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Abstract: Many cell functions in all living organisms rely on protein-based molecular 

recognition involving disorder-to-order transitions upon binding by molecular recognition 

features (MoRFs). A well accepted computational tool for identifying likely protein-protein 

interactions is sequence alignment. In this paper, we propose the combination of sequence 

alignment and disorder prediction as a tool to improve the confidence of identifying  

MoRF-based protein-protein interactions. The method of reverse sequence alignment is 

also rationalized here as a novel approach for finding additional interaction regions, 

leading to the concept of a retro-MoRF, which has the reversed sequence of an identified 

MoRF. The set of retro-MoRF binding partners likely overlap the partner-sets of the 

originally identified MoRFs. The high abundance of MoRF-containing intrinsically 

disordered proteins in nature suggests the possibility that the number of retro-MoRFs could 

likewise be very high. This hypothesis provides new grounds for exploring the mysteries of 

protein-protein interaction networks at the genome level. 
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1. Introduction 

All the challenges in biological research may come down to the molecular level and be conquered 

by various physical and chemical interactions among various bio-molecules, such as proteins, DNA, 

and RNA. The peculiarities of the interaction patterns between these molecules can be represented as 

various interaction networks. The sequential and spatial effects of these interaction networks control 

the origin, development, and evolution of all living organisms. Therefore, identifying possible 

interactions among various bio-molecules is of great importance for current biological science.  

However, identifying inter-molecular interactions, especially in vivo, is not a trivial task. 

Traditional experimental methods are both time- and cost-consuming. Advanced experimental 

methods, such as yeast 2 hybrid, although fast and efficient, have significant false positive and false 

negative rates. In spite of these experimental difficulties, developments in bioinformatics have made a 

great contribution in this area. Techniques based on sequence alignment become the most basic but 

very powerful tools for identifying structures, functions, and mutual interactions among bio-molecules. 

The underlying principle supporting the application of sequence alignment for studies of protein 

structure and function is the well-accepted sequence-structure-function paradigm: Sequence 

determines the structure; Structure determines the function. Here, for the simplicity of description, 

function can be interpreted as the ability of a bio-molecule (protein) to interact with another molecule. 

Apparently, this ability is due to the local structure determined by the spatial arrangement of amino 

acids, which is encoded in protein’s amino acid sequence. If two proteins have very similar sequences, 

their structures are very likely to be highly similar, and, therefore, they may have a very similar 

interaction mode with the third molecule. This is the underlying basis for the sequence alignment. 

Although the underlying principles of sequence alignment have integrated many atomic details 

implicitly, the application of sequence alignment raised itself to the phenomenon level. In fact, only 

the sequential order of the symbols of amino acid residues is required for the alignment: If the 

sequential orders of amino acids in two proteins are similar to each other, their structures and functions 

are likely to be similar to each other as well. This logic can also be applied to protein domains or 

segments: if two segments have similar sequential order of amino acids, they may form similar local 

3D structures and perform similar functions. Many conserved motifs and active sites are identified 

through this process. Although for highly conserved segments, the structural and functional prediction 

from sequence alignment is highly convincing, there are a lot of uncertainties for moderately similar 

segments. Furthermore, there is another intriguing question: if the segment A is reversely identical to 

the segment B, are they similar in structure and function? This is a very important question. In fact, if 

the answer to this question is positive or partially positive under some conditions, the interaction 

patterns ascribed to bio-molecular pathways and networks could be far more complicated.  

Several pioneer studies have been performed to address the issue of proteins with reversed 

sequences (retro-proteins). As early as 1992, Schoniger and Waterman introduced inversion (reversed 

complements) into sequence alignment [1]. However, it was not clear whether the reversed sequences 

have the same structure and function as the original, normal-order, sequences. Later, studies of 

different proteins and models produced contradictory results. For example, computational simulations 

based on the coarse grained model of the domain B of staphylococcal protein A indicated that the 

retro-sequence would likely have a structure similar to that of the original sequence [2]. However, 
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according to the full-atom simulations and experiments, this retro-protein was shown to be essentially 

unfolded [3]. In addition, retro-proteins produced from sequences of SH3 domain and B1 domain of 

