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Abstract: A new London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES) is 

used in the O + CH4 → OH + CH3 reaction via the quasiclassical trajectory method 

(QCT). Comparing with the experiments and the former ab initio calculations, the new 

LEPS PES describes the actual potential energy surface of the O + CH4 reaction 

successfully. The four polarization dependent “generalized” differential cross sections 

(PDDCS) are presented in the center of mass frame. In the meantime, the distribution of 

dihedral angle [P(r), the distribution of angle between k and j  (P(θr)] and the angular 

distribution of product rotational vectors in the form of polar plots in θr and r (P(θr, r) 

are calculated. The isotope effect for the reactions O + CD4 is also calculated. These 

results are in good agreement with the experiments. 
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1. Introduction 

The reactions of ground-state atomic oxygen, O(3P), with hydrocarbons are the important initial 

steps of oxidation in combustion processes [1] and in Low Earth Orbit (LEO) conditions [2]. Among 

those reactions, the abstraction reaction O(3P) + CH4 → OH + CH3 has attracted considerable interest, 

both in experimental [3-7,11] and theoretical [8-10,12-20] calculations over the past decades. The rate 

constant values have been established in experiments [3,4]. Experimental studies have reported the 
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translational energy release to the umbrella mode of the CH3 product [5] as well as OH ro-vibrational 

distributions [6,7]. The thermal rate constants have been measured with a wide variety of methods [8-

10]. The state distribution of the OH product was found by experiments [5,6,8,11] and theoretical [12] 

calculations. A small amount of OH rotational excitation was found [5,6,11], which has been 

interpreted as resulting from a direct abstraction mechanism with a preferentially collinear O-H-C 

approach of the O(3P) atom attacking to the C-H bond. Theoretical calculations [8,9,12,13] showed 

that this reaction has a collinear O-H-CH3 transition state. The classical barrier height is around 0.4 eV 

[20,21]. Reduced-dimensionality quantum [16-19] models have been reported. The calculated kinetic 

behaviors and product state distributions are generally in good agreement with experimental  

findings [7]. 

It has been recognized that the correlated angular distribution provides an informative three-

dimensional picture of a chemical reaction [22-25]. The angular distribution of the reagent and product 
relative velocity vector (k, k  ) is characterized by the differential cross-section dσ/dωt. Furthermore, 

the angular distribution describing the relative orientation of vectors k, k  and product rotational 

quantum number j’ in space may be termed the k - k’ - j’ distribution. The correlations among three 

vectors in the center-of-mass frame can be characterized by certain interesting double and triple vector 

correlations [26]. To our best knowledge, there is only one experimental work [27] relate to the 

product angular distribution (k - k′), scalar and two-vector properties of the reaction were analyzed 

using the QCT method [14], the full-dimensional trajectory [13,20] calculations only relate to the k - k′ 

angular distributions. So the full product angular distribution of this reaction has not been reported. 

We calculated the product rotational polarization, the scattering-angle resolved product rotational 

alignment, the vector correlations of the reaction O(3P) + CH4 → OH + CH3 and the isotope effect for 

the reactions O + CH4/O + CD4.  

2. Results and Discussion 

Figure 1 shows the minimum energy paths of the reaction O + CH4 → OH + CH3 at the collision 

energy of 0.65 eV from reactants to products on our chosen PESs. A new LEPS PES with a different 

set of Sato parameters has been calculated in our work. The Sato C parameters from [33] are on the 

PES1 and the Sato D parameters which we calculated are on the PES2. We get the Sato D parameters 

from the ab initio calculation carried out by Troya and García-Molina [20] when the quality of the 

minimum energy path on the new LEPS potential energy surface accords with the experimental results. 

In Figure 1, there is a potential barrier in the reaction. The values of the potential barrier are  

11 kcal/mol on PES1 and 9.23 kcal/mol on PES2. The results on PES2 are accord with the calculation 

