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Abstract: Skin sensitization is the most commonly reported occupational illness, causing 
much suffering to a wide range of people. Identification and labeling of environmental 
allergens is urgently required to protect people from skin sensitization. The guinea pig 
maximization test (GPMT) and murine local lymph node assay (LLNA) are the two most 
important in vivo models for identification of skin sensitizers. In order to reduce the 
number of animal tests, quantitative structure-activity relationships (QSARs) are strongly 
encouraged in the assessment of skin sensitization of chemicals. This paper has 
investigated the skin sensitization potential of 162 compounds with LLNA results and 92 
compounds with GPMT results using a support vector machine. A particle swarm 
optimization algorithm was implemented for feature selection from a large number of 
molecular descriptors calculated by Dragon. For the LLNA data set, the classification 
accuracies are 95.37% and 88.89% for the training and the test sets, respectively. For the 
GPMT data set, the classification accuracies are 91.80% and 90.32% for the training and 
the test sets, respectively. The classification performances were greatly improved compared 
to those reported in the literature, indicating that the support vector machine optimized by 
particle swarm in this paper is competent for the identification of skin sensitizers. 
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1. Introduction 

 
With the fast development of industry, agriculture and medication, human are exposed to more and 

more exogenous chemicals, some of which may result in allergic contact dermatitis after accidental or 
deliberate skin contact. The medical condition of allergic contact dermatitis is known as skin 
sensitization, which is associated with an alteration of the immune system. According to statistics from 
the U.S. Bureau of Labor, occupational contact dermatitis is the most commonly reported non-trauma 
related category of occupational illnesses in the United States [1]. The total annual losses due to 
occupational skin diseases were estimated to amount to over one billion dollars [2]. Therefore, 
identification and labelling of environmental allergens is an urgent request from consumer 
organizations, industry, and governmental agencies to protect people from skin sensitization. In the 
new European Union (EU) chemical policy REACH, information on skin sensitization potential will 
have to be provided for any chemicals manufactured or imported in amounts above 1 tonne/year [3].  

The guinea pig maximization test (GPMT) and murine local lymph node assay (LLNA) are the two 
most commonly used in vivo models for identification of skin sensitizers. GPMT combines the use of 
intradermal administration of the compound with and without Freund’s complete adjuvant (FCA), and 
occluded topical application of the compound a week later [4]. The result of GPMT relies on 
subjective evaluation of a group of animals and is usually expressed as the dichotomous 
(sensitizer/nonsensitizer) form. The murine local lymph node assay defines skin sensitization hazard as 
a function of the ability of the test chemical to provoke lymphocyte proliferation on lymph nodes 
draining the site of topical application. A substance is classified as a sensitizer if it induces a threefold 
stimulation index (EC3) or greater at one or more test concentrations. The value of EC3 is continuous 
and indicates the relative skin sensitizing potency of chemicals, but the majority of published LLNA 
data nowadays are also in the dichotomous form [5]. Due to the huge number of chemicals with 
unknown skin sensitization potential, exhaustive animal testing of such chemicals is costly and raises 
ethical concerns. Therefore, the use of other alternative methods such as quantitative structure-activity 
relationships (QSARs) is strongly encouraged in order to reduce the number of animal tests. Several 
legislations have recently emerged to further develop and increase the acceptance of QSARs in 
assessment of skin sensitization of chemicals [6] and much work has been reported [7-10].  

This paper aimed to build a classifier to distinguish skin sensitizers from non-sensitizers based on 
various compounds with LLNA and GPMT results. When compared to other classification techniques 
such as discriminant analysis [11], random forest methods [9] and artificial neural networks [12] the 
support vector machine (SVM) has been proven advantageous in handling classification tasks in cases 
of high dimensionality of data points. However, the input features (molecular descriptors here) of 
SVM play a very important role in the classification performance. Not all the molecular descriptors are 
equally important for a specific classification. Many of them may be redundant or irrelevant. If SVM is 
implemented without feature selection, the dimension of the input space is very large and non-clean, 



Int. J. Mol. Sci. 2009, 10             
 

 

3239

which will impair the performance of the SVM. The particle swarm optimization (PSO) algorithm is a 
swarm intelligence method for optimization problems and has been widely applied to feature selection. 
Compared with other descriptor selection approaches, such as the genetic algorithm (GA) and 
recursive feature elimination (RFE), PSO is not only much simpler in concept and more 
computationally efficient [13], but it also exhibits advantages in solving many kinds of optimization 
problems featuring nonlinearity and nondifferentiability, multiple optima, and high dimensionality 
[14,15]. Lin et al. [16] conducted a thorough study on the performance of PSO as a parameter 
determination and feature selection technique for SVM. The results based on about ten different data 
sets adequately confirmed that the performance of SVM+PSO outperforms that of SVM+GA and SVM 
without feature selection. Therefore, this paper investigates the potential of the support vector machine 
in combination of the particle swarm optimization algorithm for feature selections in addressing the 
problem of identification of sensitizers. 
 