Streptococcal protein G were also shown to be unfolded by both full-atom simulation and 

experiments [3]. Several reversed polypeptides possessed conformations totally different from their 

conformations of original sequences [4,5]. Apparently, the results of the coarse grained modeling of 

the retro-proteins were different from all-atom models. Very likely, the difference comes from the 

differences of the local, detailed structures of amino acids; i.e., dihedral angles and side chain 

orientations, which are omitted in the coarse grained model. In addition to these individual examples, a 

statistical study revealed that retro-sequences are unlikely to have fold similar to the original 

sequences [6,7]. In contrast to these various studies, there are still other experimental examples 

showing that although retro-sequences may have not only a stable 3D structure [8], but may also have 

functions similar to original sequences [9–12].  

All the above mentioned studies were focused on ordered proteins with unique rigid structures. 

These studies clearly showed that the folding of retro-proteins is generally perturbed compared to their 

normal-sequence counterparts and that the presence of reversed segments may dramatically change the 

rigid 3D structure of an ordered protein. However, what happens with respect to reversed sequences of 

intrinsically disordered proteins (IDPs)? IDPs do not have unique 3D structures under physiological 

conditions. Instead, they form an ensemble of flexible conformations. Many crucial biological 

functions are carried out by these dynamic and flexible conformations via structural changes and 

conformational transformations [13–16]. Although the mentioned conformational flexibility makes 

IDPs totally different from structured proteins, no study on reversed alignments has been reported for 

these proteins that lack stable structure.  

Since IDPs have much more structural flexibility, the underlying assumptions for sequence 

alignment of IDPs may be very different from those proposed for aligning the structured proteins. In 

fact, for structured proteins, when the sequence identity is over 20–30%, the corresponding structural 

similarity is potentially very high (in terms of RMSD, the difference between two structures of this 

sequence identity is often less than 2 Å)  [17]. How similar are structures and functions of two 

disordered proteins when their sequence similarity is only 20–30%? How different are structures and 

functions of IDPs, with normal order and reversed sequences? In other words, how are the structures 

and functions of IDPs affected by inversion of their amino acid sequences? These questions can hardly 

be neglected due to the high abundance of IDPs in nature. Typically, 7–30% prokaryotic proteins 

contain long disordered regions of more than 30 consecutive residues, whereas in eukaryotes the 

amount of such proteins reaches 45–50% [18–22]. Even in the PDB database, which is highly biased 

towards structured proteins, ~70% of proteins have regions of missing electron density, i.e., disordered 

regions [23]. Of these, over 10% have long segments of missing electron density consisting of at least 

30 amino acids [24]. As far as the protein functions are concerned, as emphasized by previous studies, 

238 out of 710 Swiss-Prot functional keywords were strongly positively correlated with intrinsic 

disorder, while 302 other functional key words were strongly negatively associated with intrinsic 

disorder [25].  

In this paper, we describe an integrated analysis of the relation between the reversed sequence, 

sequence alignment, and intrinsic disorder. Furthermore, by combining these three features, we 

developed a novel protocol for identification of potential protein-protein interaction sites, herein called 
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retro-MoRFs, which are reversed-sequence molecular recognition features. Just as commonly observed 

for normal-sequence MoRFs, retro-MoRFs are short segments that are expected to have a high 

propensity for folding-upon-binding and that are located within regions of disorder.  

Figure 1. Disorder and MoRF prediction for (a) RNase E, (b) p53, and (c) SRC-3. The 

thin solid lines are prediction of PONDR-VLXT, dotted lines are prediction from PONDR-

FIT, and horizontal bold lines are the MoRF regions identified by MoRF-II predictor. In 

subset (a), N and C1-C4 correspond to one N-terminal dip and four C-terminal dips of 

RNase E. In subset (b), N, C1, and C2 stand for N-terminal dip and two C-terminal dips for 

p53. In (c), there are one N-terminal dip N, two middle-region dips M1 and M2, and two  

C-terminal dips C1 and C2. 

