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Abstract: Parkinson’s disease (PD) is the second most common progressive 

neurodegenerative disorder after Alzheimer's disease (AD) and represents a large health 

burden to society. Genetic and oxidative risk factors have been proposed as possible 

causes, but their relative contribution remains unclear. Dysfunction of alpha-synuclein (α-

syn) has been associated with PD due to its increased presence, together with iron, in Lewy 

bodies. Brain oxidative damage caused by iron may be partly mediated by α-syn 

oligomerization during PD pathology. Also, α-syn gene dosage can cause familial PD and 

inhibition of its gene expression by blocking translation via a newly identified Iron 

Responsive Element-like RNA sequence in its 5’-untranslated region may provide a new 

PD drug target. 
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inclusions; DLB: dementia with Lewy Bodies; DA: dopamine; DAT: dopamine 

transporter; NAC: non-amyloidogenic component; 5-UTR: 5'-untranslated region; IRE: 

iron responsive element; IRPs: interacting binding proteins; wt: wild-type; ROS: reactive 

oxygen species; GSH: reduced gluthatione; 6-OHDA: 6-hydroxydopamine; MPTP: 1-

methyl 4-phenyl 1, 2, 3, 6 tetrapyridine; TfR: transferrin receptor; TH: tyrosine 

hydroxylase; nt: nucleotide(s); aa: amino acid(s). 

 

1. Parkinson’s Disease: Clinical Profile, Pathophysiology and Treatments  

 

1.1. Clinical profile 

 

PD is a progressive neurodegenerative disorder that affects approximately 1% of the population 

beyond 65 years old [1]. A study of mortality among PD patients showed an odds ratio of 2.5 

compared with age-matched subjects [2]. The diagnosis of PD continues to be based on presenting 

signs and symptoms. Dyskinesia is the most obvious clinical symptom and often starts in one 

extremity and worsens with stress, fatigue and cold. Bradykinesia is usually the most troublesome 

symptom. Patients refer to slowness in performing their daily activities. Rigidity of muscles on passive 

movement, including joints, is also a characteristic of PD [3].  

 

1.2. Pathophysiology 

 

The primary brain abnormality found in all patients is a degeneration of nigrostratial dopaminergic 

neurons in the substantia nigra, which leads to the depletion of dopamine (DA) with consequent loss 

of neuronal systems responsible of motor functions, and the formation of intracytoplasmic inclusions 

called Lewy bodies (LBs) in remaining neurons [4]. 
It is thought that the cause of idiopathic PD may be an interaction of environmental and genetic 

factors [4]. More typically, PD is sporadic when there is no family history of disease although a study 
has suggested a significant contribution of heredability to the development of late-onset PD [5]. In 
pedigrees with autosomal-recessive early-onset parkinsonism, a wide variety of mutations to the parkin 
gene (Park-2 gene) were found in families in which at least one member developed the symptoms [6]. 
Also, a number of hereditable genetic autosomal-dominant mutations have been found in the α-syn 
gene (also known as SNCA), besides other genes, as rare cause of PD, helping in understanding the 
disease [5]. α-syn has received much attention because it is the major component of LBs. In addition, 
α-syn pathologies accumulate throughout the central nervous system (CNS) in areas that also undergo 
progressive neurodegeneration, leading to dementia and other behavioural impairments as well as 
parkinsonism [7]. 

 
1.3. Treatments (see Table 1) 
 

Although significant advances have been made in understanding the pathophysiology of this 

disease, there is no curative treatment and only symptoms can be controlled. The management of PD is 



Int. J. Mol. Sci. 2009, 10             

 

 

1228

designed to improve the patient’s quality of life. Symptomatic therapy is based totally on the 

requirements of the individual patient and must be re-evaluated as the condition evolves. 

Neuroprotective therapy is currently unavailable, in spite of the initial promising data from the 

DATATOP study performed with the monoamino oxidase (MAO) inhibitor selegiline, definitive 

neuroprotective action has yet to be demonstrated and its actions can be off set by its side effects that 

may include nausea, dizziness, insomnia and cognitive impairment. Actually, the American Academy 

of Neurology suggests that there is currently insufficient evidence to recommend selegiline as a 

neuroprotective treatment [8]. 

L-Dopa is presently the most efficacious treatment for PD [9]. L-dopa is converted into DA within 

the nigrostratial neurons by the enzyme aromatic L-amino acid decaboxylase. This enzyme is a rate-

limiting in DA synthesis in PD, but not in healthy individuals, and pyridoxal phosphate (vitamin B6) is 

a required cofactor for the decarboxylation which may be administered together with L-dopa as 

pyridoxine. Conversion of L-dopa to DA likewise occurs systemically, outside the brain, in peripheral 

tissues, and thereby may induce adverse effects. It is hence standard clinical practice to co-administer a 

peripheral DOPA decarboxylase inhibitor that is restricted from entering brain, such as carbidopa or 

benserazide, and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent peripheral tissue 

synthesis of DA. Essentially, all patients require L-dopa at some stage of the disease. However, careful 

L-dopa titration is essential since it may induce dyskinesias and other L-dopa side effects. The most 

common is the “wearing-off” phenomenon or shortening of sustainable pharmacological action. This 

occurs when the symptoms of PD, attenuated by the treatment, become more intense before the next 

dose. The response usually is an increase of L-dopa dose frequency and addition of alternative 

therapies, such as the COMT inhibitor entacapone, DA agonists, amantadine or selegiline [10] (see 

below). The major inconvenience of L-dopa is dyskinesias or involuntary movements related to the 

drug. The addition of amantadine usually attenuates dyskinesias [11]. Although L-dopa is associated 

with motor complications, it must be acknowledged that survival has been considerably prolonged in 

PD since its introduction. Moreover, as in healthy animals, individuals misdiagnosed with PD and 

exposed to long-term L-dopa treatment did not show signs of parkinsonism [12,13]. 

In specific clinical situations, lower potency drugs are used. As listed in Table 1, anticholinergics 

(benztropine, biperiden, diphenhydramine, ethopropazine, orphenadrine, procyclidine and 

trihexyphenidyl) provide mild symptomatic treatment and may be beneficial to treat tremors [14]. 

Unfortunately, many patients experience cognitive change following anticholinergics, and therefore 

they are generally restricted to younger patients. Amantadine, a N-methyl-D-aspartate receptor 

antagonist, also provides mild symptomatic benefit in early stages of disease. This agent is relatively 

inexpensive, with a low incidence of adverse effects but is also associated with confusion in older 

patients [10]. DA agonists (mainly bromocriptine, pramipexole, ropinerole and pergolide) directly 

stimulate DA receptors and do not need to be metabolized into an active drug. They may hence have 

potential advantages over L-dopa by having a longer half-life, a longer duration of symptomatic action 

and, most importantly, DA agonists are rarely associated with motor fluctuations and dyskinesias [15]. 

Nevertheless, patients may succumb to other side effects, such as hallucinations, hypotension, anxiety, 

depression, bladder dysfunction, insomnia, edema and cognitive impairment. 

Several clinical trials have shown a decrease of dystonia and dyskinesia, and a similar clinical 

benefit when patients with early stage PD were treated with the DA receptor agonist bromocriptine, or 
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Class drug  Mechanism of action  Side effects       Specific drug 
Anticholinergics  Block acetylcholine  Dry mouth, dry eyes,     Trihexyphenidy 

receptors   urinary retention,   Benztropine 
        exacerbation of glaucoma,  Ethopropazine 
       cognitive impairment 
 
 
Amantadine  Blocks NMDA and   Cognitive dysfunction,         Amantadine 

acetylcholine receptors   peripheral edema and  
and promotes release of DA skin rash 
 
 

L-dopa   Metabolism to DA in cells  Nausea, hypotension,            L-dopa/carbidopa 
   containing dopa-decarboxylase hallucinations, psychosis,            Sinemet CR 
       dystonic and                            L-dopa/benserazide 

choreiform dyskinesias 
 

DA agonists  Stimulate DA receptors  Nausea, hypotension,       Bromocriptine 
       hallucinations, psychosis       Pergolide 
       peripheral edema,         Ropinirole 
       pulmonary fibrosis,         Pramipexole 

insomnia 
 
MAO inhibitors  Block MAO-B receptors  Nausea, dizziness,         Selegiline 
   to reduce DA metabolism  sleep disorder and     

impaired cognition 
 

Catechol O-  Block peripheral COMT  L-dopa related side-effect         Entacapone 
(COMT) inhibitors  Methyltranferase    activity  exacerbation,    Tolcapone 

to improve L-dopa   diarrhea, urine discoloration  
 pharmacokinetics    

L-dopa alone [16]. A similar result was obtained by using ropinirole plus L-dopa, if required [17]. 

