.30 

1-Bromobutane 535.20 0.00 0 -17.41 -17.66 0.10 

1-Bromopentane 617.39 0.00 0 -19.58 -20.37 0.33 

Nitroethane 495.74 0.00 0 -16.44 -16.36 -0.03 

1-Nitropropane 577.83 0.00 0 -18.58 -19.07 0.20 

2-Nitropropane 575.60 0.00 0 -17.70 -18.99 0.54 

1-Nitrobutane 659.99 0.00 0 -21.38 -21.78 0.17 

Alkenes       

Ethylene 122.21 0.00 0 -1.13 -4.03 1.20 

Propylene 206.54 0.00 0 -4.77 -6.82 0.85 

2-Methylpropene 290.01 0.00 0 -8.49 -9.57 0.45 

1-Butene 288.64 0.00 0 -4.56 -9.53 2.06 

1-Hexene 453.03 0.00 0 -12.30 -14.95 1.10 

1,3-Butadiene 290.52 0.00 0 -8.79 -9.59 0.33 

cis-1,2-Dichloroethylene 400.65 0.00 0 -15.52 -13.22 -0.95 

trans-1,2-Dichloroethylene 399.06 0.00 0 -15.10 -13.17 -0.80 

Trichloroethylene 537.42 0.00 0 -15.69 -17.73 0.85 

Tetrachloroethylene 674.93 0.00 0 -17.74 -22.27 1.88 

3-Bromopropene 455.31 0.00 0 -13.81 -15.03 0.50 

Alkynes       

1-Pentyne 375.21 0.00 0 -11.67 -12.38 0.30 

1-Hexyne 457.40 0.00 0 -14.35 -15.09 0.31 
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Table 3. Cont. 

Name GI 

HA 

dependent 

HDCA-2 

NF 

0
SG  exp. 

(kJ•mol-1) 

0
SG  calc. 

(kJ•mol-1) 

Standardized 

residual 

Aromatics       

Benzene 504.85 0.00 0 -15.56 -16.66 0.46 

Toluene 588.93 0.00 0 -19.04 -19.43 0.16 

Ethylbenzene 670.93 0.00 0 -21.25 -22.14 0.37 

m-Xylene 672.96 0.00 0 -21.97 -22.21 0.10 

o-Xylene 672.78 0.00 0 -21.21 -22.20 0.41 

p-Xylene 673.07 0.00 0 -21.71 -22.21 0.21 

Naphtalene 887.05 0.00 0 -29.16 -29.27 0.05 

Anthracene 1269.00 0.00 0 -43.81 -41.88 -0.80 

Bromobenzene 767.77 0.00 0 -22.84 -25.34 1.04 

Fluorobenzene 617.17 0.00 1 -16.19 -16.28 0.04 

1,4-Dibromobenzene 1031.60 0.00 0 -31.25 -34.04 1.16 

p-Bromotoluene 852.06 0.00 0 -26.61 -28.12 0.63 

Chlorobenzene 641.42 0.00 0 -20.92 -21.17 0.10 

1,2-Dichlorobenzene 779.27 0.00 0 -25.15 -25.72 0.23 

1,4-Dichlorobenzene 778.61 0.00 0 -23.72 -25.69 0.82 

Nitrobenzene 879.27 0.00 0 -27.74 -29.02 0.53 

2-Nitrotoluene 962.38 0.00 0 -28.45 -31.76 1.37 

2,2'-Dichlorobiphenyl 1158.20 0.00 0 -39.37 -38.22 -0.48 

2,3-Dichlorobiphenyl 1160.50 0.00 0 -38.62 -38.30 -0.13 

2,2,3'-Trichlorobiphenyl 1295.30 0.00 0 -38.16 -42.74 1.90 

Alcohols       

Methanol 142.96 0.44 0 -16.19 -17.82 0.67 

Ethanol 224.20 0.44 0 -18.24 -20.50 0.94 

Ethylene glycol 326.09 0.89 0 -31.13 -37.26 2.54 

1-Propanol 306.49 0.43 0 -21.00 -22.92 0.79 

2-Propanol 305.16 0.40 0 -19.33 -21.98 1.10 

1,1,1-Trifluoro-2-propanol 638.10 0.43 3 -21.42 -21.59 0.07 

Hexafluoro-2-propanol 972.10 0.47 6 -24.10 -21.53 -1.07 

1-Butanol 388.67 0.45 0 -23.89 -26.22 0.97 

tert-Butyl alcohol 385.36 0.38 0 -20.00 -24.03 1.67 

1-Pentanol 470.88 0.43 0 -26.78 -28.34 0.65 

1-Hexanol 553.07 0.45 0 -29.54 -31.65 0.87 

1-Heptanol 635.29 0.44 0 -32.43 -34.06 0.68 

1-Octanol 717.49 0.45 0 -34.02 -37.07 1.27 

1-Decanol 881.86 0.45 0 -41.34 -42.50 0.48 
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Table 3. Cont. 