2. Results and Discussion 

2.1. Functional Roles of MoRF Regions in Three Proteins 

Figure 1 shows disorder prediction and its relation to MoRFs [22,26] for three illustrative proteins:  

(a) RNase E, (b) p53, and (c) SRC-3. PONDR-VLXT and PONDR-FIT were used to make the disorder 

predictions. The former predictor is the more sensitive to the local amino acid composition, while the 

latter is one of the most accurate disorder predictors. As shown by Figure 1(a)–(c), although the 
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general trends are similar, PONDR-VLXT has more intense fluctuation of disordered scores, whereas  

PONDR-FIT shows smaller fluctuations and more gradual variation overall. The dips reflected by the 

disorder score fluctuations may correspond to MoRF regions. The protein segments corresponding to 

these dips have much higher content of hydrophobic residues than their flanking regions. Since 

increased hydrophobicity favors structure over disorder in PONDR-VLXT, such segments are 

predicted to be locally structured by this predictor, while the neighboring regions are more strongly 

predicted to be disordered. From a biological viewpoint, due to high local content of hydrophobic 

residues, the protein segments corresponding to these dips may have crucial roles in molecular 

recognition and signaling. However, not all of the dips can be identified as -MoRFs. In fact, the 

application of the -MoRF identifier [22,26] reveal only four -MoRFs in RNase E (Figure 1(a)), 

three -MoRFs in p53 (Figure 1(b)), and sixteen -MoRFs in SRC-3 (Figure 1(c)).  

All the -MoRFs in Figure 1(a) and (b) were selected for further study. But only four out of sixteen 

-MoRFs from Figure 1(c) were chosen. In addition, the segment “C3” in Figure 1(a) and the segment 

“N” in Figure 1(c), which showed particularly sharp dips, were also selected for further analysis. All 

these regions will be called MoRFs or MoRF regions in the following discussions.  

The fragment N of RNase E is located in a structured domain. It has a -strand at the N-terminus 

followed by a coil at the C-terminus. A short part of the C-terminal coil has missing electron density in 

crystal structure [27], but can also form both -helix [28] and -strand [27]. Three other segments of 

interest are located in the intrinsically disordered C-terminal domain of the protein. The RNase E 

efragment C1 was proposed to be involved in protein self-association [29]. The segment C2 was 

suggested to interact with structured RNAs and contribute to oligomerization [29]. C3 and C4 regions 

were observed to bind to enolase and PolyNucleotide Phosphorylase (PNPase), respectively [29].  

The MoRF regions of p53 can interact with many other proteins [30]. The following provides a 

small sampling of a much larger set of experimentally verified. The fragment N of p53 binds to 

MDM2 [31] and PH-domain of Tfb1 subunit [32]. The C1 segment of p53 can bind to tetrahymena 

GCN5 [33] and is also responsible for the formation of the p53 tetramer [34]. Finally, the C2 region 

can interact with four unrelated proteins: cyclin A [35], sirtuin [36], bromodomain of CREB Binding 

Protein (CBP) [37], and S100 [38], and, for these particular examples, there are 3-D structures of 

the various complexes between the p53 fragment and these four different partners [35–38]. 

In SRC-3, the N segment is located in the basic Helix-Loop-Helix motif (bHLH). The bHLH motif 

is well-conserved among other members of the SRC family. Although there are no structural 

determinations of the of SRC-3 bHLH motif bound with other molecules, this conserved motif of  

SRC-2 was shown to interact with myogenic factors, such as myogenin and MEF-2C [39], as well as 

with the Transcriptional Enhancer Factor 4 (TEF-4) [40]. The segments M1 and M2 are so called 

LxxLL motifs, where L is leucine and x is any amino acid. If the residues designated by x are polar 

and if the residues before and after this motif are also polar, then this motif would form one turn of an 

amphiphatic -helix [41,42] with conserved leucines forming a closely-packed triangle on one face of 

the helix. This hydrophobic patch can interact with various nuclear receptors [43–46], and are 

characterized by an adjustable binding affinity [47]. The C1 segment is located in the intrinsic 

transcriptional Activation Domain 1(AD1) and also contains a LxxLL motif. This segment is 

responsible for the SRC-3 interaction with general transcriptional co-integrator CBP/p300 [46]. The 
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C2 segment is in the AD2 domain which interacts with Co-Activator-associated aRginine  

N-Methyltransferase 1 (CARM1) and Protein aRginine N-MethylTransferase 1 (PRMT1) [48]. 