These data support the use of DA agonists in early PD together smaller doses of L-dopa to minimize 

complications related to the latter [15]. In addition, several in vitro and animal studies might indicate a 

role for neuroprotection for DA agonists [18-21], although clinical benefit in humans is to prove. Other 

DA agonists, apomorphine, lisuride and carbegoline are also available, however, the choice of one 

them taking into account their effectiveness and/or non-motor symptoms remains unclear. 

In addition, COMT is a selective and widely distributed enzyme involved in the catabolism of L-

dopa. Tolcapone and entacapone are selective and potent COMT inhibitors that slow the metabolism of 

L-dopa, thus prolonging its effects [22]. Tolcapone has been shown to be an effective adjunct in the 

treatment of PD in Phase II and III clinical trials, improving motor fluctuations and reducing L-dopa 

requirements. Rare reports of severe hepatotoxicity, however, have limited tolcapone implementation 

in the treatment of PD [23]. 

 

Table 1. Drugs used to treat Parkinson’s disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The currently available therapies for PD, as in Table 1, are symptomatic and become less effective 

over time. Therefore, in order to identify potential neuroprotective agents available for testing, the 

Committee to Identify Neuroprotective Agents in Parkinson's (CINAPS), supported by the National 

Institute of Neurologic Disorders and Stroke (NINDS), conducted a systematic assessment of presently 
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available pharmacologic agents. From a list of 59 potential neuroprotective agents, the Committee 

identified 12 agents that are currently available and should be considered priority agents for further 

investigation in PD [24] (see Table 2, which includes neuroprective agents). 

 

Table 2. Drugs accepted by CINAPS. 

Agent Mechanism Comments 

Caffeine Adenosine antagonist KW-6002, a specific A2A receptor antagonist in development 

Coenzyme Q10 
Antioxidant / 

mitochondrial stabilizer 
Dietary supplement; modest symptomatic benefit based on phase 2 studies 

Creatine 
Mitochondrial 

stabilizer 
Dietary supplement 

Estrogen (17 beta-

estradiol) 
Undetermined   

GM-1 ganglioside Trophic factor   

GPI-1485 Trophic factor Neuroimmunophilin ligand 

Minocycline 
Anti-inflammatory / 

anti-apoptotic 
Antibiotic 

Nicotine Undetermined   

Pramipexole Antioxidant 

Dopamine agonist; clinical neuroimaging data demonstrate a possible disease-

modifying effect; exact interpretation and clinical meaning of data remain 

unclear 

Rasagiline 
Antioxidant / anti-

apoptotic 

Selective MAO-B inhibitor; symptomatic benefit in early- and advanced-stage 

PD based on several phase 3 studies 

Ropinirole Antioxidant 

Dopamine agonist; clinical neuroimaging data demonstrate a possible disease-

modifying effect; exact interpretation and clinical meaning of data remain 

unclear 

Selegiline 
Antioxidant / anti-

apoptotic 

Selective MAO-B inhibitor; DATATOP study failed to demonstrate 

neuroprotective benefits 

 

2. alpha-Synuclein: Relationship with PD. Biochemical and Biological Properties 

 

2.1. Relationship with PD 

 

As mentioned above, PD neurodegeneration is accompanied by the presence of LBs and Lewy 

neuritic inclusions (LNs) in surviving dopaminergic neurons [25], in which the main component 

derives from fibrillar aggregates of α-syn [26,27], although α-syn inclusions are also found in non-
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dopaminergic neurons (called neuronal cytoplasmic inclusions), in glial cells (glial cytoplasmic 

inclusions, GCIs) and as axonal spheroids [28].  

The main evidence of the relevant role of α-syn in PD came from the discovery of three point 

mutations in the α-syn gene that can cause hereditable early-onset PD [29] in rare pedigrees. These 

mutations are A53T (change Ala in position 53 to Thr) [30], A30P (change Ala in position 30 to Pro) 

[31] and E46K (change Glu in position 46 to Lys) [32]. All three occur within the N-terminal side of 

the protein and are able to accelerate the α-syn oligomeric aggregation process and protofibril 

formation [33] faster than wild-type (wt) α-syn. Therefore, the insoluble fibrillization rate was also 

higher (with the exception of the A30P mutation) than in wt variant [34,35], leading to pathologic 

inclusions, such as LBs and LNs. 

Interestingly, several clinical features may be distinguished among A53T carriers vs. idiopathic PD 

patients, such as a slightly earlier onset, a faster disease progression, a lower tremor prevalence, and 

dementia [36]. By contrast, patients with the A30P mutation resemble idiopathic PD. The E46K 

patients exhibit dementia with Lewy Bodies (DLB) and hallucinations, as well as parkinsonism. This 

mutation, which substitutes a dicarboxylic amino acid, glutamic acid, with a basic amino acid such as 

lysine in a much conserved area of the protein, is likely to produce a severe disturbance of protein 

function [32]. On the other hand, genetic polymorphisms in the α-syn gene appear to confer risk for 

sporadic PD [37]. In fact, in the Japanese population there are several polymorphisms in the intron 1 

that may be associated with PD [38]. Furthermore, duplication or triplication of the α-syn gene has 

been reported in familial forms of PD [39], and could implicate gene dosage effects in the PD 

pathogenesis [40]. 

In agreement with genetic and clinical findings, transgenic animal models have revealed an 

association between α-syn and the disease. In Drosophila, for example, when wt- α-syn, A30P or 

A53T mutants are overexpressed, a motor dysfunction, selective loss of DA neurons and presence of 

filamentous intraneuronal inclusions that contain α-syn occur [41]. In contrast, α-syn knock-out mice 

possess an abnormal activity of DA neurons with reduced levels of DA detected in the striatum. This 

implies that the protein may play a role in the regulation of neurotransmitter release [42]. 

The importance of the link between α-syn and PD, together with the discovery of detectable levels 

of α-syn in CSF and in human plasma, suggesting that α-syn is released from affected dopaminergic 

neurons [43], indicates that α-syn could serve as a marker for early diagnosis of PD. In this regard, an 

Enzyme-Linked Immuno Sorbent Assay (ELISA) based method has recently been developed to detect 

oligomeric α-syn in CSF and plasma and could serve as a diagnostic tool for PD and related  

diseases [44]. 

 

2.2. Biochemical and biological properties 

 

α-Syn belongs to the synuclein family, which includes β-syn and γ-syn [45]. α-syn and β-syn are 

predominantly expressed in brain at presynaptic terminals, particularly in the neocortex, hippocampus, 

striatum, thalamus and cerebellum [46,47]. γ-syn is highly expressed in several areas in the brain, 

particularly in the substantia nigra, and has been found to be overexpressed in some breast and ovarian 

tumors [48]. α-syn homologues have been found in several mammals, but not in lower organisms such 

as Escherichia coli, yeasts, Drosophila or Caenorhabditis elegans. 
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α-Syn is a small protein (14 kDa) composed of 140 aminoacids (aa). It is a soluble, acidic, resistant 

to high temperatures and natively unfolded protein with an extended structure that is mainly composed 

of random coils [49]. However, it acquires secondary structure elements upon interaction with ligands 

and proteins, adopting a partially folded conformation [50]. A report suggests that unfolded states play 

a functional role in vesicle fusion in all eukaryotics, bringing membrane surfaces to facilitate fusion, 

and, after binding, an ordered structure is acquired [51].  

