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Abstract: Probiotics are live organisms that are primarily used to improve gastrointestinal 

disorders such as diarrhea, irritable bowel syndrome, constipation, lactose intolerance, and 

to inhibit the excessive proliferation of pathogenic intestinal bacteria. However, recent 

studies have suggested that probiotics could have beneficial effects beyond gastrointestinal 

health, as they were found to improve certain metabolic disorders such as hypertension. 

Hypertension is caused by various factors and the predominant causes include an increase 

in cholesterol levels, incidence of diabetes, inconsistent modulation of renin and 

imbalanced sexual hormones. This review discusses the antihypertensive roles of 

probiotics via the improvement and/or treatment of lipid profiles, modulation of insulin 

resistance and sensitivity, the modulation of renin levels and also the conversion of 

bioactive phytoestrogens as an alternative replacement of sexual hormones such as 

estrogen and progesterone. 
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1. Introduction 

 

Probiotics are viable microorganisms that confer health benefits to the host once consumed in 

adequate amounts, primarily by promoting the proliferation of beneficial gastrointestinal indigenous 

microflora. Various microorganisms have been found to posses such properties, although 

Lactobacillus and Bifidobacterium are the most common probiotic bacteria used as food adjuvants. A 
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number of gastrointestinal health benefits have been reported upon consumption of probiotic 

organisms, including the alleviation of diarrhea, improvement of irritable bowel syndrome, lactose 

intolerance and antibacterial properties.  

The National Heart, Lung, and Blood Institute has classified hypertension for adults (aged 18 years 

or above) into four main categories. Normal blood pressure (BP) is defined as a systolic BP (SBP) of 

less than 120 mm Hg and a diastolic BP (DBP) of less than 80 mm Hg, while prehypertension has been 

defined as SBP of 120-139 mm Hg and DBP of 80-90 mm Hg. Those who are at the risk of stage one 

progression hypertension are defined as those with SBP of 140-159 mm Hg and DBP of 90-99 mm Hg, 

while stage two includes those with SBP of above 160 mm Hg and DBP above 100 mm Hg. The new 

guidelines of blood pressure are the decreased version of the previously accepted blood pressure range 

in order to encourage more proactive and earlier treatment of high blood pressure. This is because the 

risk of heart disease and stroke increases at blood pressures above SBP/DBP values of  

115/75 mm Hg [1]. 

Hypertension may be either primary or secondary. Primary hypertension is diagnosed with no 

known cause and accounts for 95% of all hypertensive cases [1], while secondary hypertension may 

result from pregnancy, diseases such as sleep apnea, Cushing’s syndrome, kidney malfunction, and as 

a side-effect of various drugs. Although the exact causes of primary hypertension remain unclear, 

several factors that increase the risks of primary hypertension have been identified: 

hypercholesterolemia, diabetes, increased physiological production of renin and an imbalanced sexual 

hormones profile.  

Hypercholesterolemia and obesity are strongly associated with primary hypertension. The  

over-activation of the sympathetic nervous system by the action of leptin could alter lipid profiles and 

increase blood pressure by causing peripheral vasoconstriction and by increasing renal tubular sodium 

reabsorption [2]. Insulin resistance has also been associated with impaired endothelium-dependent 

vasodilatation which could contribute to increased blood pressure [3]. Insulin resistance could raise 

blood pressure, either by preventing the vasodilatory effects of the hormone or, via the attendant 

hyperinsulinemia, by upregulating the sympathetic and the antinatriuretic tone [4]. Primary 

hypertension has also been associated with renin, an acid proteinase generated from the inactive 

precursor prorenin by the action of kallikrein [5]. It is released whenever depletion of salt or 

stimulation of β2-receptors by aldosterone occurs. Renin plays a role in the renin-angiotensin system 

by hydrolyzing angiotensinogen to yield the inactive angiotensin I. Angiotensin I is further converted 

into angiotensin II by angiotensin-converting enzyme. Angiotensin II causes vasodilation and induces 

the release of aldosterone and therefore increases sodium concentration and elevates blood pressure. 

Additionally, an imbalanced profile of hormones such as estrogens, progesterone and aldosterone has 

also been found to induce hypertension.  

Although the use of probiotics has been primarily associated with the improvement of 

gastrointestinal health, recent evidence has also shown that probiotics play an important role in other 

metabolic diseases leading to antihypertensive effects. Thus, this review highlights and discusses the 

roles of probiotics on the modulation of lipid profiles, insulin, renin and sexual hormones in the effort 

to reduce hypertension.  
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2. Hypocholesterolemia and Antihypertension 

 

The prevalence of increased total blood cholesterol in the developed and developing nations 

remains high and has increased in adults, children and adolescents. Hypertension is often associated 

with hypercholesterolemia or lipid abnormality and obesity [6]. Patients with hypertension also 

frequently have low levels of high-density lipoprotein (HDL) cholesterol and higher levels of 

triglycerides. In other words, hypertension occurs more frequently for hypercholesterolemic subjects, 

as compared to normolipid men and women. The elevation of blood pressure has been found to be 

greatly induced when total cholesterol level exceeds 6.4 mmol/L. This may increase cardiac output and 

peripheral vascular resistance that causes an elevated blood pressure. Therefore, lipid metabolism 

disorders are often the causes of hypertension. A variety of past in vitro experiments and in vivo trials 

have provided experimental evidence to support the roles of probiotics in lowering serum cholesterol 

and improving lipid profiles, which subsequently leads to a reduced risk of hypertension.  