Name GI 

HA 

dependent 

HDCA-2 

NF 

0
SG  exp. 

(kJ•mol-1) 

0
SG  calc. 

(kJ•mol-1) 

Standardized 

residual 

Alcohols       

Allyl alcohol 308.24 0.43 0 -22.05 -22.97 0.38 

Phenol 612.17 0.41 0 -36.36 -32.41 -1.64 

4-Bromophenol 875.94 0.41 0 -44.31 -41.11 -1.33 

2-Cresol 695.97 0.34 0 -35.52 -33.09 -1.01 

3-Cresol 696.13 0.41 0 -34.31 -35.18 0.36 

4-Cresol 696.29 0.41 0 -36.99 -35.18 -0.75 

2,2,2-Trifluoroethanol 557.11 0.50 3 -20.13 -21.00 0.36 

2-Methoxyethanol 432.48 0.45 0 -24.39 -27.67 1.36 

Ethers       

Methyl propyl ether 413.02 0.00 0 -15.19 -13.63 -0.65 

Methyl isopropyl ether 411.69 0.00 0 -15.19 -13.59 -0.67 

Methyl tert-butyl ether 492.04 0.00 0 -15.19 -16.24 0.43 

Diethyl ether 412.05 0.00 0 -15.19 -13.60 -0.66 

Tetrahydrofuran 451.51 0.00 0 -16.44 -14.90 -0.64 

Anisole 718.19 0.00 0 -22.89 -23.70 0.34 

Ethyl phenyl ether 799.40 0.00 0 -23.64 -26.38 1.14 

1,2-Dimethoxyethane 538.90 0.00 0 -19.04 -17.78 -0.52 

1,4-Dioxane 580.19 0.00 0 -20.46 -19.15 -0.55 

1,1-Dichloro-2,2-

difluoroethylmethyl ether 
800.57 0.00 2 -16.82 -18.24 0.59 

Aldehydes       

Formaldehyde 147.19 0.27 0 -13.51 -12.90 -0.26 

Propanal 312.73 0.22 0 -17.28 -16.87 -0.17 

Butanal 394.91 0.22 0 -19.33 -19.58 0.10 

Benzaldehyde 696.53 0.24 0 -25.65 -30.13 1.86 

m-Hydroxybenzaldehyde 803.86 0.68 0 -47.66 -46.77 -0.37 

p-Hydroxybenzaldehyde 804.41 0.64 0 -51.71 -45.60 -2.54 

Ketones       

Acetone 312.77 0.10 0 -13.18 -13.30 0.05 

2-Butanone 395.36 0.10 0 -15.82 -16.02 0.08 

3,3-Dimethylbutanone 554.92 0.08 0 -18.95 -20.69 0.72 

2-Pentanone 476.64 0.10 0 -18.20 -18.71 0.21 

3-Pentanone 476.00 0.11 0 -18.24 -18.98 0.31 

Cyclopentanone 518.01 0.11 0 -20.96 -20.37 -0.25 

2-Hexanone 559.88 0.09 0 -21.00 -21.16 0.06 
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Table 3. Cont. 

Name GI 

HA 

dependent 

HDCA-2 

NF 

0
SG  exp. 

(kJ•mol-1) 

0
SG  calc. 

(kJ•mol-1) 