[20] in which the barrier is around 9.22 kal/mol. The product’s ro-vibrational distributions are shown 

in Figure 2. From Figure 2(a) we can see that the most probable vibrational quantum number of OH is 
'v  = 0. In Figure 2(b) the most probable rotational quantum number of OH is j  = 1, which is quite 

close to the calculation [20] and experiment [37], but the product OH of our calculation is colder than 

the experimental results. The reason is that the collision energy changes to the product’s translational 

energy rather than rotational energy in the O+CH4 direct abstraction reaction. 
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Figure 1. The reaction profile along the minimum energy paths of the O + CH4 reaction on 

 the PES1 and PES2. 
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Figure 2. (a) The vibrational population of the product OH. (b) The rotational population 

of the products OH. The solid square symbol is our results, the circle symbol is 

experimental data, and the triangle symbol is taken from [20]. (c) The DCS distribution of 

the product OH at collision energy 0.54 eV. The solid line is the result on the PES2, the 

dash line is the result on the PES1 and the dot line is the experimental results. (d) The DCS 

distribution of the product OH at collision energy 0.65 eV. The solid line is our result, the 

solid line and solid square symbol are taken from [16], the solid line and solid triangle 

symbol are taken from [20]. 

 

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

cos

(d)

 

 

D
C

S

 MSINDO
 LEPS
SRP-MSINDO

-1.0 -0.5 0.0 0.5

0.0

0.5

1.0

1.5

2.0

(c)

 

 

D
C

S

cos

 PES2
 PES1
 EXP

 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
 PES2

 

 

 

 

P
(v

)

v

(a)

0 2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

(b)
 

 

P
(j

)

j

 our
 exp
 Ref 20



Int. J. Mol. Sci. 2009, 10            

 

 

2149

In the direct abstraction reaction, the rotational distribution is always in the narrow and low range 
of the rotational energy. The PDDCS (2π/)(d00/dωt), which is proportional to the differential cross 
section (DCS), predicts the angular distribution of the product molecular. In Figures 2(c,d) the DCS 
distribution is quite close to the experiment [27] and calculations [13,20]. The PES2 reflecting the real 
reaction process is much better than the PES1.  

The value of (2π/)(d20/dωt), which is the expectation value of the second Legendre moment, 
shows the trend which is opposite to that of (2π/)(d00/dωt). At the extremes of forward and 
backward scattering, the PDDCSs with q ≠ 0 are necessarily zero. At these limiting scattering angles, 
the k -k’ scattering plane is not determined and the value of these PDDCSs with q ≠ 0 must be zero. 

The variations of the PDDCSs with k = 2 reflect changes in the rotational polarization with the 
scattering angles and suggest that the PDDCSs for the O+CH4 reaction contain important dynamical 
information. The four PDDCS of the OH product state are shown in Figure 3(a).  

Figure 3. The collision energy is 0.65eV (a) Four PDDCS, boldfaced solid line indicating 

(2π/)(d00/dωt), thin solid line indicating (2π/)(d20/dωt), dash dot indicating 

(2π/)(d22/dωt) and short dot indicating (2π/)(d21–/dωt).(b) The distribution of P(θr), 

reflecting the k - J’ correlation.(c) The dihedral angle distribution of J’, P(r) with respect 

to the k -k’ plane.(d) Polar plots of P(θr, r) distribution averaged over all  

scattering angles. 

 
 
It indicates that the product OH scatters backward. The angular distribution that is asymmetric with 
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translation energy rather than internal excitation, and the product internal excitation is quite cold. This 
is consistent with Figure 2. 

The P(θr) and P(r) distributions are shown in Figures 3(b,c). We can get better graphical 

representation of the products polarization for the reaction O + CH4. Figure 3(b) clearly shows that the 

distributions of the k - j’ correlation P(θr) peak at θr angle close to θr = 90°and is symmetric with  

θr = 90° . It demonstrates that jOH is strongly aligned perpendicular to the line of centers. The 

distribution of the k - k’ - j’ correlation P(r) is shown in Figure 3(c). The P(r) tends to be asymmetric 

about r = 180°, reflecting the strong polarization of angular momentum. There are two peaks of P(r), 

respectivelyr = 270°and r = 90°. It implies that the angular momentum (jOH) of the most product 

molecules aligns along the CM y-axis. This behavior suggests that the reaction proceeds preferentially 

when the reactant velocity vector lies in the plane containing all three atoms. However, for an initially 

random orientation of reactant molecules the probability of such planar collisions is very low; thus, we 

can conclude that the given PES reorients or polarizes the plane containing the three atoms into the  

k - k’ plane during the reaction process. The distribution of P(θr, r) is presented in Figure 3(d); one 

peak appears at (90°, 270°). This suggests that the OH products are preferentially polarized 

perpendicular to the k - k’ plane. The P(θr, r) distribution is not symmetric about r=180°, reflecting 

the nonzero values of the PDDCS (2π/)(d00/dωt) for the O + CH4 reaction. It is in good accordance 

with the distribution of P(r) that the dihedral angle distribution tends to be asymmetric with respect to 

the scattering plane. 