Mann and Spoerry [7] were the first researchers to illustrate the hypocholesterolemic effect of wild 

Lactobacillus-fermented milk. Emerging evidence has indicated that lactobacilli are not the only ones 

that exhibit hypocholesterolemic effects, but bifidobacteria could also cause a significant reduction in 

serum cholesterol when cholesterol is elevated. This is because cholesterol synthesis and absorption 

mainly occurs in the intestines, therefore intestinal microflora have profound effects on lipid 

metabolism. Past studies have demonstrated that probiotics could improve lipid disorders such as 

lowering blood cholesterol levels and increasing resistance of low-density lipoprotein to oxidation, 

thus leading to a reduced blood pressure [8].  

Kieling et al. [9] used a randomized, crossover, and placebo-controlled design trial involving  

29 women to evaluate the hypocholesterolemic effect of yoghurt supplemented with L. acidophilus 

145 and B. longum 913. The crossover study, of 21 weeks’ duration, involved the administration of  

300 g/day yoghurt, and the results obtained showed that HDL-cholesterol was increased significantly  

(P < 0.05) by 0.3 mmol/L and the ratio of LDL/HDL cholesterol decreased from 3.24 to 2.48. Sindhu 

and Khetarpaul [10] conducted another placebo-controlled study to evaluate the effects of a probiotic 

fermented food on serum cholesterol levels in 20 young Swiss mice. The experimental group was fed a 

food mixture containing probiotics and 1% cholesterol while the control group was fed food without 

probiotics, but containing 1% cholesterol for 42 days. The authors reported that the feeding of L. casei 

NCDC-19 (109 CFU) and Saccharomyces boulardii (109 CFU) caused a 19% reduction in the total 

serum cholesterol, while LDL cholesterol levels was reduced by 37% after the 42 day feeding trial. In 

another study, De Rodas et al. [11] used a placebo-controlled design trial that involved  

33 hypercholesterolemia-induced pigs (Yorkshire barrows) to examine the hypocholesterolemic effect 

of probiotic. The authors reported that pigs fed with L. acidophilus ATCC 43121 (2.5 × 1011 cells per 

feeding) for 15 days showed a reduced total blood cholesterol by 11.8% compared to the control that 

was not fed the probiotic. Park et al. [12] also evaluated the effects of probiotic on cholesterol 

metabolism in 36 male Sprague-Dawley hypercholesterolemic rats. The authors found that the 

supplementation of L. acidophilus ATCC 43121 (2 × 106 CFU/day) for 21 days not only reduced total 

serum cholesterol by 25%, but also significantly (P < 0.05) reduced very low density lipoprotein, 

intermediate density lipoprotein and LDL cholesterol, compared to the control. 
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Several mechanisms of cholesterol reduction by probiotics via control of cholesterol metabolism 

have been proposed. One of these proposed mechanisms is the removal of cholesterol by assimilation. 

The assimilation of cholesterol by probiotics in the small intestine could reduce serum cholesterol by 

reducing cholesterol absorption in the intestines [13]. Probiotics must be viable and growing, in order 

to be able to remove or assimilate cholesterol [14]. In an in vitro study, Tahri et al. [15] reported that 

growing cells of Bifidobacterium sp. were able to remove cholesterol from a broth containing bile salt 

through assimilation of cholesterol. In addition, Aloglu and Oner [16] showed evidence that probiotic 

bacteria not only assimilated cholesterol in aqueous media, but also in semisolid media such as cream 

and butter. 

Using in vitro experiments, Liong and Shah [14] reported that cholesterol could be removed from 

media by L. acidophilus not only through assimilation during growth, but also through binding of 

cholesterol to the cellular surface. This mechanism was proposed when both non-growing cells and 

dead cells were also found to remove cholesterol. Non-growing and dead-cells of Lactococcus. lactis 

subsp. lactis bv. diacetylactis N7 were also found to remove cholesterol in vitro via binding of 

cholesterol to cellular surface [17]. Tahri et al. [15] have previously reported that cholesterol could be 

attached strongly to the cellular surface, where more than 40% of cholesterol was extracted from cells 

of B. breve ATCC 15700 only after several washings and sonications. In addition, past studies have 

reported that some probiotics could produce exopolysaccharides (EPS) which adhered to the cell 

surface and could absorb cholesterol. Kimoto-Nira et al. [17] previously suggested cholesterol was 

bound to bacterial cells and this was a result of the chemical and structural properties of their cell wall 

peptidoglycans, which contain various amino acid compositions that facilitate the attachment of 

cholesterol to cellular surfaces. 