2. Materials and Methods 
 
2.1. Data Set 

 
The Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) 

issued the LLNA results of 209 compounds, and for some of which, the GPMT results were also 
available. All the experimental data were obtained within the “spirit” of Good Laboratory Practice 
guidelines. Fedorowicz [5] cleared out the inorganic salts, natural products and polymers from the 
ICCVAM list and developed a data set of 178 organic compounds, although it still contains 16 sodium 
salts which cannot be processed by the Dragon software used to calculate molecular descriptors in this 
work. Thus, a total 162 compounds were used in this paper after sodium salts were excluded. These 
compounds pertain to a number of chemical classes, including alkanes, aromatic hydrocarbons, 
alcohols, amines, acids, esters and so on. All 162 compounds have LLNA results, which indicate 119 
sensitizers and 43 non-sensitizers. Furthermore, 92 of 162 compounds also have GPMT data, 
indicating 71 sensitizers and 21 non-sensitizers. For convenience of expression, the above two data 
sets with LLNA and GPMT results were denoted as LLNA data set and GPMT data set, respectively. 
For each data set, two thirds of compounds were randomly assigned as the training set, and the 
leftovers composed the test set. The information of each data set is shown in Table 1. 

Table 1. The composition of LLNA and GPMT data sets. 

 LLNA GPMT 
 Tr a Te b Total Tr a Te b Total 

Sensitizer (+) 76 43 119 47 24 71 
Non-sensitizer (-) 32 11 43 14 7 21 

Total 108 54 162 61 31 92 
 a Tr represents the training set; b Te represents the test set. 
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2.2. Calculation of Molecular Descriptors 
 

Molecular descriptors characterizing molecular structure were calculated in Dragon 5.4 [17]. 
Twenty blocks of molecular descriptors were embodied in Dragon package. In this paper, only 926 
descriptors contained in blocks 1-10, 17-18 and 20 were calculated, with no consideration of 3D 
descriptors. These descriptors consisted of constitutional descriptors, topological descriptors, walk and 
path counts, connectivity indices, information indices, 2D autocorrelations, edge adjacency indices, 
BCUT descriptors, topological charge indices, eigenvalue-based indices, functional group counts, 
atom-centered fragments, and molecular properties.  
 
2.3. Preprocessing of Molecular Descriptors 
  

In order to delete the noisy, irrelevant and redundant information, the calculated 926 molecular 
descriptors were preprocessed by eliminating: 1) those having same values for greater than 90% of the 
compounds; 2) those having high correlation coefficients (>0.85) with other descriptors.  

Since these molecular descriptors characterize the structural information from extensive 
perspectives, their magnitudes are quite various. In order to prevent the descriptors in greater numeric 
ranges from outweighing those in smaller numeric ranges, the original descriptors were scaled to the 
range [0, 1] using min-max normalization method [18] prior to the next feature selection step with 
particle swarm optimization (PSO) algorithm. Min-max normalization was realized according to 
Equation (1): 

minmax
minVV
−
−

='               (1) 

where min and max are the minimum and maximum values of a descriptor, V and V’ represent the 
descriptor before and after scaling, respectively. 
 
2.4. Particle Swarm Optimization (PSO) Algorithm 

 
Particle swarm optimization is a population-based meta-heuristic algorithm that simulates social 

behavior such as bird flocking and fish schooling. Since introduced originally by Kennedy and 
Eberhart [19] in 1995, PSO has been continuously developed and widely applied to solving 
optimization problems due to its reduced memory requirements and fast convergence [20,21]. Like 
evolutionary algorithms, PSO performs searches using a population (swarm) of individuals (particles) 
that are updated from iteration to iteration to find an optimal solution. Each particle, representing a 
potential solution, is treated as a point in a D-dimension space and its status is characterized by its 
position and velocity. The position vector (xi) and velocity vector (vi) for particle i in a D-dimension 
space can be represented as { }iDiii xxxx ,,, 21 L=  and { }iDiii v,,v,vv L21= , respectively. Each 
particle keeps track of its personal best position { }iDiii pppp ,,, 21 L=  it has achieved so far and the 
global best position { }Dpppp gg2g1g ,,, L=  that has been found by other neighboured particles in the 

swarm. At each iteration, pi and pg vector are combined to update the velocity of particle i along each 
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dimension, and the velocity is then used to adjust the new position for that particle as given in 
Equations (2) and (3). 

( ) ( ) ( ) ( )idgdidididid xprcxprcwvv −+−+= 2211oldnew      (2) 

( ) ( ) ( )newoldnew ididid vxx += , d =1, 2, …, D        (3) 

where w is an inertia weight which contributes to balance the global search and local search; c1 and c2 
are two positive constants indicating the cognition learning factor and the social learning factor, 
respectively; r1 and r2 are random numbers uniformly distributed in the range [0, 1]. The iteration is 
terminated if the minimum error criterion (fitness) is attained or the number of iterations reaches the 
predetermined limit. 

Although the basic PSO algorithm presented above was originally designed for continuous 
problems, attempts have been made to extend it to discrete optimization issues, where the particle 
position is composed of a set of bits that contain either ‘1’ or ‘0’, indicating being selected or not [22]. 
Most modified algorithms lose their consistent form or way of evolution exhibited in the continuous 
particle swarm algorithm. This paper designed the discrete PSO simulating the continuous PSO, where 
the position and velocity of a particle were updated in continuous space. Only when the new candidate 
position is passed to the fitness function, it is transformed from the continuous space to the discrete 
space. Supposing that the particle position values is limited to interval [0, 1], conversion can be 
accomplished by mapping the values hitting in the interval [0, 0.5) to 1, and other values to 0. 