The α-syn sequence can be subdivided in three domains (Figure 1). The highly conserved N-

terminal domain (residues 1-65) is unordered in solution and includes seven copies of an unusual 11 aa 

repeat that displays variations of a KTKEGV consensus sequence that may shift to an α-helical 

structure under certain conditions [52,53]. α-syn can interact with synthetic phospholipid vesicles 

through this domain [54], suggesting that the protein may be membrane-associated [55], becoming α-

helix conformation after binding [56]. 

Figure 1. Alpha-synuclein’s sequence and domains. Blue highlighted: four α-helices 

responsible for protein-membrane interactions. Red highlighted: NAC or non-Aβ 

(amyloidogenic) component of α-syn, responsible of protein-protein interactions. Yellow 

highlighted: the unstructured C-terminal domain. Exons that undergo alternative splicing 

are indicated in bold: exon 3 from codon 41 to 54 and exon 5 from codon 103 to 130. 

Mutations A30P, E46K and A53T are in bold and enhanced. The seven 11 aa repeats are 

shown between the square brackets. 

       30    46        53  

MDVFMKGL[SKAKEGVVAAA] [EKTKQGVAEAA] [GKTKEGVLYVG] [SKTKEGVVHGV]ATVA[EKTK 

 

EQVTNVG] [GAVVTGVTAVA] [QKTVEGAGSIA]AATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAY 

 

EMPSEEGYQDYEPEA 

 

The A53T and A30P mutations do not affect the overall structure of α-syn, which remains unfolded, 

but diminish hydrophobicity of the N-terminal domain; thereby somewhat reducing its ability to form 

α-helices. The predisposition to form β-sheet structures is enhanced [50], which renders it more prone 

to aggregation. Whereas A53T does not affect vesicle binding, A30P is characterized by a decrease in 

lipid binding [33]. 

The central hydrophobic domain of α-syn (residues 66-95) is known as NAC. This peptide portion 

has been implicated in AD pathogenesis and is the second major component of brain AD amyloid 

plaques [57]. It is responsible for protein-protein interactions and confers on α-syn the ability to 

undergo a conformational change from a random coil to an aggregation-prone β-sheet structure [58] 

leading to the formation of amyloid-like fibrils [59]. An in vitro study demonstrated that aged NAC, 

dissolved in solution for seven days, is more toxic than fresh NAC, suggesting that cytotoxicity 

depends on prior aggregation [60]. The NAC region also contains a phosphorylation site on Ser-87. 

The acidic Glu-rich C-terminal domain (residues 96-140) has no recognized structure and a strong 

negative charge [52]. Several phosphorylation sites have been identified within this region, on Tyr-
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125, -133 and -136, and Ser-129 [61]. Its acidic domain (aa 125-140) appears to be critical for the 

chaperone activity of α-syn [62]. Chaperones are proteins that prevent irreversible protein aggregation 

and facilitate the correct folding of proteins through binding in vivo. α-syn shares a 40% homology 

with a chaperone called 14-3-3 [63], suggesting that both proteins may share the same function. 

Chaperone 14-3-3 is particularly abundant in brain and can prevent apoptosis by binding with the pro-

apoptotic protein, BAD [64]. α-Syn selectively interacts with 14-3-3 in substantia nigra, where it 

accumulates in LBs, leading to a decrease in available levels of 14-3-3 to inhibit apoptosis [65]. Both 

α-syn and 14-3-3 interact with tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine 

synthesis that is responsible for catalyzing the conversion of the amino acid L-tyrosine to L-dopa. TH 

activity is stimulated by 14-3-3 and inhibited by α-syn [66]. 

 

2.2.1. Posttranslational modifications 

 

All posttranslational modifications of proteins result in a change of protein size, structure or charge, 

leading to alterations of their original properties [67]. With regard to α-syn, there are several 

modifications: 

 

2.2.1.1. Phosphorylation 

 

Ser-129 was established as a major phosphorylation site, while another was identified at Ser-87. 

Casein kinases, CK1 and CK2, were found to be responsible for α-syn phosphorylation at Ser-129 and, 

probably, at Ser-87. Both are localized in the synaptosome and also phosphorylate other synaptic 

vesicle proteins [68]. In addition, the G-protein-coupled receptor kinases can phosphorylate α-syn [69].  

It has been determined that more than 90% of insoluble α-syn in LBs is phosphorylated. By 

contrast, phosphorylation involves only about 4% of normal α-syn, suggesting that phosphorylation is 

a relevant pathogenic event [70,71]. In this regard, phosphorylation at Ser-129 increases fibril 

formation [71]. 

Interestingly, cotransfection experiments of α-syn and synphilin-1, a protein that interacts with α-

syn, yielded cytoplasmic inclusions that were similar to LBs. Subsequent coexpression of S129A α-syn 

(that is unable to be phosphorylated at Ser-129), synphilin-1 and parkin (a ubiquitin ligase responsible 

for α-syn and synphilin-1 ubiquitination), showed an important decrease in cytoplasmic inclusions 

[72], indicating that phosphorylation at Ser-129 enhances the formation of inclusion bodies and is a 

necessary step in the development of LBs. Transgenic mouse models that overexpress α-syn have 

shown a neurodegeneration that is accompanied by phosphorylation at Ser-129, caspase 9 activation 

and apoptosis [73]. 

 

2.2.1.2. Nitration 

 

Nitration has been proposed as one of the oxidative mechanisms responsible of the formation of α-

syn oligomers, through di-tyrosine crosslinking [74]. Soluble nitrated α-syn is not efficiently processed 

by proteases, leading to partial folding, accumulation and fibril formation [75]. Consequently, nitrated 

α-syn has been found in LBs deriving from brains with PD [76]. The primary sequence of α-syn 
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contains four sites for potential nitration: Tyr-39, -125, -133 and -136, all of which have been found 

nitrated in LBs [77]. 

 

2.2.1.3. Ubiquitination 

 

Protein modification by ubiquitin is one of the main mechanisms of protein targeting for 

proteasome degradation. Specifically regarding α-syn, the specific substrate for ubiquitination by 

parkin is the O-glycosylated α-syn form, with glycosylation potentially occurring at Ser-129 [78]. α-

Syn ubiquitination occurs in vivo at Lys-6, -10 and -12. Nevertheless, it remains unclear whether 

monomeric α-syn requires ubiquitination, since α-syn is a natively unfolded protein and, therefore, it 

may not require ubiquitination and unfolding. Instead, it could enter the 20S proteasome directly [67]. 

In contrast, ubiquitin moieties are present in LBs associated with α-syn aggregates [79]. In addition, 

only high molecular weight α-syn fibrils, and not the monomeric protein, are substrates for 

oligoubiquitination in sporadic LB diseases [80]. It thus appears that ubiquitination of α-syn is a 

pathologic event associated with LB formation. Moreover, α-syn and parkin colocalize together in 

LBs, and a report suggests that α-syn aggregation could precede ubiquitination [81]. 

Several mutations associated to early-onset PD have been described in genes related to 

ubiquitination, for example, within the ubiquitin C-terminal hydrolase gene [82], thereby highlighting 

the importance of the misfunction of this mechanism in parkinsonism.  

Protein degradation is tightly regulated in eukaryotic cells, and unfolded proteins, like α-syn, have a 

reduced lifetime and undergo a fast turnover. In many cases, this turnover is mediated by sequences 

rich in Pro, Glu, Ser and Thr, which target the protein for proteolysis [83], and are often present within 

a highly charged and unstructured region, preferentially in the C-terminal domain. 