Therefore, all the fragments of the three proteins discussed herein are biologically important and are 

involved in a wide range of specific interactions. 

2.2. Alignment of MoRFs by Normal Sequential Order 

Table 1 lists proteins containing the segments that have similar sequences (with E-value less than 

0.0001) to MoRF segments of RNase E, p53, and SRC-3. Apparently, none of the PDB sequences 

contain segments similar to these MoRF regions under current selection criteria. However, a number of 

sequences in SwissProt have segments similar to these MoRF regions. In fact, in SwissProt, there are 

16 annotated unique proteins and 2 putative proteins. Out of these 16 proteins, 10 are ended with  

“-ase”, 4 are related to regulation, 1 is related to cell shape, and another one is a chaperone. More 

interestingly, both hydroxyethylthiazole kinase and rRNA pseudouridylate synthase C have two 

segments similar to a MoRF of RNase E. 

Table 1. MoRFs of three proteins and their alignment matches in PDB and SwissProt. 

Protein MoRF 

Proteins in PDB 

containing similar 

MoRF (a) 

Proteins in SwissProt containing similar MoRF (a) 

SwissPr

ot id 
Species Name 

Within 

IDR 

RNase 

E 

N --- 

Q9R5Y8 E. Coli Cell shape determining protein Yes 

A5UA75 Haemophilus influenzae Hydroxyethylthiazole kinase Yes 

A4NVQ

3 
Haemophilus influenzae rRNA pseudouridylate synthase C Yes 

Q65S31 
Mannheimia 

succiniciproducens 
CafA protein Yes 

C1 --- ---  --- --- 

C2 --- 
B0U5Z2 Xylella fastidiosa Glutamyl-tRNA reductase Yes 

Q65I31 Bacillus licheniformis Anthranilate synthaseTrpE Yes 

C3 --- 

A5UA75 Haemophilus influenzae Hydroxyethylthiazole kinase Yes 

A4NVQ

3 
Haemophilus influenzae rRNA pseudouridylate synthase C No 

Q65S31 
Mannheimia 

succiniciproducens 
CafA protein No 

C4 --- ---  --- --- 

p53 

N 

--- 
A0M1H

7 
Gramella forsetii Carbohydrate kinase Yes 

--- B9RU24 Ricinus communis 

Mitochondrial respiratory chain 

complexes assembly protein, 

putative 

 

C1 --- C6Y295 Pedobacter heparinus DNA polymerase III, α subunit No/Yes 

C2 --- ---  --- --- 
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Table 1. Cont. 

Protein MoRF 

Proteins in PDB 

containing similar 

MoRF (a) 

Proteins in SwissProt containing similar MoRF (a) 

SwissProt 

id 
Species Name 

Within 

IDR 

SRC-3 

N --- ---  --- --- 

M1 --- 

Q6NSP2 Zebrafish 
Rho/rac guanine nucleotide exchange 

factor (GEF) 
Yes 

B7JAA3 
Acidithiobacillus 

ferrooxidans 
Nif-specific regulatory protein Yes 

B5ER80 
Acidithiobacillus 

ferrooxidans 

Transcriptional regulator, NifA, Fis 

Family 
Yes 

A6VPZ1 
Actinobacillus 

succinogenes 

Sulfite reductase [NADPH] hemoprotein 

beta-component 
No 

Q01FQ6 
Ostreococcus 

tauri 

CLP protease regulatory subunit CLPX 

(ISS) 
Yes 

A4RRW1 
Ostreococcus 

lucimarinus 
Mitochondrial ClpX chaperone Yes 

M2 --- 

Q6N6F5 
Rhodopseudomo

nas palustris 
ATP-dependent DNA helicase Yes 

C1AT82 
Rhodococcus 

opacus 
Hypothetical membrane protein No 

B3QIU1 
Rhodopseudomo

nas palustris 

DEAD/DEAH box helicase domain 

protein 
Yes 

C1 --- ---  --- --- 

C2 --- ---  --- --- 

(a) Only proteins different from the original protein and its family are listed. 