In general, the number of molecular descriptors selected for QSAR modeling is considered one of 
the important factors responsible for overfitting of QSAR models. Fewer molecular descriptors are 
generally preferred, so a punishment factor is often used in the fitness evaluation expression of PSO 
[15]. When the number of the candidate molecular descriptors is very large, it is inefficient to use 
traditional PSO algorithm directly for feature selection. The probability that only several descriptors 
are selected at each iteration may be very small because the number of descriptors selected in the 
evolution process obeys normal distribution. In order to improve the computing efficiency, the 
conversion of values from continuous space to discrete space is adjusted by mapping each value hitting 
in the interval [0, 0.05) to 1, and other values to 0. Thus, each descriptor has a probability of 1/20 of 
being selected and only about 1/20 of all descriptors are selected in each iteration. The probability of 
only several descriptors being selected will be increased dramatically. 
 
2.5. Support Vector Machine (SVM)  

 
SVM is an emerging and powerful machine learning algorithm proposed by Vapnik and co-workers 

in 1995 [23]. It has been extensively applied to various classification problems due to its high accuracy 
and its lesser proneness to overfitting than other machine learning methods. Instead of traditional 
empirical risk minimization, SVM achieves structural risk minimization, which results in the good 
generalization and avoids being trapped in local optima.  

The basic theory of SVM has been presented in many references. Here only a brief description is 
given. A set of training points (compounds) are denoted as (xi, yi), 1 ≤ i ≤ N, where N is the number of 
the training points; xi is the vector corresponding to data point i represented by a set of molecular 
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descriptors in D-dimension space; yi is the class label taking value either +1 or -1. If the two classes 
are linearly separable, there exists a hyperplane that can separate the set by leaving all the vectors of 
the same class on the same side. The ultimate aim of SVM classification is to find an optimal 
separating hyperplane (OSH) as the decision surface to separate two classes of patterns with maximal 
margin. The optimal hyperplane H is defined mathematically by Equation (4) 

w·x + b = 0          (4) 

where w is the weight vector normal to the separating hyperplane, b is the threshold. SVM constructs 
two parallel hyperplanes (H1 and H2) on each side of the maximal separating hyperplane that 
maximizes the distance between the two parallel hyperplanes. The vectors situated on two hyperplanes 
are called support vectors, which are used to define the separating hyperplane. Any points that fall on 
or above H1 belong to class +1, and any data points that fall on or below H2 belong to class -1, which 
can be represented as follows: 

1+≥+⋅ bxw i  for 1+=iy ; class 1 (sensitizer)      (5) 

1−≤+⋅ bxw i  for 1−=iy ; class 2 (non-sensitizer)     (6) 

The distance from the hyperplane to any point on H1 is 1/ w , where w  is the Euclidean norm of 

w. The margin of the separating hyper-plane is calculated as 2/ w . The OSH has the largest margin 

among separating hyper-planes with the constrained optimization 2min w
w

 subject to inequalities (5) 

and (6). After the determination of w and b, the classification can be realized by Equation (7): 

)sign( bxw +⋅            (7)  

In most cases, the data are not linearly separable, where no linear OSH exists in the current 
dimensional space. Therefore, the data are nonlinearly mapped into a high-dimensional feature space 
where linear separation can be performed. The transform can be done by using a kernel 

function )()() ,( jiji xxxx ΦΦK ⋅= . Gaussian radial basis function, 
22

2) ,( σ−−= /K ji xx
ji exx is one of 

the commonly used kernel functions. Linear support vector machine is then applied to this feature 
space, and the decision function is given as follows: 

)) ,(sign((x)
1
∑
=

+=
N

i
jiii bxxαyf K         (8) 

where the coefficients iα  and b are determined by maximizing the following Lagrange expression: 

∑∑∑
= ==

⋅−=
l
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l
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l

i
iD xxyyαααL

1 11
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2
1 ,K       (9) 

where 0≥iα  and ∑
=

=
N

i
ii yα

1

0 . The above equation can be solved numerically using quadratic 

programming techniques under Karush-Kuhn-Tucker(KKT) conditions to obtain the Lagrange 
multipliers iα , together with w and b. 

Two parameters C and σ are very important to the performance of SVM. Parameter C represents the 
penalty cost, which influences the classification outcome. Parameter σ affects the partitioning outcome 
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in the feature space. Ten-fold cross validation procedure was implemented to obtain the appropriate C 
and σ. 
 
2.6. Implementation 

 
The PSO algorithm and related programs were implemented in the Java programming language, 

running on the Java (TM) 2 Runtime Environment, Standard Edition (build 1.5.0_02-b09). The Java 
package of libsvm (version 2.8) [24] used in this work is freely available online.  
 
2.7. Assessment of Results 

 
In order to evaluate the prediction performance of SVM models, we define and compute the 

classification accuracy, sensitivity and specificity by the methods reported in Ref. [25]. The 
formulations are as follows:  

%
FPTNFNTP

TNTPAccuracy 100×
+++

+
=     (10) 

%
FNTP

TPySensitivit 100×
+

=      (11) 

%
FPTN

TNySpecificit 100×
+

=      (12) 

In Equations (10)-(12), TP is the number of true positives (sensitizers); FN, the number of false 
negatives (non-sensitizers); TN, the number of true negatives; and FP, the number of false positives. 
 