 

2.2.2. α-Synuclein alternative splicing 

 

Alternative splicing is a mechanism to support the generation of multiple mRNAs from a single 

transcript. Each alternatively spliced transcript contains significant changes in protein secondary 

structure that may cause functional alterations, and shifts the protein isoform ratio. There are two types 

of transcripts from pre-mRNA alternative splicing: C-terminal truncated proteins generated by reading 

frame changes that result in the introduction of a premature stop codon, and in-frame deletions with 

exon loss without a frame shift. With regard to α-syn, the 140 aa isoform is the whole protein and also 

the major transcript, whereas alternative splicing of exons 3 or 5 gives rise to 126 or 112 aa isoforms, 

respectively, both from in-frame deletions [67]. In addition, a 98 aa isoform of α-syn, which lacks 

exons 3 and 5, has been recently reported [84]. The splice-out of exon 3 results in the interruption of 

the helical protein-membrane interacting domain by deleting most of helix 3 and part of helix 4, and 

thereby impairing the aggregation-prone interaction with membranes [85]. Interestingly, the E46K and 

A53T mutations are sited in exon 3. 

α-Syn 112 lacks exon 5 (aa 103-130) located on the C-terminal half of the protein. It shows an 

enhanced tendency to aggregate and fibrillize [86], in spite of the lack of the main phosphorylation site 

located at Ser-129 (although maintaining the phosphorylation site at Ser-87). Thus, either 

phosphorylation or structural alterations are responsible for aggregation, but other explanations arise, 
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such as the lack of the proteolysis signal sequence at the C-terminus, leading to accumulation and 

aggregation. In addition, it has been proposed that the C-terminus may act as an intramolecular 

chaperone, preventing α-syn fibrillization [62]. 

A differential mRNA expression study [87] revealed different α-syn expression levels when 

comparing patients with DLB to controls. α-syn 140 expression levels were diminished as result of 

neuronal loss and an important 5-fold decrease of α-syn 126, together with a two-fold increase of α-syn 

112 and α-syn 98 were described [84], suggesting an involvement of these latter isoforms in DLB 

pathologies that likely related to LBs formation. The decrease in α-syn 126 expression probably 

unbalances the ratio among the three isoforms towards the more prone to aggregate 112 aa isoform, 

albeit that no pathological processes related to α-syn 126 have yet been reported. 

 

2.2.3. Vesicle trafficking regulation 

 

α-syn has the ability to bind phospholipid vesicles through its N-terminal domain, with four 

amphipathic α-helices that are typical of lipid-binding proteins. It is found in pre-synaptic termini, in 

equilibrium between free and membrane-bound states [88], with approximately 15% of α-syn being 

membrane-bound [55]. This led to the hypothesis that α-syn might regulate vesicular release and/or 

turnover and other synaptic functions within the CNS [59]. Expression profiling in transgenic flies 

revealed that expression of lipid and membrane transport genes were associated with α-syn expression 

[89]. Furthermore, overexpression of α-syn was accompanied by noticeable changes in membrane 

fluidity and in fatty acid uptake and metabolism [90]. 

An analysis of a yeast PD model revealed that the earliest defects following α-syn overexpression 

were an inhibition of the endoplasmatic reticulum (ER) to Golgi vesicular trafficking and an 

impairment of the ER-associated degradation [91]. In PC12 cells, α-syn regulates catecholamine 

release from synaptic vesicles, and its overexpression inhibits the vesicle priming process after 

secretory vesicle trafficking to docking sites [92]. Finally, α-syn appears also to be involved in the 

regulation of certain enzymes, transporters and neurotransmitter vesicles [93]. 

 

2.2.4. Interaction with other proteins 

 

α-Syn acts as a specific inhibitor of phospholipase D2 (PLD2) [94], which hydrolyzes 

phosphatidylcholine to phosphatidic acid (PA) [95]. Activation of PLD2 and generation of PA elicits a 

wide array of cell responses, including Ca2+ mobilization, secretion, superoxide production, 

endocytosis, exocytosis, vesicle trafficking, recycling of membrane receptors, transport to Golgi, 

rearrangements of cytoskeleton, mitogenesis and cell survival. PA can serve as a protein attachment 

site, altering membrane curvature and vesicle fusion [94]. 

Phosphorylation of α-syn by G-protein coupled receptor kinases results in a significant reduction in 

the α-syn affinity for phospholipids and a decrease in its binding with PLD2. Once detached from the 

plasmatic membrane (PM), α-syn is able to release any membrane-bound PLD2, allowing potential 

hydrolysis of phosphatidilcholine, the major lipidic component of cell membranes, to potentially 

increase membrane permeability [4]. 
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2.2.5. Chaperone activity 

 

As discussed, α-syn has chaperone functions, assisting in the folding and unfolding of many 

synaptic proteins. In addition, transgenic mice with the cysteine-string protein-α (CSPα, a synaptic 

vesicle protein that acts as a co-chaperone) gene deleted have a phenotype of neurodegeneration. 

However, transgenic expression of α-syn prevented the development of this pathological sign. Thus, α-

syn appears to complement the chaperone activity of CSPα [96]. 

 

3. Pathogenic Mechanisms of Alpha-Synuclein. Factors Affecting Fibrillization. Role of Iron in 

Oxidative Stress 

 

3.1. Conformational states of α-synuclein 

 

The structural disposition of α-syn can show under a number of different conformations: 

(1) The intrinsic unfolded state under physiologic conditions, both in vitro and in vivo. 

(2) The pre-molten globule state, a compact but incompletely folded state of proteins that 

contains most of the secondary structure but lacks tertiary interactions [97], and is 

predominant under conditions such as low pH, high temperature, several metal ions [98], 

several salts [98], and several common pesticides/herbicides [99]. It is stabilized as result of 

spontaneous oligomerization both in vivo and in vitro [100]. It is thought that the negative 

electrostatical potential and locally low pH in the vicinity of the membrane surface induces 

protein conformation to molten globules. Early stages of fibrillization involve the partial 

folding of α-syn into the highly fibrillization-prone pre-molten globule conformation, which 

represents a key intermediate along the fibrillization pathway [101]. 

(3) The α-helical membrane-bound form in the N-terminal fragment, while the glutamate-rich C-

terminal region remains unstructured. 

(4) The β-sheet state: it has been observed that under certain conditions α-syn acquires a β-

pleated sheet, which is very prone to form amorphous aggregates [102]. 

(5) Dimers: α-syn is able to form morphologically distinct oligomers, for example under high 

temperature [100], where dimers are formed first, and aggregates. The formation of oxidative 

dimers and high-order oligomers with covalent di-tyrosine cross-links under conditions of 

oxidative stress has also been reported [74]. 

(6) Oligomers: nitrated α-syn assembles into spherical oligomers [100]. Incubation of α-syn with 

several metals gave rise to different classes of oligomers: Cu2+, Fe3+ and Ni2+ yielded 0.8-4 

nm spherical particles, similar to those formed by incubation of α-syn alone; Mg2+, Cd2+ and 

Zn2+ yielded larger (5-8 nm) spherical oligomers; and Co2+ and Ca2+ produced ring oligomers 

with diameters between 70-90 nm for the former and 22-30 nm in the case of the latter [103]. 

It has been observed that the earliest form of α-syn protofibrils appeared to be mainly 

spherical [35]. The incubation of spherical α-syn oligomers with brain-derived membranes 

has been shown to produce pore-like ring-type protofibrils [103], which may disturb ionic 

gradients in cells. This conjecture was supported by showing that α-syn oligomers (and not 
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monomeric or filamentous α-syn) enhanced the membrane permeability for Ca2+, an 

important subcellular messenger in liposomes [104]. The role for membrane permeabilization 

by α-syn in vivo is not clear and a large number of pores could lead to cell lysis, but even a 

subtle ionic disturbance could lead to neuronal dysfunction, death and degeneration.  

(7) Insoluble aggregates: finally, α-syn have been shown to assemble into large, insoluble 

aggregates with two distinct morphologies (amorphous aggregates and fibrils), with a high 

amount of β-sheet structure. 