Other researchers have suggested that the incorporation of cholesterol into cellular membranes 

could be another mechanism to reduce cholesterol in media. Razin [18] found that most of the 

cholesterol from the medium was incorporated into the cytoplasmic membrane, however the outer 

membranes of the intact cells are more easily accessed by cholesterol. There was twice the amount of 

cholesterol in the protoplast membranes than that of intact cells. This indicated cholesterol could 

preferentially bind to the cytoplasmic membranes [19]. In a previous study, Noh et al. [20] found that 

cholesterol uptake by Lactobacillus acidophilus ATCC 43121 occurred during growth. However, most 

assimilated cholesterol recovered from the cells was not metabolically degraded. Therefore, the 

authors suggested that the removal of cholesterol may also due to the ability of L. acidophilus ATCC 

43121 to incorporate cholesterol into cellular membranes during growth. In addition, Liong and Shah 

et al. [14] reported differences in fatty acid distribution patterns for cells grown with or without 

cholesterol. The authors found that lower amount of total saturated fatty acids and higher amount of 

total unsaturated fatty acids were recovered from cells grown in medium containing cholesterol 

compared to those in the absence of cholesterol. This was attributed to the incorporation of cholesterol 

into the membrane rather than cellular synthesis because lactic acid bacteria living under fatty 

conditions might lose their ability to synthesize lipids or fatty acids [21]. Cholesterol that is 

incorporated into bacterial cells during growth in the small intestine is less absorbed into the 

enterohepatic circulation, thus could lead to reduced serum cholesterol in humans.  
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Figure 1. Postulated mechanism of BSH on bile (A) and the role of cholesterol as the 

precursor for synthesis of new bile acids (B). 
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Another hypocholesterolemic mechanism that was postulated involves the ability of certain 

probiotics to enzymatically deconjugate bile acids. Deconjugation of conjugated bile salts to 

deconjugated bile salts is catalyzed by bile salt hydrolase (BSH; cholyglycine hydrolase;  

EC 3.5.1.24), which is the enzyme that catalyzes the hydrolysis of glycine- and/or taurine-conjugated 

bile salts into amino acid residues and free bile acids [22]. Deconjugation of bile salts mainly occurs in 

the small and large intestines of mammalian hosts. However, the exact location of this metabolite 

activity is dependent on the distribution of the host species. For example, bile salt deconjugation starts 

in the small intestine of mice, whereas in humans significant deconjugation begins at the end of the 

ileum and is completed in the large bowel [23]. BSH activity has been detected in intestinal bacteria 

such as Lactobacillus and Bifidobacterium sp. [22]. It has been demonstrated previously that the 

removal of cholesterol by L. reuteri CRL 1098 was closely related to the BSH activity of the cells, 

which hydrolysed the amide bond of bile salts releasing the corresponding free bile acids [24]. The 

mechanism of actions of BSH on bile is shown in Figure 1a. Conjugated bile salts are readily absorbed 

into the gastrointestinal tract due to higher hydrophilicity, while free bile acids are less soluble and 

thus less efficiently reabsorbed into the intestines, compared to conjugated bile salts, and thus are more 

prone to be excreted with the feces. This will increase the need for the synthesis of new bile acids to 

replace the lost ones. Since cholesterol is the precursor for the de novo synthesis of new bile acids 

(Figure 1b), the use of cholesterol to synthesize new bile would lead to a decreased concentration of 

cholesterol in blood.  

 

3. Roles of Probiotics on Diabetes 

 

Diabetes and hypertension are co-morbidity diseases that frequently occur together in the same 

patients. In a large prospective cohort study conducted by Gress et al. [25] that involved 12,550 adults, 

the development of type II diabetes was almost 2.5 times more likely in those with hypertension than 

in their normotensive counterparts. Similarly, recent data suggested that hypertension is approximately 

twice as frequent in patients with diabetes compared with patients without the disease [26]. The 

occurrence of hypertension tends to be relatively lower in patients with type I diabetes and affects 30% 

of type 1 diabetes patients [27]. 

There is a complex relationship between insulin resistance, diabetes and essential hypertension. 

Insulin resistance is a phenomenon whereby body tissues, namely skeletal muscle, adipose tissue and 

the liver have impaired biological and physiological responses to circulating insulin [28]. Essential 

hypertension is responsible for 90–95% of patients diagnosed with hypertension with no clear cause 

[29]. Lind, Bente and Lithell [30] estimated that about 25–47% of hypertensive patients have impaired 

insulin resistance or impaired glucose tolerance. Sowers, Epstein and Frohlich [26] observed that 

untreated essential hypertensive individuals have higher fasting and postprandial insulin levels than the 

normotensive individuals. Therefore, those with essential hypertension are more prone to develop 

diabetes than normotensive persons.  

Both diabetes and high blood pressure are risk factors for the development of macrovascular and 

microvascular complications. Therefore, rigorous control of blood pressure and glucose are paramount 

to decrease the morbility and mortality of hypertensive diabetes individuals [31]. A wide range of 

antihypertensive drugs is available in the market but not all offer beneficial effects in hypertensive 
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diabetes. Therefore, the development of new therapy methods is needed in order to produce an 

efficient method for preventing or reducing the occurrence of diabetes and hypertension with the least 

side effects. The consumption of probiotics is a new therapeutic strategy in preventing or delaying the 

onset of diabetes and subsequently reducing the incident of hypertension.  