3. Results and Discussion 
 
3.1. LLNA data set 

 
As seen in Table 1, the LLNA data set was randomly divided into a training set with 76 sensitizers 

and 32 non-sensitizers and a test set with 43 sensitizers and 11 non-sensitizers. Based on the training 
set, 123 molecular descriptors remained after preprocessing according to Section 2.3. Then, SVM 
combined with PSO algorithm was implemented. The PSO was set with 30 particles and 100 
iterations. In each evaluation, a descriptor got a hit if this descriptor was selected. The descriptor 
selected more often will get more hits. Ten-fold cross validation was carried out against the training set, 
and the highest cross validation accuracy was used to determine the most appropriate set of molecular 
descriptors. In the end, six out of 123 molecular descriptors (listed in Table 2) were selected. The two 
most important parameters of SVM were also determined, i.e., C=15.81 and σ =14.13. The highest 
classification accuracy of cross validation against the training set is 83.33%. The classification 
accuracies, sensitivities and specificities of the training set and test set were all shown in Table 3.  

Although skin sensitization is a complex toxicological phenomenon and its biomolecular processes 
have not been fully understood, previous studies have indicated the ability of active agents to cause 
immune response is related to skin permeability and the production of immunological conjugates with 
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endogenous macromolecules [5,26]. Chemical reactivity, molecular size and skin permeability are 
important determinants for skin sensitization [27]. Known from Table 2, nCL represents the number of 
chlorine atoms in the molecule. The specific atom or group may be related to the combination or 
reaction of chemicals with skin protein. MAXDN and MATS1e characterize the molecular electronic 
structure, which may influence the electrostatic interactions between the chemical and protein. The 
binding of a chemical with skin proteins is considered as the rate-determing step for skin sensitization 
induction, where the chemical behaves as an electrophile and the protein as a nucleophile [28]. 
MATS2m and BELm1 are descriptors concerning molecular size, which may influence the skin 
penetration of compounds. The active agents causing skin sensitization are relatively small molecules. 
MLOGP, Moriguchi octanol-water partition coefficient, is an indicator of hydrophobic properties, 
which has been correlated to transport properties of a molecule, long-range ligand-receptor recognition 
and subsequent binding [26]. 
 

Table 2. Six most important molecular descriptors selected by PSO for SVM classification 
for LLNA data set. 

Descriptor symbol Descriptor block Definition 
nCL Constitutional descriptors Number of chlorine atoms 
MAXDN Topological descriptors Maximal electrotopological negative variation 
MATS1e 2D autocorrelations Moran autocorrelation-lag 1/weighted by 

atomic Sanderson electronegativities 
MATS2m 2D autocorrelations Moran autocorrelation-lag 2/weighted by 

atomic masses 
BELm1 Burden eigenvalues Lowest eigenvalue n. 1 of Burden 

matrix/weighted by atomic masses 
MLOGP Molecular properties Moriguchi octanol-water partition coeff. (logP) 

 
Table 3. Performance of SVM classifier combined with PSO for the skin sensitization of 
LLNA data set. 

 TP FN TN FP Accuracy Sensitivity Specficity 
Training set 75 1 28 4 95.37% 98.68% 87.50% 
Test set 40 3 8 3 88.89% 93.02% 72.73% 

 
Fedorowicz [5] has also investigated the original LLNA data set (including 132 sensitizers and 46 

non-sensitizers) with logistic regression and the DEREK expert system. The classification results for 
the training set with logistic regression and prediction results for the whole data set with DEREK 
reported in Ref. [5] are shown in Tables 4 and 5, respectively. For rationality, the reported results with 
logistic regression were compared to the classification results of this paper for the training set, while 
the reported results with DEREK were compared to the prediction results of this paper for the test set. 
Seen from Tables 4 and 5, the SVM classifier combined with PSO algorithm in this paper improved 
the results greatly, especially for the classification specificity. It has been explained in Ref. [5] that the 
very low specificity was resulted from the substantially unbalanced size of samples, i.e., the ratio of 
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sensitizers largely overwhelming that of the non-sensitizers. However, the specificity in this paper 
attained 87.50% (50.00% with logistic regression in Ref. [5]) and 72.73% (32.60% with DEREK in 
Ref. [5]) for the training set and test set, respectively. The experimental and estimated skin sensitivities 
are listed in Table 6. 
 

Table 4. Comparison the classification performances of this paper with those reported in 
previous studies on the training set of LLNA data set. 

 Accuracy Sensitivity Specificity 

Logistic regression [5] 83.20% 94.70% 50.00% 
This paper 95.37% 98.68% 87.50% 

 
Table 5. Comparison the prediction performances of this paper with those reported in 
previous studies on the test set of LLNA data set. 

 Accuracy Sensitivity Specificity 
DEREK[5] 73.00% 87.10% 32.60% 
This paper 88.89% 93.02% 72.73% 

 
Table 6. The investigated compounds and their experimental and estimated skin 
sensitivities.  