Because of this number of possible structural conformations, it seems reasonable to suggest that α-

syn is potentially prone to misfold [105]. Fibrillization is a nucleation polymerization process, in 

which there is an initial lag phase, during which nuclei are formed, followed by the exponential growth 

of the fibrils, and an equilibrium phase between the protein in solution and the protein in fibrillar form 

[49]. The fibrillization rate increases with higher α-syn concentration, low pH, high temperature, 

oxidative stress-inducing compounds such as DA [106], the dopaminergic neurotoxin 1-methyl-4-

phenyl-1,2,3,6-tetrapyridine (MPTP) [107], lipids [54] and pesticides [99]. The insoluble aggregates 

might represent the major building blocks of synucleinopathies-related inclusions, as LBs, LNs, GCIs 

and axonal spheroids, all of them observed in PD and related pathologies, as well as in other CNS 

disorders, including AD. 

 

3.2. Factors affecting α-syn fibrillization 

 

As stated above, a number of environmental and genetic factors can induce partial folding of α-syn, 

and therefore these same factors are able to accelerate the fibrillization process. Other aggregation-

prone factors are: 

(1) Oxidation: the exposure of α-syn to oxidative agents induces the formation of high-order 

oligomers [74], and both the familial Parkininsonian A30P and A53T mutants have shown an 

even higher rate of self-assembly [108], providing support for the hypothesis that an 

impairment of cellular antioxidative mechanisms and/or overproduction of reactive oxygen 

species (ROS) may cause the initiation and progression of neurodegenerative 

synucleinopathies [109]. However, all amino acids are susceptible to oxidation [110], 

methionine being one of the easiest to undergo oxidation to form methionine sulfoxide 

(MetO). Thus, contrary to expectations, under mild oxidative conditions, when all four Met in 

α-syn are oxidized to MetO, the oxidized α-syn was found to be more unfolded than the non-

oxidized form and less prone to oligomerize and fibrillate. Indeed, it even proved able to 

inhibit the fibrillization of non-modified α-syn [111].  

DA metabolism in nigrostratial neurons can produce ROS and contribute to lipid 

peroxidation, DNA damage, impairment of mitochondrial function, depletion of reduced 

glutathione (GSH), and, finally, cell death [112]. Over-expression of α-syn, and especially its 

mutant forms, enhances the vulnerability of neurons to DA-induced cell death through 

massive generation of ROS [113]. It has been proved that conjugation of DA with α-syn 

impedes the protofibril-to-fiber transition and, therefore, potentially more cytotoxic 

protofibrils may accumulate [114]. Transfection of wt- α-syn, A30P or A53T mutants has 



Int. J. Mol. Sci. 2009, 10             

 

 

1238

been reported to trigger apoptosis of cultured dopaminergic neurons, whereas there was an 

increase in survival of non-dopaminergic neurons [65]. Inhibition of DA synthesis by 

blocking TH activity prevented α-syn induced apoptosis. 

Damage caused by DA species is mediated by DA auto-oxidation catalyzed by free metals 

(especially Fe) [115], yielding 6-hydroxydopamine (6-OHDA) or through enzymatic 

deamination by MAOs to form toxic DA metabolites and hydrogen peroxide (H2O2) [116]. 

Levels of MAO-B appear to be highest in the substantia nigra. H2O2 produced as a by-

product of DA oxidation and as normal oxygen reduction by MAOs is highly permeable and 

cannot be converted to water by GSH peroxidase due the low level of available GSH as a 

reducer [117], allowing H2O2 to potentially diffuses out of dopaminergic neurons and damage 

the neighbouring neurons. Under normal conditions, ROS are kept under control by an 

efficient antioxidant cascade. This includes the cytosolic copper-zinc superoxide dismutase 

and the mitochondrial manganese superoxide dismutase, which convert superoxide to oxygen 

and H2O2. The latter, in turn, is removed by catalases and peroxidases. These enzymes are key 

to scavenge ROS generated by oxidative insults. For example, in a transgenic murine model 

that overexpressed Cu/Zn superoxide dismutase or GSH peroxidase and was treated with 

pesticide paraquat, which causes a PD-like profile, the transgenic animals did not show 

alterations as reductions in locomotor activity, levels of striatal DA and metabolites, or 

dopaminergic neurons in the substantia nigra, unlike non-transgenic controls in which all of 

these were affected [118]. 

Soluble α-syn is able to interact with the DA transporter (DAT) through the NAC domain 

[119], decreasing the amount of DAT in the PM, to allow for an optimal moderate level of 

synaptic DA reuptake to be accumulated into vesicles. In the event of α-syn aggregation, a 

decrease in the level of soluble α-syn results, and leads to the increased PM accumulation of 

DAT, giving rise to a massive entry of DA into the cell and consequent potential generation 

of ROS [116]. In accordance, the much more neurotoxic A53T mutant (but not A30P) 

interacts very weakly with DAT and causes an impairment of vesicular DA storage and 

release [119].  

Interestingly, the dopaminergic neurotoxin MPTP, which causes a PD-like 

neurodegeneration in rodents, humans and primates, enters into the cell through the DAT as 

its ionic metabolite MPP+. It then targets the mitochondria, inhibits complex I of the electron 

transport chain, impairs ATP production, induces a loss of mitochondrial membrane potential 

allowing the release of cytochrome c and generation of ROS, and additionally, increases α-

syn mRNA and protein levels. The A53T mutant can enhance the vulnerability of cells to 

MPP+, while α-syn null-mice are resistant to MPP+-induced degeneration [120], signifying a 

fundamental role of α-syn in drug-mediated neurotoxicity. 

(2) Interactions with polyanions: different glycosaminoglycans (GAGs) are involved in the 

formation of amyloid plaques in a variety of neurological disorders [121] and some highly 

sulphated GAGs (heparin and heparan-sulphate) as well as the proteoglycan agrin are able to 

bind to α-syn and stimulate its fibrillization in vitro. Furthermore, agrin and α-syn co-localize 

in LBs and LNs [122,123]. 
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(3) Interaction with polycations: polycations, such as polyamines, are cellular stabilizers of 

nucleic acids and membranes, and are essential for growth and differentiation. Interaction 

with α-syn induced the partial folding of α-syn and, consequently, its oligomerization and 

fibrillization [124] by binding to the negatively charged C-terminus. 

(4) Interaction with histones: some animal models of PD are created by administration of the 

pesticide paraquat to mice where it elevates mouse brain α-syn levels [125]. Additionally, 

paraquat promoted in vitro the overexpression and translocation of α-syn into the cell nucleus, 

where it can interact with highly basic histones to form complexes that trigger its aggregation, 

and may reflect aspects of the in vivo situation [124]. 

(5) α-Syn--α-syn crosslinking: tissue transglutaminase (tTG) catalyzes covalent crosslinking 

between reactive Lys and Glu residues [126]. Substrates for tTG include Aβ, tau (another 

hallmark of AD) and the NAC fragment of α-syn, all of them are proteins that undergo 

aggregation in several neurodegenerative disorders. tTG catalyzes α-syn cross-linking, 

leading to the formation of high molecular weight aggregates in vitro [127], mainly associated 

with the membrane fraction. Increased levels of tTG have been reported in the substantia 

nigra of PD postmortem brains [128]. 

(6) Interaction with membranes: interaction with synaptic vesicles is one of the biological 

functions of α-syn. The membrane-bound fraction (about a 15% of total), was shown to have 

a high aggregation propensity and was able to seed aggregation of the cytosolic form of α-syn 

[55]. Furthermore, fatty acids and anionic lipids are potent inducers of α-syn fibrillization. In 

vitro association of soluble α-syn with lipid bilayers resulted in the formation of amorphous 

aggregates and filaments [129]. 

(7) Interaction with other proteins: several proteins have been found to interact with α-syn and 

some of them were shown to stimulate α-syn aggregation in vitro, including tau [130], brain-

specific protein p25α [131], MAP-1B [132] and tubulin [133], all of which are components of 

LBs and/or GCIs, leading to cytoskeleton impairment. The mechanism of interaction remains 

unknown, but all contain basic motifs, suggesting that interaction could be through ionic 

bonds. On the other hand, transcriptional factors, such as NF-κB or Elk-1, have been found in 

LBs [134], suggesting that the sequestration of these factors in the cytosol may compromise 

the coordination of gene expression in degenerating cells. Similarly, high mobility group B-1 

protein (HMGB-1), which is a nuclear DNA-binding protein that facilitates the interaction 

between DNA and transcriptional factors, has been demonstrated to bind directly with 

filamentous α-syn in vitro and it too is present in LBs [135], potentially disturbing gene 

expression. α-syn also interacts with other important signalling proteins, epitomized by PKC 

or ERKs, which can affect cellular viability. 