Standardized 

residual 

Ketones       

2-Heptanone 642.08 0.09 0 -23.64 -23.87 0.09 

2-Octanonne 724.29 0.09 0 -26.69 -26.58 -0.05 

Acetophenone 778.46 0.11 0 -28.20 -28.96 0.32 

Esters       

Methyl formate 363.42 0.00 0 -11.80 -11.99 0.08 

Methyl acetate 446.71 0.00 0 -14.81 -14.74 -0.03 

Ethyl acetate 527.89 0.00 0 -16.99 -17.42 0.18 

Propyl acetate 610.15 0.00 0 -19.04 -20.13 0.45 

Butyl acetate 692.32 0.00 0 -20.75 -22.85 0.87 

Methyl propionate 528.62 0.00 0 -16.99 -17.44 0.19 

Methyl butyrate 605.56 0.00 0 -19.20 -19.98 0.33 

Methyl pentanoate 692.80 0.00 0 -21.46 -22.86 0.58 

Methyl benzoate 911.96 0.00 0 -30.38 -30.09 -0.12 

Amines       

Methylamine 139.01 0.23 0 -15.82 -11.43 -1.82 

Ethylamine 219.44 0.22 0 -17.11 -13.79 -1.38 

Propylamine 301.77 0.23 0 -19.96 -16.81 -1.31 

Butylamine 383.96 0.22 0 -22.38 -19.22 -1.31 

Diethylamine 395.38 0.17 0 -19.87 -18.11 -0.73 

Dipropylamine 559.65 0.16 0 -25.19 -23.23 -0.81 

Trimethylamine 328.18 0.09 0 -15.06 -13.51 -0.64 

Miscellaneous        

Piperazine 544.97 0.39 0 -24.27 -29.59 2.21 

Aniline 609.22 0.22 0 -27.11 -26.65 -0.19 

Morpholine 562.85 0.22 0 -25.06 -25.12 0.03 

Piperidine 518.83 0.19 0 -26.23 -22.78 -1.43 

Pyridine 529.10 0.00 0 -22.34 -17.46 -2.02 

2-Methylpyridine 611.55 0.09 0 -25.69 -22.86 -1.17 

3-Methylpyridine 613.61 0.08 0 -26.78 -22.63 -1.72 

4-Methylpyridine 613.30 0.08 0 -27.61 -22.62 -2.07 

2-Ethylpyridine 693.46 0.09 0 -26.78 -25.56 -0.50 

2-Methylpyrazine 717.78 0.18 0 -24.56 -29.05 1.86 

Benzonitrile 689.18 0.00 0 -25.48 -22.74 -1.14 

2,6-Dichlorobenzonitrile 963.97 0.00 0 -38.41 -31.81 -2.74 
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Figure 1. Scatter plot of calculated vs experimental 0
SG  values. 

 
 

The last column column of this Table shows the standardized residuals, i.e., the residuals expressed 

in standard deviation units. These residuals are used in order to better detect unusual observations. In 

general, if the residuals are normally distributed about the regression, about 66% of the standardized 

residuals have values between -1 and +1, and about 95% of the standardized residuals have values 

between -2 and +2. A larger standardized residual indicates that the point is far from the regression; 

the suggested value flagged as an outlier is 2.5. In this study, only 8 observations out of the 147 data 

points of the training set have standardized residual values greater than 2, of which only 3 have values 

over 2.5.  
To check the predictive capability of the model, it was tested with an external set of chemicals not 

included in the training set. The validation data set included 36 diverse chemicals, including 

fluorotelomer alcohols and sulfur containing compounds. In Table 4, the values of the molecular 

descriptors along with the experimental and calculated values of 0
SG  for the validation set are shown. 

The statistics for the validation is as follows: R2 = 0.93, s = 2.5, F= 153. For this data, only two 

observations have standardized residual values greater than the threshold value of 2.5 These results 

confirm the prediction capability of the model.  
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Table 4. Molecular descriptors and values of experimental and calculated 0
SG  for the validation set. 

Name GI 

HA 

dependent 

HDCA-2 

NF 

0
SG  exp. 

(kJ•mol-1) 

0
SG  calc. 

(kJ•mol-1) 