ID Compounds CAS 
LLNA GPMTc 

Exp. Calc. Exp. Calc. 
1 Propylene glycol 57-55-6 -1 -1 -1 -1 
2 a Hexane 110-54-3 -1 -1 - - 
3 b Lactic acid 50-21-5 -1 -1 -1 -1 
4 Phenol 108-95-2 -1 -1 - - 
5 b Resorcinol 108-46-3 -1 1 -1 1 
6 Chlorobenzene 108-90-7 -1 -1 -1 -1 
7 Ethyl methanesulfonate 62-50-0 -1 -1 - - 
8 4-Chloroaniline 106-47-8 -1 -1 1 1 
9 1-Bromobutane 109-65-9 -1 -1 - - 
10 4-Aminobenzoic acid 150-13-0 -1 -1 -1 -1 
11 b 4-Hydroxybenzoic acid 99-96-7 -1 -1 -1 -1 
12 b Salicylic acid 69-72-7 -1 -1 -1 -1 
13 a 2-Hydroxypropyl methacrylate 923-26-2 -1 -1 -1 -1 
14 b Tartaric acid 87-69-4 -1 -1 -1 -1 
15 Methyl salicylate 119-36-8 -1 -1 -1 -1 
16 a Geraniol 106-24-1 -1 1 -1 -1 
17 6-Methylcoumarin 92-48-8 -1 -1 -1 -1 
18 1-Bromohexane 111-25-1 1 1 1 1 
19 Benzocaine 94-09-7 -1 -1 1 1 
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Table 6. Cont. 

20 a Sulfanilamide 63-74-1 -1 -1 -1 1 
21 Propylparaben 94-13-3 -1 -1 -1 -1 
22 a di-2-Furanylethanedione 492-94-4 -1 -1 - - 
23 2,4-Dichloronitrobenzene 611-06-3 -1 -1 -1 -1 
24 a Dimethyl isophthalate 1459-93-4 -1 -1 -1 -1 
25 1-Bromononane 693-58-3 -1 1 - - 
26 2-Nitrofluorene 607-57-8 -1 -1 - - 
27 Phthalic acid diethyl ether 84-66-2 -1 -1 - - 
28 a b 5,5-Dimethyl-3-(mesyloxymethyl) 

dihydro-2(3H)-furanone 
154750-22-8 -1 -1 -1 1 

29 2-Acetamidefluorene 53-96-3 -1 -1 - - 
30 N’-(4-methylcyclohexyl)-N-(2-chloroethyl)-N- 

nitrosourea 
13909-09-6 -1 -1 - - 

31 3-(Benzenesulfonyloxymethyl)-5,5-dimethyl- 
dihydro-2(3H)-furanone 

154750-24-0 -1 -1 - - 

32 Benzoyloxy-3,5-benzene dicarboxylic acid 102059-70-1 -1 -1 1 1 
33 b 5,5-Dimethyl-3-(tosyloxymethyl)-dihydro- 

2(3H)-furanone 
154060-50-1 -1 -1 -1 -1 

34 5,5-Dimethyl-3-(methoxybenzenesulfonyloxy- 
methyl)dihydro-2(3H)-furanone 

154750-23-9 -1 -1 1 1 

35 3-(Chlorobenzenesulfonyloxymethyl)-5,5- 
dimethyldihydro-2(3H)-furanone 

154750-28-4 -1 -1 - - 

36 b 5,5-Dimethyl-3-(nitrobenzenesulfonyloxy- 
methyl)dihydro-2(3H)-furanone 

154750-29-5 -1 -1 1 1 

37 b Octadecylmethane sulfonate 31081-59-1 -1 -1 1 1 
38 a α-Trimethylammonium-4-tolyloxy-4-benzene- 

sulfonate 
264869-81-0 -1 -1 1 1 

39 a Hydrocortisone 50-23-7 -1 -1 - - 
40 Tixocortol-21-pivalate 55560-96-8 -1 -1 - - 
41 Kanamycin 8063-07-8 -1 -1 -1 -1 
42 a b Streptomycin 57-92-1 -1 -1 1 1 
43 a Neomycin 1405-10-3 -1 -1 -1 -1 
44 b Ethylenediamine 107-15-3 1 1 1 1 
45 a β-Propiolactone 57-57-8 1 1 - - 
46 a Pyridine 110-86-1 1 1 - - 
47 a 2,3-Butanedione 431-03-8 1 1 - - 
48 a Aniline 62-53-3 1 1 1 1 
49 N, N-dimethyl-1,3-propanediamine 109-55-7 1 1 1 1 
50 N-nitroso-N-methylurea 684-93-5 1 1 - - 
51 Diethylenetriamine 111-40-0 1 1 1 1 
52 4-Vinylpyridine 100-43-6 1 1 - - 
53 a p-Xylene 106-42-3 1 1 - - 
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Table 6. Cont. 