(8) Proteins inhibiting α-synuclein aggregation: 

i. Chaperones: heat shock proteins (HSPs) are a family of chaperones induced by stress 

conditions. These proteins suppress protein aggregation and participate in refolding and/or 

degradation. Hsp70 and Hsp40 are components of LBs and/or GCIs and co-localize with α-

syn. Overexpression of HSPs is able to suppress α-syn aggregation in vitro [136]. 

ii. β- and γ-synucleins: these proteins share some features with α-syn, but lack others. The α- 

and β-syn have a conserved C-terminus; however β-syn is deficient of 11 aa within the 
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NAC region [137]. On the other hand, γ-syn lacks the Tyr rich C-terminal. All the three 

behave as typical natively unfolded proteins, but there is a little structural variability. β-syn 

has properties of a typical random coil, whereas α- and γ-syn are slightly more compact 

and structured [138]. Both are able to form fibrils, while β-syn is not, when incubated 

under the same conditions, however even β-syn can be forced to fibrillate in the presence 

of specific metals (Zn2+, Pb2+, Cu2+), pesticides [139] or by addition of GAGs. 

Interestingly, the addition of β- or γ-syn in a 1:1 ratio with α-syn increased the time 

duration of the lag phase and decreased the elongation phase of α-syn fibrillization [138], 

and was completely inhibited at a 4:1 ratio of an excess of β- or γ-syn over α-syn. This 

suggests that β- and γ-syn may be regulators of α-syn fibrillization in vivo [140], 

potentially acting as chaperones. 

(9) Phosphorylation: as discussed above, α-syn undergoes extensive phosphorylation at Ser-129 

in synucleinopathies and in ageing brains [141] and it is mostly unphosphorylated under 

normal conditions [71]. The specific phosphorylation at Ser-129 by CK2 resulted in 

oligomerization and fibrillization. Furthermore, oxidative stress has been described to 

enhance α-syn phosphorylation [72]. 

(10) Ubiquitin proteasome system (UPS) malfunction: mutated, misfolded or unassembled 

proteins are ubiquitinated to be degraded. There is evidence that UPS is impaired in several 

neurodegenerative diseases, including PD. For example, proteosomal subunits and 

ubiquitinated proteins have been found in LBs [142]. An inhibitory effect of α-syn aggregates 

on the hydrolytic activity of the 26S proteosome subunit in vitro has been reported [143], and 

a direct interaction between filaments and the 20S subunit has been shown. Accordingly, in 

transgenic animals, the inhibition of 20/26 S proteasome in substantia nigra led to α-syn 

accumulation and inclusion body formation, and resulted in a relatively selective degeneration 

of dopaminergic neurons [144]. Hsp70 expression can attenuate α-syn aggregation toxicity, 

by binding to α-syn filaments, abrogating its proteasomal inhibitory effect [145]. 

(11) Effect of A30P, A53T and E46K mutations: all these three mutants have been shown to 

accelerate α-syn oligomerization. While A53T and E46K increase fibril formation more 

rapidly than wt-α-syn and do not alter lipid-vesicle binding, suggesting that enhanced 

polymerization induces the disease in patients harbouring these mutations [129]. On the other 

hand, it has been reported that A30P fibrillates slowly, retarding significantly the formation of 

mature fibrils [35] and binds poorly to vesicles compared with the wt, maybe hindering 

axonal transport, leading to accumulation and aggregation, and accelerating the initial 

oligomerization of α-syn. 

(12) C-terminal truncation: C-terminal truncated α-syn can increase α-syn-induced toxicity and 

aggregation ratio. Additionally, co-expression of full-length α-syn and the C-truncated form 

induced the formation of cytoplasmic inclusions and increased the susceptibility of cells to 

oxidative stress. This suggests that the C-terminus can play a role of an intramolecular 

chaperone by preventing α-syn from fibrillization [62]. Interstingly, C-terminally truncated 

A53T α-syn has been shown to induce the aggregation of full-length A53T protein faster than 

its wt counterpart, demonstrating that the mutation increases the accelerating effect that the 

truncated protein has on the aggregation of full-length α-syn [146]. 
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(13) Interaction with metals: postmortem analysis of brain tissues from patients with PD confirm 

the presence of considerable amounts of metals, such as Fe, Zn and Al, in the substantia nigra 

as well as in LBs when compared with healthy age-matched controls [147,148]. α-syn can 

interact with several polycations, including Fe2+, Al3+, Zn2+, Cu2+, Mg2+ and Ca2+ [149], 

through the C-terminal domain, and this binding can catalyze protein aggregation. 

Additionally, some metals, such as Al [150], can induce a conformational change of α-syn 

from an unstructured to partially folded β-sheet structure intermediates and, lately, to fibrils 

[98]. Moreover, there is a shift in the Fe2+/Fe3+ ratio in favour of Fe3+, and a significant 

increase in the Fe3+-binding protein ferritin, together with a decrease in GSH content. 

Nevertheless, the concentration of metals necessary to induce aggregation is controversial. In 

general, the required concentration above the physiological values of the metals [151]. Hence, 

it is probable that metal-induced aggregation is carried out by oxidation of redox metals, 

rather than specific binding [152].  

As mentioned above, oxidation can lead to degeneration of dopaminergic neurons, resulting from 

the increased level of redox-active metals ions (Cu or Fe) within the substantia nigra, which initiates a 

cascade of events, such as α-syn oligomerization, mitochondrial dysfunction, cytotoxicity, and a rise of 

cytosolic free Ca, leading to cell death.  

 

3.3. Overexpression of α-synuclein 

 

As commented above, duplication or triplication of the α-syn gene has been reported in early-onset 

PD patients, suggesting a dose-dependence association with the disease, and genetic polymorphisms in 

the α-syn gene are linked to idiopathic PD by increases in α-syn concentration [40]. Other studies have 

revealed that the overexpression of α-syn can induce Fe-dependent aggregation [153].  

Under physiological conditions, there is an equilibrium between the natively unfolded and the 

partially folded conformation; therefore a high α-syn concentration may increase the rate of 

fibrillization due to an increased total concentration of the partially folded fibrillization-prone 

conformation [105]. Several studies report an increase in α-syn mRNA levels in brains of patients with 

PD compared to healthy controls [154]. In fact, overexpression of α-syn can generate α-syn 

immunopositive inclusions, together with alterations in mitochondria, increases in ROS production 

[155], lysosomal dysfunction [156] and Golgi fragmentation [157], leading to cell death. Of note, all 

these effects could be partially attenuated by antioxidants [155]. 

Accordingly, murine models transfected with recombinant viruses that overexpressed wt- α-syn or 

the A53T mutated form showed the typical features of PD in humans, including a loss of dopaminergic 

neurons in substantia nigra, α-syn inclusions similar to LBs [158] and a reduction in TH levels. In fact, 

a correlation between the number of α-syn immunoreactive LBs and α-syn mRNA levels has been 

found [159]. 

Another useful murine model to study PD is created by the injection of MPTP, which has been 

reported to enhance the production of α-syn at both mRNA and protein levels, and induce formation of 

α-syn-positive inclusions in neurons and abnormal locomotor function [160]. Similarly, administration 

of the pesticide paraquat to mice caused an upregulation of α-syn and formation of α-syn aggregates. A 
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faster PD-like model has been obtained by using an alternative pesticide, rotenone, which is highly 

lipophilic and readily crosses plasma membranes to allow rapid brain entry [161]. Within brain, it 

inhibits mitochondrial complex I and increases oxidative stress by ROS production leading to 

degeneration of dopaminergic neurons and fibrillar α-syn inclusions [162]. It has been demonstrated 

that at a nM range concentration, α-syn provides neurons protection against serum deprivation, 

oxidative stress and excitotoxicity, whereas in the μM range, cytotoxicity results [163]. Thus it is clear 

that there is a strong correlation between α-syn levels and aggregation-derivated toxicity. 