An induction in insulin resistance often leads to diabetic dyslipidemia, and this is highly increased 

by high levels of plasma total cholesterol, LDL cholesterol, and very low density lipoprotein (VLDL) 

cholesterol [28]. The efficacy of probiotics in reducing serum cholesterol levels as demonstrated by 

various in-vivo models could subsequently improve insulin resistance. It has been suggested that the 

consumption of probiotics can lower the onset of insulin resistance and consequently reduce the 

incident of hypertensive conditions that are closely related to diabetes.  

Past studies have also postulated that the onset of diabetes is associated with a poor inflammatory 

status of the individuals that have consumed high-fats diets over prolonged periods (Figure 2). Cani  

et al. [33] evaluated the effects of a high-fat diet on lipopolysaccharides using mice as a model. The 

authors demonstrated that the composition of natural intestinal gut microflora often determine the 

degree of inflammation contributing to the onset of diabetes and obesity. The concentration of plasma 

lipopolysaccharides, the proinflammatory factor, is inversely correlated with the population of 

Bifidobacterium spp. It has also been reported that in high-fat diet-induced diabetes, the concentration 

of Bifidobacterium spp. in the gut was positively correlated with improved glucose tolerance and 

glucose-induced insulin-secretion as well as decreased diabetes endotoxemia, plasma and adipose 

tissue inflammatory cytokines [33]. Several studies have also shown that bifidobacteria can reduce the 

intestinal endotoxin levels and improve mucosal barrier thus reducing systemic inflammation and 

subsequently reduced the incidence of diabetes [34]. 

In a randomized, double-blind, placebo controlled human study that involved 25 healthy elderly 

volunteers (median age 69 y; range 60 ± 83 y), the consumption of low-fat milk containing  

1.5 × 1011 CFU of Lactobacillus lactis twice daily for a period of six weeks was found to enhance the 

immune response of the elderly, without the release of inflammatory cytokines, thus reducing the onset 

of systemic inflammatory induced diabetes [35]. Another study conducted by Matsuzaki et al. [36] had 

shown significant reduction of plasma glucose (P < 0.05) in 4-week-old non-insulin dependent 

diabetes mellitus male KK-Ay mice that were fed 2 mg of lyophilized Lactobacillus casei five times a 

week for an experimental period of 16 weeks. The KK mice were an inbred strain of Japanese native 

mice that possessed various diabetic features, while Ay was the yellow obese gene. The incorporation 

of Ay gene into KK mice produced insulin resistant models. The authors concluded that the 

consumption of probiotics inhibited the production of proinflammatory cytokines that would lead to 

the occurrence of systemic inflammatory induced diabetes, and eventually inhibited the onset of 

diabetes related hypertension.  

The incidence of systemic inflammatory induced diabetes was also found to increase with the 

decrease ratio of Gram-positive:Gram-negative intestinal microflora. Such a decreased ratio tends to 

increase the availability of proinflammatory molecules and lipopolysaccharides in the body that are 

responsible for systemic inflammation, and thus triggers the occurrence of diabetes.  
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Figure 2. Postulated mechanism involved in the onset of diabetes upon prolonged 

consumption of high-fat diets. 
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bacteria in the gut and modulates immune response. Several mechanisms for the inhibition of Gram 

negative bacteria by probiotics have been postulated, including the competition for nutrients and 

adhesion sites, production of direct inhibitory compounds such as bacteriocins, and lowering of 

colonic pH by the production of short chain fatty acids [37]. 

Past studies have demonstrated the beneficial effects of co-consumption of probiotics with diabetic 

drug on controlling diabetes. Gliclazide is an oral anti-diabetic sulfonylurea drug that has beneficial 

extrapancreatic effects when insulin therapy is insufficient. Al-Salami et al. [38] evaluated the effects 

of probiotics on the uptake of gliclazide by using diabetic and healthy Wistar rats (n = 10). These rats 

were fed probiotics (75 mg/kg body weight) for three days, after which a gliclazide suspension  

(20 mg/kg) was administered. The authors reported that a two-fold probiotics-induced increment  

(p < 0.01) in gliclazide uptake was observed in the diabetic rats that resulted in a reduction of blood 

glucose levels by two-fold via insulin-independent mechanisms. Such findings indicate the beneficial 

effects of probiotics in treating diabetes in synergism with other diabetes drug and thereby reduced the 

incidence of diabetes related hypertension.  

It has been found that high fructose diets induce type II diabetes that is associated with insulin 

resistance, hyperinsulinemia, hypertriglyceridemia and hypertension [28]. This is caused by the 

mobilization and accumulation of fructose in the liver that increases the rate of lipogenesis and 

synthesis of triacylglycerol. The catabolism of fructose ultimately induces insulin resistance [39]. In a 

study conducted by Yadav, Jain and Sinha [28], it was found that the administration of dahi (an Indian 

fermented milk product) containing Lactobacillus acidophilus, L. casei and L. lactis to high  

fructose-induced diabetic rats for eight weeks decreased the accumulation of glycogen in the liver of 

rats compared to the control that was not fed the probiotics.  

The authors also found that plasma total cholesterol, LDL cholesterol and VLDL cholesterol levels 

were reduced, leading to a decrease in the incidence insulin resistance. The mechanisms proposed are 

inhibition of insulin depletion, preservation of diabetic dyslipidaemia and inhibition of lipid 

peroxidation and nitrite formation in the rats. This finding indicated that the consumption of probiotic 

products reduced the risk of diabetes and diabetic-linked-complications of individuals with fructose 

induced insulin resistance. 