According to our assumption, if these similar segments are flanked by disordered regions, they may 

have similar binding functions as the original MoRF segments. Hence, PONDR-FIT was applied to 

predict the disordered status of all these SwissProt sequences.  

For the purpose of comparing various sequences containing the same MoRF segments, their 

disorder predictions were presented in the same type of plot (Figure 2). Since seven of the MoRFs 

listed in Table 1 have sequences similar to unrelated proteins in SwissProt, there are 7 plots in Figure 2 

with each plot corresponding to a MoRF segment in Table 1. The inset of each plot is the BLASTP 

alignment of sequences at the MoRF region. Although there were insertions in the original alignments, 

these insertions were deleted for the simplicity of matching the curve of disorder prediction. 

The MoRF region N of RNase E is highly conserved among five different proteins, where CafA 

(Q65S31) is also a member of RNase family. As indicated by the prediction in Figure 2(a), this 

segment in all five molecules is flanked by disordered regions. Although the specific role of MoRF N 

in RNase E is not clear, the entire N-terminal region of RNase E forms a structured catalytic domain. 
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Figure 2. Disorder prediction and sequence alignment for proteins shown in Table 1, 

which are alignment matches of all the MoRF regions of three proteins in our study. The 

alignment was cut off at E-value of 0.001. The disorder prediction was implemented by 

PONDR®VL-XT. The partially sequence alignment is shown as the inset. The insertions 

in the original alignment were deleted for matching the curve of disorder prediction. The 

curves of disorder score were shifted to overlap the aligned segments. The N, C2, and C3 

MoRF regions of RNase E are shown in (a), (b), and (c), respectively. (d) and (e) are the N 

and C1 MoRF regions of P53. (f) and (g) are the M1 and M2 MoRF regions of SRC-3. 
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Figure 2. Cont. 

 

Due to this high sequence conservation and matching disordered profile, the segments in four 
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structured domain. The interaction profiles of p53 and A0M1H7 in STRING 8.2 have no common 

partners. The similar segment in mitochondrial respiratory chain complex assembly protein (B9RU24) 

seems to contain a MoRF located in a middle of a long loop. It is reasonable that this fragment of 

B9RU24 could have the same function as the p53-N segment.  

The p53-C1-like segment has only one similar sequence in SwissProt, DNA polymerase III alpha 

subunit (C6Y295). The disordered pattern of this identified protein near the segment is very different 

from p53. Actually, as indicated by Figure 2(e), this segment is located in a structured region, whereas 

the C1 segment of p53 is within the disordered region. Hence, it is unlikely that they will have the 

same binding partner. 
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The SRC-3-M1 segment is the most commonly matched sequence in SwissProt with six examples, 

as shown in Figure 2(f). Clearly, the matched segments in Q6NSP2, B5ER80, B7JAA3, and A4RRW1 

are predicted to be disordered and are likely to serve as linkers connecting ordered regions. B7JAA3 

and B5ER80 segments actually belong to the same protein found in different strains of 

Acidithiobacillus ferrooxidans. In A6VPZ1, the segment is a part of the structured domain. In 

Q01FQ6, the SRC-3-M1-like segment is located within a disordered region and therefore can 

potentially serve as a binding motif. Therefore, the only possible candidate having binding partner 

potentially similar to that of SRC-3-M1 segment is Q01FQ6.  

The SRC-M2 segment has three matches in SwissProt. In Figure 2(g), the segment in C1AT82 is a 

located within a long region predicted to be structured. On the other hand, the segments in Q6N6F5 

and B3QIU1 both appear to be structure-prone segments flanked by disordered regions. Besides, the 

entire sequences of Q6N6F5 and B3QIU1 are almost identical to each other with only several 

mutations. Thus, these two proteins may also have the same interaction partner as SRC-3. 