 

3.4. Role of oxidative damage induced by Fe in PD 

 

Both enzymatic and non-enzymatic catabolism of DA are accelerated by the presence of redox 

elements [164]. In particular, the high concentration of Fe in substantia nigra may catalyze the 

conversion of H2O2, produced during breakdown of DA, to highly reactive hydroxyl radicals by the 

Fenton reaction, resulting in oxidative damage [165]. In contrast, the superoxide radical is unreactive, 

but can serve as reducing agent for oxidized metal ions to produce more hydroxyl radicals from H2O2, 

via a cycle known as the Haber-Weiss reaction [166]. Oxidative stress may enhance Fe levels by 

deattachment from ferritin (see below), from heme proteins like haemoglobin and cytochrome c by 

peroxides and from iron-sulfur proteins by ONOO.- [117]. Iron also catalyzes the conversion of an 

excess of DA to neuromelanin, an insoluble black-brown pigment that accumulates in all aged 

dopaminergic neurons. Neuromelanin sequesters redox ions with high affinity for Fe3+; however, when 

bound to an excess of Fe3+, neuromelanin tends to become pro-oxidant, reducing Fe3+ to Fe2+, which is 

released from neuromelanin and increase the amount of iron available to react with H2O2 [167]. 

In cells, the main route of Fe uptake is through the transferrin receptor (TfR) at the cell surface. 

Each TfR binds to a Fe-laden transferrin (Tf) molecule and internalizes it via endocytosis. The acidic 

pH of endosomes causes the dissociation and unloading of Fe from Tf, and is then recycled back to the 

cell surface. In cytoplasm, most available Fe is sequestered by the iron-storage protein ferritin and a 

small amount is left free. In the case of Fe deficiency, the levels of TfR in the plasma membrane are 

increased and ferritin synthesis is downregulated, enhancing the availability of free Fe. When there is 

too much free Fe, TfR levels are downregulated and ferritin synthesis becomes upregulated. 

This homeostasis is regulated at the translational level by two cytoplasmic iron regulatory proteins 

(IRPs), IRP1 and IRP2 [168; 169], based on their coordinately binding to iron-response elements 

(IREs) within the 5’-untranslated region (5-UTR) of mRNA ferritin and to the 3-UTR of mRNA TfR. 

When cellular Fe levels are low, IRPs bind to the ferritin 5-UTR, resulting in a block of ferritin 

translation and bind to the TfR 3-UTR, stabilizing the mRNA TfR and preventing its endonuclease 

cleavage [117]. Therefore, there is a decrease in Fe storage, an increase in extracellular import and 

consequently, an enhancement in cytoplasmic Fe levels. In the presence of excess Fe, IRP2 is degraded 

[170] and IRP1 inactivated, thereby increasing ferritin levels. 

There are several lines of evidence that support the contention that Fe accumulation in a number of 

degenerative disorders may be a primary event, rather than a consequence of the disease: 

(1) Injection of Fe3Cl into the substantia nigra of rats has been reported to result in a selective 

decrease of striatal DA, which supports the assumption that Fe initiates dopaminergic 
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neurodegeneration in PD. This decrease was prevented by infusion of the Fe chelator, 

desferrioxiamine [171]. 

(2) Neurodegeneration by 6-OHDA is selective for catecholamine neurons, and it is rapidly oxidized 

to yield cytotoxic catecholaminergic semiquinones and quinones with production of H2O2 and 

hydroxyl radicals. Iron-deficient rats are resistant to 6-OHDA neurotoxicity, suggesting that Fe 

could be a trigger [172]. Moreover, 6-OHDA-induced toxicity has been reversed by the Fe 

chelator, desferal [173]. These studies indicate that an enhancement of Fe concentration in 

substantia nigra may be upstream in neurodegenerative process associated with PD. 

(3) By using MPTP injection in monkeys, a number of Fe chelators have been shown to attenuate 

MPTP oxidative toxicity, suggesting that Fe mediates or accentuates MPTP effects [174]. 

(4) Targeted deletion of the gene encoding IRP2 in mice causes a misregulation of Fe metabolism 

and neurodegeneration, leading to abnormal brain Fe deposition, ataxia, bradykinesia and 

tremors [175]. 

(5) Mutation in the gene that codifies for a ferritin subunit, resulted in disease similar to PD, termed 

neuroferritinopathy, which is characterized by Fe deposits, progressive neurodegeneration and 

axonal cyst formation with neurofilaments, ubiquitin and tau protein at the periphery, all of them 

components of LBs [176]. 

(6) Polymorphisms in five genes related to Fe homeostasis (Tf, TfR, frataxin, lactoferrin and 

haemochromatosis-related protein gene) have been linked to sporadic PD incidence, suggesting 

that there are variations in proteins involved in Fe metabolism that contribute to PD  

pathogenesis [177]. 

Anther link between Fe and oxidative stress comes from the discovery of upregulation of ferritin 

and downregulation of TfR in response to conditions of heightened oxidative stress, leading to IRP 

inactivation [178], and inversely, overexpression of ferritin decreased the oxidative levels [179]. 

However, there are reports where increases of H2O2 level enhanced the activation of IRPs [180]. In a 

study, when the Fe concentration was increased, IRP2 activity disminished, as expected, but IRP1 

activity decreased in the beginning and later aberrantly enhanced, indicating the presence of complex 

feedback loops to mitigate Fe-induced oxidative damage [181]. Another study assessed that there was 

neither increase in ferritin levels under excess of Fe nor alteration in the IRP-IRE system in PD brains, 

maybe induced by the sequestering of Fe by α-syn [182]. 

Another example of IRP-IRE mediated regulation is the regulation of mRNA levels of 

mitochondrial complex I, which is compromised in PD [183]. The mitochondrial electron transport 

chain is the major source of free radicals in vivo, therefore dysfunction of IRP regulation of complex I 

or IRE-containing tricarboxilic acid cycle enzymes, that provide substrates for the electron transport 

chain, would impair mitochondrial function and would lead to exacerbated levels of oxidative stress. 

Also, an IRE motif has been located in the 5-UTR of murine and human erythroid-specific delta-

aminolevulinic acid synthase (eALAS) mRNA which encodes the first, and possibly rate limiting, 

enzyme of the heme biosynthetic pathway [184], and for which translation is controlled by IRPs. 

Fe-oxidative stress has also been shown in several studies to promote α-syn aggregation [153], 

maybe due to alterations in secondary structure leading to partially folded states, more susceptible to 

oligomerization [98]. Fe has been identified as a component of LBs [185], showing the tight 
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relationship among Fe, oxidative stress, α-syn and PD. Indeed, in accordance with and adding to the 

described literature, an IRE has recently been discovered within the 5-UTR of the α-syn mRNA [186]. 

 

4. Protein-binding Control Sequences within the 5-UTR of the Alpha Synuclein Transcript 

 

RNA-protein interactions play a key role in many fundamental biological processes through their 

effects on RNA splicing (in the case of the α-syn mRNA, see ref [187]), turnover, post-transcriptional 

processing such as capping or poly(A) addition [188], transport, localization and translation [189]. 

RNA binding of regulatory proteins can modulate synthesis of multiple proteins or differential 

expression from one mRNA, not only by alternative splicing (such is the case of α-syn), but also by the 

choice of a certain translation initiation codon [190]. In mammals, translation repression by sequence-

specific RNA-binding proteins through the 5-UTR can be robust [191]. Another important regulatory 

element is sited at the 3’-end of the mRNA (3-UTR). This is the poly(A) tail, characteristic of all 

mRNAs, which can upregulate or downregulate translation depending on its length and the binding of 

certain regulatory proteins [188]. 