The sensitivity of insulin in the regulation of blood glucose and fat metabolism is decreased by the 

dysfunction of pancreatic β-cells [40]. Alloxan is a type of toxic glucose analogue that selectively 

destroys insulin-producing pancreatic β-cells upon consumption, leading to the development of 

insulin-dependent diabetes mellitus. The mechanism is thought to be initiated by the production of free 

radicals from reactive oxygen species (ROS) formed by alloxan that preferentially accumulates in  

β-cells. Matsuzaki et al. [41] reported an inhibition of alloxan-induced disappearance of pancreatic  

β-cells in a group of 7-week-old alloxan-induced diabetic-BALB/c mice that were orally fed a diet 

containing lyophilized Lactobacillus casei. The authors reported that the administration of the 

probiotic reduced the occurrence of insulin deficiency that is associated with hyperglycemia. Similarly, 

in another study, Matsuzaki et al. [42] observed that the inhibition of autoimmune destruction of 

pancreatic β-cells was decreased upon oral feeding of a diet containing 0.05% heat-killed lyophilized  

L. casei in 4-week-old female non-obese insulin dependent diabetes (NOD) rats. Thus, the 

consumption of probiotics confer protections to the well being of pancreatic β-cells that plays a 
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significant role in the production of insulin molecules and prevents the onset of insulin dependent 

diabetes as well as diabetes-related hypertension. 

Other in-vivo studies have also demonstrated the roles of probiotics on glucose tolerance and insulin 

resistance. Tabuchi et al. [43] conducted a study investigating the effects of Lactobacillus rhamnosus 

GG (GG) on blood glucose levels and glucose tolerance levels in neonatally streptozotocin-induced 

diabetes rats. The diabetic and normal rats were weaned at four weeks after birth and fed a diet 

containing 6% lyophilized GG cells and normal diet, respectively. Each group was given 20 g of their 

respective diet daily for nine consecutive weeks. The authors reported a delay in the elevation of 

glucose intolerance and hyperglycemia in neonatal streptozotocin-induced diabetes rats upon oral 

feeding of the GG cells.  

A combination of probiotics strains was also found to be advantageous in reducing the onset of 

insulin resistance and diabetes in animals. VSL#3 is a commercially available mixture of probiotics 

containing a high-concentration (450 billion colonies/sachet) of viable, lyophilized bifidobacteria, 

lactobacilli, and Streptococcus thermophilus. Li et al. [44] conducted a study involving 48 ob/ob mice 

that were fed a diet containing aliquots of VSL#3 bacteria (1.5 × 109 colonies/mouse/day). Ob/ob mice 

are ob-gene modified mice that produce excessive leptin hormone which is important in the control of 

appetite in the mice leading to the development of obesity due to excessive eating. The authors found 

that the administration of VSL#3 probiotics mixture improved hepatic insulin resistance in diabetic 

mice, after 4 weeks of treatment as compared to the control.  

The roles of probiotics in reducing the onset of insulin resistance, hyperglycemia and diabetes 

dyslipidemia have yielded positive findings. It is believed that probiotics could be used as an 

alternative preventive measure and treatment for diabetes and subsequently reduces the risks of 

diabetic-associated hypertension.  

 

4. Regulation of Renin  

 

Blood pressure is controlled by a number of different interacting biochemical pathways. Typically, 

the regulation of blood pressure has been associated with renin-angiotensin system (RAS) which 

involved angiotensin-converting enzyme (ACE) [1]. RAS regulates blood pressure, fluid and 

electrolyte balance. Renin is an acid proteinase generated from the inactive precursor pro-renin by the 

action of kallikrein [5]. It is released whenever depletion of salt or stimulation of β2-receptors by 

aldosterone occurs. In RAS, renin hydrolyses plasma angiotensinogen, thus liberating the inactive 

angiotensin I. The potent vasoconstrictor, angiotensin II is converted from angiotensin I by ACE. 

Inhibition of renin activity may be achieved as a result of angiotensin II production [1]. Angiotensin II 

can cause vasoconstriction and induces release of aldosterone and therefore increases sodium 

concentration and elevates blood pressure. On the other hand, ACE also contributes to the elevation of 

blood pressure by inactivating the vasodilator brandykinin [45]. Hence, the levels of both angiotensin 

II and brandykinin allow for the regulation of blood pressure are mainly dictated by the ACE in RAS. 

ACE inhibition is a key clinical target for blood pressure control, whereby ACE inhibitors can 

lower blood pressure by reducing the production of angiotensin II and inhibit the degradation of 

brandykinin [45]. The ACE inhibitory peptides are inactive within the sequence of the parent protein 

but can be released by microbial activity [46]. Hence, fermentation is considered to be an effective 
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way to produce the bioactive peptides. ACE inhibitory peptides can be derived from a variety of 

fermented products including cheese, fermented milk, soymilk and yogurt upon fermentation by 

various starter microorganisms [47].  