54 1,4-Benzoquinone 106-51-4 1 1 1 1 
55 a 3-Phenylenediamine 108-45-2 1 1 1 1 
56 a 4-Phenylenediamine 106-50-3 1 1 1 1 
57 1-Thioglycerol 96-27-5 1 1 1 1 
58 b 3-Aminophenol 591-27-5 1 1 1 1 
59 a 2-Aminophenol 95-55-6 1 1 1 1 
60 Hydroquinone 123-31-9 1 1 1 1 
61 Methyl methanesulfonate 66-27-3 1 1 - - 
62 2-Hydroxyethyl acrylate 818-61-1 1 1 1 1 
63 a N-Ethyl-N-nitrosourea 759-73-9 1 1 - - 
64 3-Methylcatechol 488-17-5 1 1 - - 
65 a b 4-Methylcatechol 452-86-8 1 1 1 1 
66 Dimethyl sulfate 77-78-1 1 1 - - 
67 a 5,5-Dimethyl-3-methylenedihydro-2(3H)- 

furanone 
29043-97-8 1 1 1 1 

68 a Butyl glycidyl ether 2426-08-6 1 1 1 1 
69 a Cinnamic aldehyde 104-55-2 1 1 1 1 
70 2-Methoxy-4-methylphenol 93-51-6 1 1 1 1 
71 a Benzoyl chloride 98-88-4 1 1 1 1 
72 1-Methyl-3-nitro-1-nitrosoguanidine 70-25-7 1 1 - - 
73 a Phthalic anhydride 85-44-9 1 1 1 1 
74 3,4-Dihydrocoumarin 119-84-6 1 1 - - 
75 4-Allylanisole 140-67-0 1 1 1 1 
76 a b 5-Chloro-2-methyl-4-isothiazolin-3-one 26172-55-4 1 1 1 1 
77 a 4-Nitroso-N,N-dimethylaniline 138-89-6 1 1 1 1 
78 1,2-Benzisothiazol-3(2H)-one 2634-33-5 1 1 1 1 
79 b Citral 5392-40-5 1 1 1 1 
80 Diethyl sulfate 64-67-5 1 1 - - 
81 a 2-Methyl-4,5-trimethylene-4-isothiazolin-3-one 82633-79-2 1 1 1 1 
82 a 1-Ethyl-3-nitro-1-nitrosoguanidine 4245-77-6 1 1 - - 
83 1-Chlorononane 2473-01-0 1 1 - - 
84 Eugenol 97-53-0 1 1 1 1 
85 Isoeugenol 97-54-1 1 1 1 1 
86 b Dihydroeugenol 2785-87-7 1 1 1 1 
87 b 2-Mercaptobenzothiazole 149-30-4 1 1 1 1 
88 Benzyl bromide 100-39-0 1 1 - - 
89 4-Nitrobenzyl chloride 100-14-1 1 1 1 1 
90 a Hydroxycitronellal 107-75-5 1 1 1 1 
91 1-Propyl-3-nitro-1-nitrosoguanidine 13010-07-6 1 1 - - 
92 a Nonanoyl chloride 764-85-2 1 1 - - 
93 3,5,5-Trimethylhexanoyl chloride 36727-29-4 1 1 1 1 
94 3-Methyleugenol 186743-26-0 1 1 - - 
95 a 5-Methyleugenol 186743-25-9 1 1 - - 
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96 6-Methyleugenol 186743-24-8 1 1 - - 
97 2,4,6-Trichloro-1,3,5-triazine 108-77-0 1 1 - - 
98 a 5,5-Dimethyl-3-(thiocyanatomethyl)-dihydro- 

2(3H)-furanone 
154750-32-0 1 1 1 1 

99 2,4-Dinitrofluorobenzene 70-34-8 1 1 - - 
100 a Bbenzene-1,3,4-tricarboxylic anhydride 552-30-7 1 1 1 1 
101 2,4,5-Trichlorophenol 95-95-4 1 1 - - 
102 a Ethylene glycol dimethacrylate 97-90-5 1 1 -1 -1 
103 a b Phenyl benzoate 93-99-2 1 1 1 1 
104 b 2,4-Dinitrochlorobenzene 97-00-7 1 1 1 1 
105 b 5,5-Dimethyl-3-(bromomethyl)dihydro- 