Standardized 

residual 

1,2,3-Trichlorobenzene 917.09 0.00 0 -30.36 -30.26 -0.04 

1,2,4-Trichlorobenzene 916.84 0.00 0 -29.10 -30.26 0.46 

1,2,3,4-Tetrachloro-benzene 1055.20 0.00 0 -33.21 -34.82 0.64 

Pentachlorobenzene 1193.60 0.00 0 -37.09 -39.39 0.92 

1,2,3-Trichloronaphthalene 1297.90 0.00 0 -43.48 -42.83 -0.26 

Methane 39.19 0.00 0 2.13 -1.29 1.37 

Chloromethane 169.87 0.00 0 -7.42 -5.61 -0.73 

Tetrachloromethane 549.75 0.00 0 -14.49 -18.14 1.46 

Monochloroethane 250.23 0.00 0 -9.87 -8.26 -0.64 

1,1-Dichloroethane 377.46 0.00 0 -14.61 -12.46 -0.86 

1,1,1,2-Tetrachloroethane 632.35 0.00 0 -22.65 -20.87 -0.71 

Chloropropane 332.47 0.00 0 -13.18 -10.97 -0.88 

1,2,3-Trichloropropane 589.65 0.00 0 -25.79 -19.46 -2.53 

4:2 FTOH 1537.40 0.46 9 -26.08 -27.62 0.62 

6:2 FTOH 2136.40 0.46 13 -27.50 -31.03 1.41 

8:2 FTOH 2735.40 0.46 17 -31.84 -34.43 1.04 

10:12 FTOH 3334.50 0.46 21 -32.58 -37.84 2.11 

12:2 FTOH 3933.60 0.46 25 -35.38 -41.25 2.35 

Ethyl formate 444.76 0.00 0 -12.50 -14.68 0.87 

Propyl formate 526.87 0.00 0 -15.18 -17.39 0.88 

Isopentanol 469.57 0.45 0 -25.79 -28.89 1.24 

Cyclohexanol 593.62 0.39 0 -29.56 -31.20 0.66 

Hexanal 559.31 0.22 0 -25.16 -25.01 -0.06 

4-Methyl-2-pentanone 558.35 0.09 0 -18.83 -21.10 0.91 

Ethyl propionate 610.06 0.00 0 -17.97 -20.13 0.86 

Isopropyl acetate 608.75 0.00 0 -18.09 -20.09 0.80 

Di-isopropyl ether 573.56 0.00 0 -15.18 -18.93 1.50 

Ethyl butyrate 692.21 0.00 0 -20.31 -22.84 1.01 

Pentafluorobenzene 1070.60 0.00 5 -14.49 -14.88 0.16 

Hexafluorobenzene 1184.70 0.00 6 -12.04 -14.56 1.01 

1-Propanethiol 335.70 0.19 0 -14.73 -16.73 0.80 

Thiophenol 646.51 0.18 0 -25.06 -26.69 0.65 

Thioanisole 783.48 0.10 0 -27.07 -28.83 0.70 

Dimethyl sulfide 309.60 0.10 0 -17.74 -13.19 -1.82 

Diethyl sulfide 470.87 0.09 0 -17.11 -18.22 0.44 

Dipropyl sulfide 635.15 0.08 0 -16.28 -23.34 2.82 
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3.1. Physical meaning of the descriptors involved  

The more relevant descriptor in the correlation is the gravitation index (all bonds), GI, accounting 

for about the 52% of the variability of the property. This descriptor reflects the effective mass 

distribution in the molecule and it is defined as: 


ji ij

ji
I r

mm
G

,
2  

where mi and mj are the atomic masses of the bonded atoms and rij denotes the respective bond lengths. 

has been associated to size-dependent bulk effects, dispersion and cavity formation, in the bulk liquid 

media [17]. The correlation coefficient for this descriptor is negative, as expected, indicating the 

solvation process is favored by these effects, leading to lower 0
SG  values.  

The second more relevant descriptor is the hydrogen acceptor dependent hydrogen donors charged 

surface area based on Zefirov charges (HA dependent HDCA-2) [18]: 

donorH
D tot

DD HD
S

Sq
HDCA   ;2  

where SD is the solvent accessible surface area of H-bonding donor H atoms, Dq  is the partial charge 

on H-bonding donor H atoms, and Stot is the total solvent accessible molecular surface area. This 

descriptor, which accounts for about the 25% of the variability of the 0
SG , is connected with the 

hydrogen-bonding ability of the molecule. It is expected the solvation will be favored, more negative 

value of 0
SG , by the presence of hydrogen bonding interactions between solute and solvent 

molecules. The negative value of the coefficient for this descriptor corroborates this assumption.  

Lastly, the third descriptor is the number of F atoms (NF). The introduction of substituents into 

organic compounds with increasing differences in electronegativity with respect to carbon produces a 

charge separation in the bond originating a dipole moment. Therefore this descriptor encodes 

information related to polar interactions. The question which remain is, why the molecular dipole 

moment then is not involved in the model ?. The answer is apparently for the deficiency of the AM1 

method to calculate partial charges in molecules containing fluorine atoms. As result, the NF appears to 

be a better descriptor for the quantitative prediction of 0
SG . Finally, since this descriptor encodes 

information relative to the polarity of the molecule, it is expected this descriptor disfavors the 

solvation process in octanol, a paradigm of hydrophobic solvent. Consequently, the correlation 

coefficient for this descriptor is positive showing the 0
SG  increases its value as the number of fluorine 

atoms also increases. 

 

 4. Conclusions  

 
The merit of the QSPR model developed in this article lays in its simplicity. The model allows the 

prediction of 0
SG  of a wider variety of organics compounds with less parameters and better statistics 

than other models reported in literature [7]. Free energy of solvation can be predicted straightforwardly 

from only three molecular descriptors accounting for the different components which comprise the free 

energy of solvation: electrostatic, cavitation and van der Waals components. The three involved 

descriptors can be calculated solely from the molecular structure, therefore the model is independent of 
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previous group contribution fitting and consequently is applicable to new or developing compounds 

for which group contribution has not been determined.  
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