Figure 4(a) presents the PDDCSs (2π/)(d00/dωt) distributions of the products OH and OD at the 

collision energy of 0.65eV. The distribution of the products OD is a little more backward than that of 

the products OH. The increase of backward scattering with the mass number indicates that the 

rotational angular momenta distribution of the products is sensitive to the factor of merit [the factor of 

merit is cos2β=mAmC/(mA + mB)(mB + mC) for the reaction A + BC → AB + C] [32,34]. 

The product polarization distributions for the reaction O + CH4 and O + CD4 are shown in Figures 

4(b,c) that describe the visible stereodynamics isotope effect. Figure 4(b) illustrates that the product 

distribution of P(θr) for the O+ CD4 reaction is a little broader than that for O + CH4 reaction. This 

means that the rotational orientation effect of the product becomes weaker with the increase of the 

atomic mass. Han et al. [32,34]. have studied the product polarization for the reaction H + H’L (H, 

heavy; L, light), they found that the distribution of the product rotational angular momentum vectors is 

acutely sensitive to the mass factor, furthermore the increase of the mass factor can reduce the 
anisotropic distribution of the angular momentum j  of the product molecule. The effect of mass factor 

cos2β = mAmC/(mA + mB)(mB + mC) on product rotational alignment is notable for the HHL mass 

combination reaction. The mass factor of the O + CD4 reaction is larger than that of the O + CH4 

reaction. So the j’ tend toward a less anisotropic distribution with respect to the vector k, while the 

rotation of the product from the O + CH4 is strongly aligned. During the reactive encounter, total 

angular momentum is conserved, j + L = j’ + L’ (here L and L’ are the reagent and product orbital 

angular momenta). According to the impulse model and j’ = Lsin2β + jcos2β + J1mB/mAB, the larger 

product atom will take more angular momentum away, so the increase of the mass factor reduces the 
anisotropic distribution of j . 
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Figure 4. The collision energy is 0.65eV (a) The distribution of (2π/)(d00/dωt), 

reflecting the kk   correlation for O + CH4 and O + CD4 on the PES2. (b) The 

distribution of P(θr), reflecting the k - j’ correlation for O + CH4 and O + CD4 on the PES2. 

(c) The distribution of P(r), reflecting the k - k’ - j’ correlation for O + CH4 and  

O + CD4 on the PES2. Solid line indicating the reaction O + CH4, and short dot indicating 

the reaction O + CD4. 

 
Figure 4(c) describes that the P(r) distribution becomes a little broader when the H atoms are 

displaced by the D atoms. With the increase of the atomic mass, the preference for in-plane reaction c 

gradually hanges to a preference for an out-of-plane mechanism. The mass effect causes the reaction O 

+ CD4 to prefer an out-of-plane mechanism. That is to say, it is not necessary that the product 

molecules rotate in the scattering plane containing all the three atoms when the reaction occurs. 

According to the [35] and [36], the P(r) is relevant to PES and the mass factor. We consider that the 

difference of the P(r) distribution is probably attributed to the different mass number and to the 

isotope effect. The obvious variation in the dihedral distribution implies that the mass effect plays an 

important role in the dynamical stereochemistry. 
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3. Experimental Section  

3.1. Product rotational polarization in the center-of-mass (CM) frame 

The center-of-mass (CM) frame is chosen; in this frame, the z-axis is parallel to the reagent relative 

velocity k, and the y-axis is perpendicular to the xz-plane which contains k and k  . The distribution of 
the angular momentum j  of the product molecule is described by the function f(θr), where θr is the 

angle between j’ and k. f(θ) can be represented by Legendre polynomial [26]: 

)(cos)( rnnr paf        (1) 

n = 2 indicates the product rotational alignment 21cos3)( 2
2  rkjp  , where p2 is the second 

Legendre moment, and the brackets indicate an average over the distribution of j’ about k. 
The full three-dimensional angular distribution associated with k, k  and j  can be represented by a 

set of generalized polarization-dependent differential cross-sections (PDDCSs) in the CM frame. The k 

- k’ - j’ correlated CM angular distribution is written as the sum [26,29]. 
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where (1/σ)(dσkq/dωt) is a generalized polarization-dependent differential cross-section (PDDCS), and 
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The PDDCS is written in the following form: 
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where the 1k
kqS   is evaluated using the expected value expression 
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where the angular brackets represent an average over all angles. 
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where S 1k

0k
 is evaluated by the expected value expression: 

 )(cos)(cos rktk
k
0k ppS

1

1       (10) 

The differential cross-section is given by: 
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the bipolar moments )0,( 10
1 kh k  are evaluated using the expectation values of the Legendre moments 

of the differential cross-section:  )(cos),( tk1
k
0

k
00 p0khS 11  . 