2(3H)-furanone 
154750-20-6 1 1 1 1 

106 1-Iodohexane 638-45-9 1 1 - - 
107 Propyl gallate 121-79-9 1 1 1 1 
108 2-Chloromethylfluorene 91679-67-3 1 1 - - 
109 b 4-Nitrobenzyl bromide 100-11-8 1 1 1 1 
110 b Hexyl cinnamic aldehyde 101-86-0 1 1 1 1 
111 b Isophorone diisocyanate 4098-71-9 1 1 1 1 
112 2,4-Dinitrothiocyanobenzene 1594-56-5 1 1 1 1 
113 a 3-Methoxyphenylbenzoate 5554-24-5 1 1 - - 
114 1-Chlorotetradecane 2425-54-9 1 1 - - 
115 a 1-Bromoundecane 693-67-4 1 1 - - 
116 3-Acetylphenyl benzoate 139-28-6 1 1 1 1 
117 b Tetramethyl thiuram disulfide 137-26-8 1 1 1 1 
118 b Benzoyl peroxide 94-36-0 1 1 1 1 
119 a Picryl chloride 88-88-0 1 1 1 1 
120 a b 1-Bromododecane 143-15-7 1 1 1 1 
121 Methylene diphenyl diisocyanate 101-68-8 1 1 1 1 
122 a 1-Chloromethylpyrene 1086-00-6 1 1 - - 
123 a Benzopyrene 50-32-8 1 1 - - 
124 1-Iodononane 4282-42-2 1 1 - - 
125 7,12-Dimethylbenzanthracene 57-97-6 1 1 - - 
126 a 1-Bromotridecane 765-09-3 1 1 - - 
127 a Dodecyl methanesulfonate 51323-71-8 1 1 1 1 
128 Methyl dodecanesulfonate 2374-65-4 1 1 1 1 
129 a 12-Bromo-1-dodecanol 3344-77-2 1 1 - - 
130 1,2-Dibromo-2,4-dicyanobutane 35691-65-7 1 1 1 1 
131 Pentachlorophenol 87-86-5 1 1 - - 
132 a Dodecylthiosulfonate 127089-67-2 1 1 1 1 
133 3-Methylcholantrene 56-49-5 1 1 - - 
134 α-Naphthoflavone 604-59-1 1 1 - - 
135 β-Naphthoflavone 6051-87-2 1 1 - - 
136 a Hexadecanoyl chloride 112-67-4 1 1 - - 
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137 7-Bromotetradecane 74036-97-8 1 1 - - 
138 a 1-Bromotetradecane 112-71-0 1 1 - - 
139 12-Bromododecanoic acid 73367-80-3 1 1 - - 
140 2-(N-Acetoxy-acetamido)fluorene 6098-44-8 1 1 - - 
141 Octyl gallate 1034-01-1 1 1 - - 
142 1-Chlorooctadecane 3386-33-2 1 1 - - 
143 1-Bromopentadecane 629-72-1 1 1 - - 
144 b Oxazolone 1564-29-0 1 1 1 1 
145 b Abietic acid 514-10-3 1 1 1 1 
146 a Octadecanoyl chloride 112-76-5 1 1 - - 
147 b 1-Bromohexadecane 112-82-3 1 1 1 1 
148 2-Bromotetradecanoic acid 10520-81-7 1 1 - - 
149 Methyl hexadec-2-ene sulfonate 54612-23-6 1 1 1 1 
150 Chlorpromazine 50-53-3 1 1 1 1 
151 a 1-Bromoheptadecane 3508-00-7 1 1 - - 
152 a 1-Iodotetradecane 19218-94-1 1 1 - - 
153 1-Bromooctadecane 112-89-0 1 1 - - 
154 Penicillin G 61-33-6 1 1 1 1 
155 Clotrimazole 23593-75-1 1 1 - - 
156 Tetrachlorosalicylanilide 1154-59-2 1 1 1 1 
157 1-Iodohexadecane 544-77-4 1 1 - - 
158 a 1-Iodooctadecane 629-93-6 1 1 - - 
159 b Imidazolidinyl urea 39236-46-9 1 1 1 1 
160 Dimethyl sulfostearate 99785-70-3 1 1 - - 
161 b Sulfanilic acid 121-57-3 -1 -1 1 1 
162 a Isononanoyloxybenzene sulfonate 109363-00-0 1 1 1 1 

a Compounds making up of the test set of the LLNA data set; b Compounds making up of the test set of 
the GPMT data set; c “-” denotes no GPMT data available. 

 
3.2. GPMT Data Set 

 
For the GPMT data set, the same procedures as for the LLNA data set were carried out. After 

preprocessing according to Section 2.3, 127 molecular descriptors remained. Then, the SVM algorithm 
combined with PSO was implemented, and five molecular descriptors (listed in Table 7) were selected 
from the remaining 127 molecular descriptors. Two SVM parameters, i.e., C=45.63 and σ =1.90 were 
determined by 10-fold cross validation based on the training set. The total accuracy of the 10-fold 
cross validation is 90.16%. For the training set, the sensitizers were all classified correctly, and five 
non-sensitizers were mistaken as sensitizers. According to Equations (10) – (12), the classification 
accuracy, sensitivity and specificity are 91.80%, 100.00% and 64.29%, respectively. For the test set, 
only one sensitizer and two non-sensitizers were wrongly assigned. Table 8 lists the statistical 
parameters.  
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From Tables 3 and 8, we can see that the wrong classification ratio of non-sensitizers is larger than 
that of sensitizers for both LLNA and GPMT data sets. The unbalanced ratio (nearly 1:3) of 
non-sensitizers to sensitizers may be responsible for the worse classification performances for 
non-sensitizers than those for sensitizers. It is indicated that the non-sensitizers may be prone to be 
falsely predicted as sensitizers. On the contrary, if the dataset contains many more non-sensitizers than 
sensitizers, the QSPR model will also give biased classification results. For example, Roberts et al. 
[28] have validated the TIMES-SS (TImes MEtabolism Simulator) expert system platform used for 
predicting skin sensitization with 40 chemicals, consisting of 24 non-sensitizers and 16 sensitizers. 
TIMES-SS was able to predict non-sensitizers reasonably well (the prediction accuracy of 87.5%), 
while it predicted sensitizers very pooly (the prediction accuracy of 56.0%).  

 
Table 7. Five molecular descriptors selected by PSO for SVM classification of GPMT  
data set. 

Descriptor symbol Descriptor block Definition 
nDB Constitutional descriptors Number of double bonds 
EEig07d Edge adjacency indices Eigenvalue 07 from edge adj. matrix weighted 

by dipole moments 
EEig14d Edge adjacency indices Eigenvalue 14 from edge adj. matrix weighted 

by dipole moments 
O-057 Atom-centred fragments Phenol / enol / carboxyl OH 
Infective-80 Molecular properties Ghose-Viswanadhan-Wendoloski 

antiinfective-like index at 80% 
  

Table 8. Performance of SVM classifier combined with PSO for the skin sensitization of 
GPMT data set. 