In addition to yogurt bacteria and cheese starter bacteria, probiotic bacteria have been demonstrated 

to produce different bioactive peptides in milk during fermentation [46]. Probiotics are able to grow in 

milk products because they posses a proteolytic system that degrades casein along with lactose 

hydrolyzing enzymes [45]. Upon fermentation, the proteinases of various probiotics are capable of 

releasing ACE inhibitory peptides and thus a blood-pressure lowering effect can be derived from the 

milk proteins [48]. Several studies have demonstrated that Lactobacillus helveticus are capable of 

releasing antihypertensive peptides which are ACE inhibitory tripeptides Val-Pro-Pro (VPP) and  

Ile-Pro-Pro (IPP) from milk protein casein [46]. 

To date, the ability of probiotics in reducing blood pressure has been elucidated through 

fermentation of food products in order to release bioactive peptides, such as the ACE inhibitory 

peptides that play a crucial role in RAS. Therefore, antihypertensive effects can be achieved via 

consumption of dairy adjunct with probiotics. Evidence from in vitro and in vivo studies has 

demonstrated the effects of probiotics on hypertension. A study was performed by Donkor et al. [49] 

on the proteolytic activity of several dairy lactic acid bacteria cultures and probiotics as determinants 

of growth and in vitro ACE inhibitory activity in milk fermented with these single cultures. The 

authors reported that both Bifidobacterium longum and Lactobacillus acidophilus strains showed ACE 

inhibitory activity during growth. This was also supported by Ong and Shah [50], who examined the 

released of ACE inhibitory peptides in Cheddar cheeses made with starter lactococci and probiotics. 

The authors observed that cheeses made with the addition of L. casei and L. acidophilus had higher 

ACE inhibitory activity than those without any probiotic adjunct after 24 weeks at 4 ºC and 8 ºC, 

probably due to increased proteolysis. Moreover, ACE-inhibitory peptides have also been found in 

yogurt, cheese and milk fermented with L. casei ssp. rhamnosus, L. acidophilus and bifidobacteria 

strains [51]. Recent research studies have shown that soy peptides with inhibitory activity against ACE 

could be produced by fermentation with probiotics. In a study performed by Ng et al. [52] to 

investigate the growth characteristics and bioactivity of probiotics in a tofu-based medium, both  

L. fermentum and L. bulgaricus strains exhibited varying proteolytic activity leading to the production 

of bioactive peptides with ACE inhibitory activity. Additionally, Fung [53], who evaluated growth 

characteristics of L. acidophilus in soy whey, postulated that proteolytic activity of probiotic gave rise 

to ACE inhibitory activity in the media. The authors also found that there was a strong correlation 

between the ACE inhibitory activity and growth of the probiotics. An increased growth has been 

associated with an increase in the in vitro ACE inhibitory activity. 

Experimental evidence involving in vivo trials has also exhibited positive results. During a  

12 week feeding trial on 30 spontaneously hypertensive rats (SHR), a reduction of 17 mm Hg in 

systolic blood pressure (SBP) was reported upon consumption of sour milk containing  

2.5-3.5 mg/kg/day of Val-Pro-Pro and Ile-Pro-Pro fermented by L. helveticus LBK-16H (10%) [54]. In 

another study, Hata et al. [55] used a single-blind, placebo-controlled study involving 30 elderly 

hypertensive patients. The authors reported that ingestion of 95 mL of sour milk fermented with  

L. helveticus and Saccharomyces cerevisiae per day for eight weeks had significantly decreased SBP 

and diastolic blood pressure (DBP) by 14.1 mm Hg and 6.9 mm Hg, respectively. In one of the largest 
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studies, involving 94 hypertensive subjects in a double-blind, placebo-controlled, randomized trial, 

Jauhiainen et al. [56] found that the consumption of 150 mL milk fermented by L. helveticus twice a 

day for 10 weeks could decrease SBP and DBP by 4.1 mm Hg and 1.8 mm Hg, respectively. More 

studies exhibiting positive effects are presented in Table 1.  

Table 1. In vivo studies on the effects of probiotic-fermented milk on blood pressure. 

Product Subjects  Study Design Effect in blood 
pressure* 

Reference 

Lactobacillus 
helveticus fermented 
milk, 
150 ml/day for 21 wks 
 

39 mild 
hypertensive; 
age 30-62 

Randomized, 
placebo-
controlled  

SBP: -6.7 mm Hg 
DBP: -3.6 mm Hg 

[57] 

Lactobacillus 
acidophilus and 
Streptococcus 
thermophilus 
fermented yogurt,  
450 ml/day for 8 wks  
 

70 healthy; 
age 18-55  

Randomized, 
double-blind, 
placebo- and 
compliance-
controlled, 
parallel  

SBP: -4.4 mm Hg 
DBP: -3.4 mm Hg 

[58] 

Lactobacillus 
helveticus in tablets 
containing powdered 
fermented milk, 
6 tablets/day for 4 wks 
 

40 high-
normal blood 
pressure 
(HN), 40 mild 
hypertension 
(MH); age not 
available 

Randomized, 
double-blind, 
placebo-
controlled 

SBP- 
MH: -5.0 mm Hg  
DBP-  
HN: -11.2 mm Hg 

[59] 

Lactobacillus 
helveticus fermented 
milk, 
160 g/day for 4 wks  
 

46 borderline 
hypertensive; 
age 23-59 

Randomized, 
double-blind, 
placebo-
controlled 

SBP: -5.2 mm Hg [60] 

Lactobacillus 
helveticus fermented 
sour milk,  
150 ml/day; first 
period 8-10 wks, 
washout period 3-4 
wks, second period 5-7 
wks 
 

60 (first 
period)/ 39 
(second 
period) mild 
hypertension; 
age not 
available 

Two-cross 
over trial 
periods with a 
washout 
period in 
between 

First period: 
SBP: -16 mm Hg  
Second period: 
DBP: -11 mm Hg 
No significant 
differences in 
cross over 

[61] 

*A negative value shows a reduction from baseline registration values. SBP: Systolic blood 
pressure. DBP: Diastolic blood pressure. 
 