The best studied example of a small structural element within the 5-UTR that affects the translation 

of eukaryotic mRNAs is a stem-loop of around 30 nt, termed the iron-responsive element (IRE), whose 

role on Fe homeostasis has already been described. The IRE RNA stem loop is usually located within 

50 nt from the 5’ cap site of a given mRNA, and this distance is functionally important, because 

ribosomal preinitiation complex binds to this region. Iron-regulatory proteins (IRPs) are the 

modulators of translation of the downstream cistron through their binding to the IRE. Our laboratory 

recently identified a fully functional IRE within the 5-UTRs of mRNAs implicated in 

neurodegenerative diseases, such as that of the amyloid-precursor protein (APP), associated with AD 

[192]. This APP IRE was found to be related to those found within 5-UTRs of the mammalian TfR and 

ferritin L- and H-chain mRNAs, conferring Fe-dependent regulation. Screening for drugs that interact 

with the 5-UTR of APP mRNA has led to the discovery of a number of metal chelators that suppress 

holo APP translation [193,194], and likely represent the mechanism via which specific experimental 

AD drugs lower amyloid- peptide levels through lowering APP translation [195,196]. 

As Figure 2 shows, the recent finding of a putative IRE within the 5’-UTR of α-syn mRNA [186], 

as encoded by exons 1 and 2, is highly significant. Indeed, two different splicing sites, producing 

different 5-UTRs have been found by Xia, et al. 2001 [187], thus generating one transcript encoding 

the IRE loop consensus sequence 5’CAGUGU3’ across the splice site junction where, interestingly, 

the longer transcript encodes the same loop region across its splice junction (Figure 2). The putative α-

syn IRE provides a possible mechanism through which Fe can carry out its deleterious action by 

regulating in some way α-syn expression. In fact, our preliminary data show that the α-syn IRE from 

the shorter α-syn transcript, indeed, confers desferrioxamine-dependent repression of a luciferase 

reporter gene in response to iron chelation in SH-SY5Y neuroblastoma cell lines, whereas this 

sequences has not yet been tested for the longer α-syn alternatively spliced transcript  

(unpublished data). 
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Figure 2. An RNA Stem loop is predicted within 5' Untranslated region (5’UTR) of the 

Parkinson’s disease alpha synuclein (α-syn) transcript that is homologous to the Iron-

responsive element (IRE) in H-ferritin mRNA.  

 
Panel A: The α-syn 5’UTR is encoded by exon-1 and exon-2 of the α-syn gene, which can be 

alternatively spliced to generate either a shorter exon-1/-2 transcript (Panel B upper transcript, 

[187]), or the alternatively spliced transcript (longer by 375 bases, Panel B lower transcript). Panel 

B: The alternatively spliced α-syn 5’UTR mRNAs. There is a predominant transcript that encodes a 

CAGUGU motif at the exon-1/exon-2 splice junction. Also present is the longer alternatively 

spliced α-syn mRNA variant (Lower transcript) that encodes exon-1 and exon-2 but includes 375 

bases of sequences from intron-1. Panel C: Alignment of the α-syn 5’UTR from human, mouse and 

rat demonstrating the lack of an IRE homology in rodent IREs (in bold is the CAGUGN loop 

sequences of canonical IREs). Similar to the boxed alignment of the α-syn 5’CAGUGU3’ motif 

against the IREs of ferritin H- and L- chains (iron storage), ferroportin (iron transport), erythroid 

eALAS (heme synthesis) mRNAs [186]. Panel D: This α-syn 5’UTR stem loop (ΔG =53 kcal/mol) 

was predicted by the RNA/FOLD computer program. This α-syn stem loop resembles the classical 

IRE RNA stem loop (5'CAGUGN3' loop motif) that controls iron-dependent L- & H-ferritin 

translation & transferrin receptor (TfR) mRNA stability. 

 

Providing more support for a role of α-syn in iron metabolism, a recent finding showed that α-syn 

and the heme metabolism genes erythroid-specific 5-aminolevulinate-synthase gene (ALAS2), 

ferrochelatase (FECH), and biliverdin-IX beta reductase gene (BLVRB) form a block of tightly 

correlated gene expression co-induced by the transcription factor GATA-1 which is able to noticeably 

enhance α-syn expression [197]. (Ferrochelatase catalyzes the chelation of iron into protoporphyrin, a 

precursor of heme group; biliverdin-IX beta reductase gene converts bilirubin from biliverdin, ALAS2 
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is a key enzyme in heme anabolism). The GATA family of transcription factors, which contain Zn 

fingers in their DNA binding domains, have emerged as candidate regulators of gene expression in 

hematopoietic cells. GATA-1 is a hemopoietic transcription factor that specifically occupies a 

conserved region within α-syn intron 1, where several polymorphisms linked to PD have been detected 

[38]. Endogenous GATA-2 is highly expressed in substantia nigra vulnerable to PD, also occupies 

intron 1, and modulates α-syn expression in dopaminergic cells [197]. 

Interestingly, β- and γ-syn transcripts lack this IRE. This finding suggests that the potential IRP1/-2 

binding capacity of α-syn 5-UTR evolved after the divergence of these evolutionally related genes. 

Interestingly, the human α-syn IRE maintains the CAGUGU loop region motif that is typical of the 

canonical IRE stem loop, whereas rodents lack it (Figure 2C). This suggests that the capacity of the α-

syn IRE to potentially bind IRP1 and/or IRP2 is unique to human α-syn and evolved after the 

divergence of humans from rodents on the evolutionary timeline. 

 

5. Conclusions 

 

In PD, α-syn aggregation is the typical hallmark, and it has been demonstrated that MPTP-induction 

and α-syn overexpression triggers Fe-mediated α-syn oligomerization, because Fe chelation reduced 

the toxicity exerted by MPTP. It is known that certain neurotoxins, such as 6-OHDA, are selective for 

dopaminergic neurons, and cause a PD-like clinical profile and, meaningfully, this neurotoxicity only 

can be exerted through Fe mediation, since again Fe chelation was able to revert this effect. 

The presence of an IRE within the 5-UTR of the α-syn gene and the importance of α-syn in PD, 

clearly indicates a role for Fe in the pathogenesis of the disorder. Thus, α-syn levels are critical to hold 

Fe homeostasis, and an impairment in the IRE-mediated regulation system of α-syn can lead to 

overexpression, to a misfunction in regulation of Fe storage, and consequently to Fe-mediated 

oxidative stress, α-syn aggregation, dopaminergic neuronal death, DA depletion, and finally to PD 

symptoms. Indeed, the oxidative insult is not limited to these neurons in substantia nigra, and can 

expand to other areas of the brain leading to massive neuronal death. For this reason, it is frequent to 

find dementia in patients affected by PD. 

Duplication or triplication of the α-syn gene leads to α-syn overexpression and aggregation, perhaps 

by altering the equilibrium between IRE-containing α-syn and IRE-containing Fe regulatory protein 

system with regard to the recruitment of IRPs, although even a subtle change in α-syn concentration 

could have the same effect. A shift in α-syn isoform ratio towards the 112 aa isoform, that is more 

prone to aggregate than the full-length protein, also could occur in vivo.  

Synucleinopathies are additionally related to AD, since neurofibrillary tangles of protein tau, a 

hallmark of AD, are in many cases found co-localized with LBs [198]. Moreover, APP mRNA also 

encodes an IRE, revealing the critical importance of Fe homeostasis in neurodegenerative processes 

and the main role of the IRE translational regulatory system in the CNS.  

In conclusion, the search for new therapeutic agents for PD able to regulate increasing α-syn levels 

by binding to its IRE might retard Fe-induced neurotoxicity, as well as avoid the deleterious effects of 

α-syn overproduction and aggregation. Ever since the first-line of treatment of PD, with L-dopa that 

was developed 50 years ago, there has been no other drug that has proved to be sufficiently efficacious 

to substitute for it, despite its side effects and short duration of efficacy. Hence, in the future these 
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potential new translation blocker drugs could widen the available clinical options for PD treatment by 

providing the opportunity for arresting and/or reversing the progression of not only this disease but 

also other related neurodegenerative synucleinopathies. 
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