 TP FN TN FP Accuracy Sensitivity Specficity 
Training set 47 0 9 5 91.80% 100.00% 64.29% 
Test set 23 1 5 2 90.32% 95.83% 71.43% 

  
From Table 7, the selected five molecular descriptors come from four blocks of descriptors. nDB is 

a constitutional descriptor indicating the number of double bonds. The π-bond electrons in double 
bonds are more active than the σ-bond electrons in single bonds, therefore, the molecule with more 
double bonds will have larger electronic cloud deformability and may be prone to combine with the 
target. Five kinds of chemical reaction mechanistic domain [29,30] have been proposed, including 
Michael acceptors, SN2 electrophiles, SNAr electrophiles, Schiff base electrophiles and acyl transfer 
electrophiles. According to Roberts [31], some compounds containing an electron-deficient double 
bond can be confidently assigned as Michael acceptors or pro-Michael acceptors. EEig07d and 
EEig14d are both descriptors related to molecular dipole moments, which indicate the molecular 
polarity and are closely related to the hydrophobic properties and skin permeability of molecules. 
O-057, the number of phenol/enol/carboxyl OHs, may be responsible for the molecular polarity and 
hydrogen bond, which has relationship with the combination or reaction of compounds with specific 
group of the receptor. As described in Ref. [31], some aromatic compounds with two meta hydroxyl 
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groups may follow two possible mechanisms: reaction with molecular oxygen to introduce a hydroxyl 
group either ortho or para to the original hydroxyl groups, and directly binding to protein via attack of 
a protein-centered radical. Infective-80 is a descriptor derived from biological experiment, which may 
reflect directly the biochemical effect of skin sensitization induction. 

Fedorowicz [5] has also investigated the original GPMT data set (including 82 sensitizers and 23 
non-sensitizers) with logistic regression and two expert systems TOPKAT and DEREK. The reported 
classification results for the training set with logistic regression in Ref. [5] are listed in Table 9, and the 
reported prediction results for the whole GPMT data set with TOPKAT and DEREK are shown in 
Table 10. For comparison, the reported results with logistic regression were compared to the 
classification results of this paper for the training set, while the reported results with TOPKAT and 
DEREK were compared to the prediction results of this paper for the test set. As seen from Tables 9 
and 10, the prediction performances of the method in this paper are far superior to those in the 
literature, especially for the specificity. However, expert systems such as DEREK and TIMES-SS have 
been recently improved by modifing the alerts describing the skin sensitization potential or considering 
more mechanisitic knowledge and new rules for chemicals [28,32]. Therefore, better results than those 
of previously reported in the literature may be achieved if the prediction is conducted with the 
improved expert systems. Golla et al. [27] built neural network models using 25, 25 and 22 molecular 
descriptors for LLNA, GPMT and BgVV data sets with 358, 307 and 251 compounds, respectively. 
The classification accuracies for the above mentioned three data sets are 90%, 95% and 90%, 
respectively. Compared with Ref. [27], this paper obtained the classification accuracy (for the training 
set) of 95.37% for LLNA data set and 91.80% for GPMT data set using only five or six molecular 
descriptors. The estimated skin sensitivities were listed in Table 6. 
 

Table 9. Comparison the classification performances of this paper with those reported in 
previous studies on the training set of GPMT data set. 

 Accuracy Sensitivity Specificity 

Logistic regression 87.60% 98.80% 47.80% 

This paper 91.80% 100.00% 64.29% 

 
Table 10. Comparison the prediction performances of this paper with those reported in 
previous studies on the test set of GPMT data set. 

 Accuracy Sensitivity Specificity 

TOPKAT 73.30% 75.60% 65.20% 

DEREK 82.90% 92.70% 47.80% 

This paper 90.32% 95.83% 71.43% 

 
Seen from Table 6, there are ten inconsistent values in the experimental results of 92 compounds 

with both LLNA and GPMT data. The accuracy (or concordance) of experimental results obtained 
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from two different test procedures for assessing skin sensitization is 89.13%. In 1999, the Interagency 
Coordinating Committee on the Validation of Alternative Methods (ICCVAM), with support from the 
National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological 
Methods (NICEATM), validated the experimental procedures by comparing LLNA data for 97 
chemicals to the available GPMT data, and also obtained an accuracy of 89% [27]. From the above 
analysis, we may roughly assume that the experimental accuracy of skin sensitization is close to 89%. 
The prediction accuracies (for the test set) of LLNA and GPMT data sets using PSO optimized SVM 
in this paper were 88.89% and 90.32% respectively, which are in good agreement with the 
experimental accuracy.  
 
4. Conclusions 
  

This paper has investigated the skin sensitization against LLNA and GPMT data sets by particle 
swarm optimized support vector machine. The classification accuracies, sensitivities and specificities 
for both data sets were all satisfactory and largely improved compared to those obtained by logistic 
regression and the expert systems reported in the literature. This study has confirmed that the 
quantitative structure-activity relationship approach can be a promising complement to animal testing 
in the area of hazard identification only if a reasonable QSAR model has been constructed. The SVM 
classifier built in this paper can be used to assess the skin sensitization for environmental chemicals. 
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