To this end, microbial fermentation provides a natural technology applicable for the production of 

bioactive peptides either from dairy or plant proteins. Consumption of probiotic fermented products 

not only supplies bioactive peptides but also live probiotic cultures that could confer  

antihypertensive properties. 
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5. Phytoestrogen and Probiotics 

 

Hypertension has been associated with imbalanced sexual hormones due to strong epidemiological 

evidences of gender differences in physiological control mechanisms of blood pressure. The 

prevalence of hypertension often shifts towards postmenopausal women, who have higher arterial 

blood pressures attributed to the lost of protective effects of ovarian hormones that regulate blood 

pressure [62]. The sexual dimorphism of blood pressure and development of hypertension seems to 

have manifested from protective effects of estrogen in women and aggravation by androgen, in 

addition to the lack of vital estrogen protection, in men. Estrogen and progesterone serve as 

antihypertensive sex hormones, antagonizing the pro-hypertensive effects of testosterone, exerted in 

multifaceted mechanisms with direct effects on the vascular, renal and heart cells; or even via indirect 

effects mediated by humoral factors [62].  

The role of estrogen in positive mediation of hypertension is well documented in both animal and 

human studies. Hence, hormone replacement therapy is often prescribed to post-menopausal women or 

hypertensive men to alleviate the condition. However, it was noted that estrogen replacement therapy 

did not result in significant sustained reductions in blood pressure in women who have experienced 

surgical menopause [63]. There is a natural alternative to estrogen-based hypertension mediation using 

food-derived phytoestrogens which are enhanced with probiotics to increase its potency. 

Phytoestrogens are natural estrogen mimics which possess several common features to the estradiol, 

including a phenolic ring which is a pre-requisite for binding to the estrogen receptor [64]. Due to their 

structural similarities to mammalian estrogen [65], soy isoflavanoids may interact with the estrogen 

activity pathways in the body and induce similar responses in vascular functions as estradiol [66]. The 

estrogenic properties of soy isoflavones are well known and it was noted as being used by over 30% of 

women in the US as a supplement or as an alternative to traditional hormone replacement therapy [67]. 

Isoflavones are isoflavonoids with similar chemical structures as the mammalian estrogens, the 

estradiols and estrone (Figure 3). This structural similarity have contributed to the protective potential 

of isoflavones against hormone-dependant diseases, which include menopausal symptoms and 

cardiovascular disease [68] and they are most commonly found in legumes, such as soy. 

Administration of intact soy protein containing isoflavones was shown to result in significant 

vasodilatory effect in post-menopausal women [69]. 

Gut microflora or probiotics readily hydrolyze the main isoflavonoid glucosides in legumes, such as 

soy, including genistein and daidzein, into bioactive aglycones [66]. Isoflavone aglycones are absorbed 

faster and in greater amounts, because aglycones have greater hydrophobicity and a smaller molecular 

weight compared to the native glucosides [68]. Isoflavones in soy protein are ingested in modest 

amounts, absorbed following biotransformation by intestinal microflora, and undergo enterohepatic 

recycling, reaching circulating concentrations that exceed by several orders of magnitude the amounts 

of endogenous estrogens [64], despite having weaker binding affinity for estrogen receptors [70]. 

Hence, although isoflavone genistein has a relatively low potency, of one third that of estradiol, high 

concentrations in plasma may be sufficient to cause a variety of physiological effects [66]. Studies 

have recorded increases in total circulating estradiol concentrations following soy isoflavone 

consumption [70]. The 30–50 mg/day threshold intake of dietary estrogens necessary to achieve a 

biological effect in humans is readily attainable by the inclusion of modest amounts of soy protein [64]. 
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Kano et al. [68] showed that isoflavone aglycones were absorbed faster and in greater amounts than 

when ingested in the form of a beverage like soymilk. Naturally, the high intake of soy and soymilk in 

Japanese diet has been benefiting the Japanese, as the plasma of Japanese men reportedly contains as 

much as 7- to 110-fold the concentration of in phytoestrogens a similarly aged group of Finnish  

men [71]. 