In many photoinitiated bimolecular reaction experiments, we will be sensitive to only those 

polarization moments with k = 0 and k = 2. In order to compare calculations with experiments, 
(2π/)(d00/dωt), (2π/)(d20/dωt), (2π/)(d22+/dωt) and (2π/)(d21– /dωt) are calculated. In the 

computation, PDDCSs are expanded up to k1=7, which is sufficient for good convergence. 

The usual two vector correlations (k - k’, k - j’, k’ - j’) are expanded in a series of Legendre 

polynomials. The distribution of the k - j’ correlation is characterized by P(θr) and the P(θr) can be 

written as [26-28]: 


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r pakp )(cos][
2
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where the ka0  coefficients (polarization parameters) are given by )(cos0 rk
k Pa   with the angular 

brackets stand for an average over all the reactive trajectories. In this paper, p(θr) is expended up to 

k=18, which shows good convergence. 
The dihedral angle distribution of the k - k’ - j’ three-vector-correlation is characterized by angle r  

[28,30]. It has been shown that the distribution of dihedral angle r  may be expanded as a  

Fourier series: 
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with )cos(2 rn na   and )sin(2 rn nb  . In this computation, p(r) is expanded to n=24, which 

shows good convergence. 

The joint probability density function of angles θr and r, which define the direction of j’, can be 

written [31] as: 
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The polarization parameter k
qa  is evaluated as: 

)cos()0,(2 rrqk
k
q qCa     k is even,   (15) 

)sin()0,(2 rrqk
k
q qCia     k is odd.   (16) 

In the calculation, ),( rrp   is expanded up to k=7, which is sufficient for good convergence. 
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3.2. Potential energy surface 

The extended-London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES) is applied in our 

calculation [32]: 
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where 3Di = 1Di(1 - Si)/2(1 + Si) and Si is an adjustable parameter. For the reaction of  

A + BC → AB + C, the subscript i = 1, 2, 3 indicate AB, BC and CA, respectively. 

The experimental results and the ab initio calculations of the O + CH4 → OH + CH3 reaction show 

that the minimal barrier occurs at a collinear configuration. The alkyl radical does not possess 

significant internal excitation. So in this paper, the CH4
 is treated as a H-CH3 pseudo-diatom for 

approximation. The classical Hamilton equations are integrated numerically for motion in three 

dimensions. Trajectories are initiated with the CH4 molecule in v=0 and j=0 levels and the collision 

energy is 0.65 eV. 100,000 trajectories are sampled, and the integration step size in the trajectories is 

chosen to be 0.1 fs for the stability of the calculation results. The parameters of extended-LEPS PESs 

are presented in Table 1 [33]. All the calculations performed here were done under adiabatic 

approximation. 

Table 1. The PES parameters for the O + CH4 → OH + CH3 reaction. 

Parameter O-H H-CH3 O-CH3 

e  (Å-1)a 2.294 1.83 1.96 

De(kJ/mol)a 445.34 447.26 384.35 

re
a 0.9706 1.093 1.44 

Sato Ca 0.30 0.20 -0.15 

Sato Db 0.70 0.3702 -0.4 
a Taken from Reference 33. 
b This work 

4. Conclusions  

We have presented a quasiclassical trajectory study of the product polarization from the  

O + CH4 → OH + CH3 reaction on the new LEPS PES by using a new Sato parameter. The differential 

cross section (2π/)(dkq/dωt) show that the scattering is predominantly in the backward hemisphere. 

For the vector correlation, the JOH is aligned in the plane perpendicular to the line of center and the 
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four PDDCSs give a good explanation about the vector correlation. From the isotope effect for the 

reactions O + CH4 and O + CD4 we find that there is a backward scattering tendency with the 

deuterium instead of hydrogen of the (2π/)(d00/dωt) distributions. And the angular momentum 
polarization ( )( rP   and )( rP  ) of OD is much stronger than that of OH.  
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