Bioavailability of phytoestrogens in the human body is greatly influenced by gut microflora. The 

ability of intestinal bacteria to metabolize isoflavones increases the bioavailability of isoflavones in the 

form of aglycones and determines the production of biologically important isoflavone metabolites such 

as equol [72,68], thus enhancing effects on estrogen metabolism [73]. Probiotics have been reported to 

posses the ability to biotransform glucosides to aglycones. Owing to possessing -glucosidase that 

contributed to the bioconversion of glucosides, probiotics could take over the place of intestinal 

bacteria in releasing the bioactive aglycone from soy foods. Soymilk fermented with some strains of 

Bifidobacterium was found to contain equol [74]. Equol has greater affinity for the estrogen receptors, 

hence, greater efficacy compared to its precursor daidzein or other isoflavones in receptor-mediated 

effects of soy [72]. Such effects include the inhibition of production of contraction factors endothelin-1 

via ER receptor-dependant mechanisms, leading to vasodilation and anti-hypertensive effect; and 

inhibition of estrogen sulfotransferase, leading to in-vitro increase of circulating active estrogens [75]. 

While only 30–50% of the human population are able to metabolize daidzein to equol [67], the 

administration of soy isoflavone with probiotics can enhance the effects of isoflavones, by mediating 

the conversion of daidzein to equol, especially in non-equol producers.  

Intestinal β-glycosidases often biotransform conjugated glucosides to bioactive aglycones via 

hydrolytic cleavage. However, probiotics that are capable of producing β-glycosidase could also 

liberate such bioactive properties. Consumption of probiotic strains of Lactobacillus and 

Bifidobacteria was shown to increase -glucosidase in humans [73]. The increase in the cleavage 

enzymes from the fermentative probiotics increases the bioavailability of aglycones in fermented 

soymilk, resulting in increased isoflavone absorption efficiency which may then manifest in greater 

physiological effects of the aglycone-enriched fermented soymilk compared to glucoside-enriched 

unfermented soymilk [68].  

Past studies have shown that the concentrations of isoflavone aglycones in soy food are increased 

upon fermentation by probiotics. In a study performed by Chien et al. [76] on the transformation of 

isoflavone phytoestrogens during soymilk fermentation, the concentration of isoflavones aglycones 

(daidzein, glycitein and genistein) has increased 100%, while a reduction of 50%–90% in the 

concentration of glucoside counterparts upon fermentation by S. thermophilus and B. longum was 

observed. In addition, Pham and Shah [77] also found that the level of bioactive aglycones increased 

from 8% in non-fermented soymilk to approximately 50% due to fermentation by Bifidobacterium 

while the concentration of malonyl-, acetyl- and glucosides isomers decreased considerably, with 

approximately 50%, 60% and 85% hydrolyzed in soymilk fermented by B. animalis, respectively. 

Therefore, it has been strongly suggested that antihypertensive effects can be achieved through the 

consumption of isoflavone aglycones enriched probiotic-fermented soy products.  
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Figure 3. Chemical structures of native glycosides, activated aglycones and standard estrogen. 
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The efficiency of isoflavone absorption has been indicated by urinary excretion of the compound. 

Co-administration of probiotic Lactobacillus GG with soy appeared to reduce the urinary excretion of 

total and individual isoflavones by 40%, suggesting that the addition of high concentrations of the 

probiotic (1012 cfu) enhanced isoflavone deconjugation and/or blocked isoflavone degradation leading 

to increased bioavailability and circulating levels of isoflavone, as reflected in reduced excretion [67]. 

In another study, Kano et al. [68] investigated the effects of soymilk-based beverages in twelve 

healthy volunteers consuming untreated, -glucosidase–treated and fermented soymilk on serum 

isoflavones concentrations. The authors found that -glucosidase–treated soymilk and fermented 

soymilk increased serum isoflavone concentration in a significantly shorter duration compared to the 

untreated soymilk. The authors concluded that isoflavone aglycones of soymilk were absorbed faster 

and in greater amounts than their glucosides counterpart and that the metabolism of isoflavones might 

be affected by the type of soymilk consumed. 

There is strong evidence supporting the positive influence of probiotics on hypertension via the 

mediation of phytoestrogens. More studies can be conducted to identify the specific probiotics with the 

nutraceutical property of increasing bioavailability of isoflavones, as it may vary between strains. A 

natural probiotic-phytoestrogen product may serve as a better alternative to the conventional, radical 
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and synthetic hormone replacement therapy prescribed to post-menopausal women to counter 

hypertension, among other post-menopausal symptoms, as this treatment has also been associated with 

side effects such as an increased risk of breast cancer, mood swings and insomnia. 

 

6. Conclusions 

 

This review has illustrated the potential of probiotics in mediating hypertension via positive 

modulation of several different physiological systems, apart from its conventional benefits for 

gastrointestinal health. Probiotics have exhibited antihypertensive potential via the improvement of 

lipid profiles, insulin resistance, modulation of renin and the bioconversion of bioactive isoflavones. 

These positive findings suggested the potential use of dietary alternatives such as probiotics, to 

alleviate the occurrence of metabolic diseases via a less radical approach compared to drugs or 

hormone therapy, with milder, if not none, known side effects. Probiotics could also serve as a 

complementary supplement to enhance the well-being for those already suffering the diseases and 

taking drugs or hormonal therapy to medicate the condition. Further revelation on the potential of 

probiotics in future research could lead to a boost in probiotic-fermented food  

industries–dairy and non–dairy. Nevertheless, more studies are needed to better understand the exact 

mechanisms, in vivo target sites, stability and safety, prior to using probiotics as an antihypertensive 

alternative treatment.  
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