2.3. Reversely Identified Potential Binding Sites 

Table 2 shows sequences containing segments similar to reversed MoRF regions with E-value less 

than 0.0001. Again, there are no hits in PDB, but quite a few in SwissProt. There are totally  

20 proteins in Table 2. The comparison of disorder prediction for proteins containing the same 

segments is shown in Figure 3. All the sequences in Figure 3 were also shifted to overlap the similar 

segments. And the original sequences from RNase E, p53, and SRC-3 were inverted to fit the other 

reversely identified sequences. 

The MoRF N segment of RNase E has one reversely aligned match, glycosyl transferase family 2 

(B8EIZ0). Figure 3(a) shows that this segment on B8EIZ0 is predicted to be disordered but it is also a 

connecting segment of two structured regions. Hence, although these two segments highly resemble 

each other and have almost perfect match of their hydrophobic/hydrophilic patterns, their functional 

resemblance on binding, if any, is not clear. 

The rC1 of RNase E also has one alignment hit in SwissProt, a putative uncharacterized protein 

(A0RVW2). This protein has 2429 residues. Disorder prediction in Figure 3(b) shows a promising 

pattern: the RNaseE-rC1-like segment is at the very C-terminal part of A0RVW2 and clearly shows a 

dip within a disordered region. Both segments have the hydrophilic / hydrophobic pattern expected for 

an amphipathic helix [41,42]. It is very likely that this RNaseE-rC1-like segment of A0RVW2 will 

have the similar function as the C1 MoRF region of RNase E. Actually, C1 MoRF region of RNase E 

is responsible for self-association, and RNaseE-rC1-like segment of A0RVW2 is at the very end of  

C-terminal, giving some further confidence on its function in self-association. 

The rC2 fragment of RNase E has five matches in SwissProt. As indicated by Figure 3(c), the  

rC2-like segment of A8IXM6 is located in the N-terminal region and is close to a dip within a long 

disordered region. The similar segment in C0VZ26 is predicted to be highly disordered and is located 

at the very end of the N-terminus of the protein. The rC2-like segments of Q7KA80, and A1ZBW0 are 

also located at the N-terminal parts of the corresponding proteins. However, they are predicted to be 

disordered and contain shallow order dip suggesting that they might be involved in binding. 
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Table 2. Reversed segments of MoRFs of three proteins and their alignment matches in 

PDB and SwissProt. 

Protein MoRF(a) 

Proteins in PDB 

containing 

similar MoRF (b) 

Proteins in SwissProt containing similar MoRF (b) 

SwissProt 

id 
Species Name 

Within 

IDR 

RNase 

E 

rN --- B8EIZ0 
Methylocella 

silvestris 
Glycosyl transferase family 2 Yes 

rC1 --- A0RVW2 
Cenarchaeum 

symbiosum 
Putative uncharacterized protein Yes 

rC2 --- 

A8IXM6 
Chlamydomonas 

reinhardtii 

Dopamine beta-monooxygerase-

like protein 
Yes 

C0VZ26 
Actinomyces 

coleocanis 
30S ribosomal protein S5 Yes 

Q2C7B7 Photobacterium Pseudouridine synthase Yes 

Q7KA80 
Drosophila 

melanogaster 

Heterogeneous nuclear 

ribonucleoprotein 
Yes 

A1ZBW0 
Drosophila 

melanogaster 
Bancal isoform C Yes 

rC3 --- ---  --- --- 

rC4 --- B9LNU7 
Halorubrum 

lacusprofundi 
Manganese containing catelase Yes 

p53 

rN --- ---  --- --- 

rC1 --- 

B8F7I3 
Haemophilus 

parasuis serovar 5 
tRNA modification GTPase TrmE Yes 

Q0QE22 
Haemophilus 

parasuis 
ThdF Yes 

A8FF31 Bacillus pumilus 3-dehydroquinate dehydratase No 

rC2 --- ---  --- --- 

SRC-3 

rN --- 

B6R7C1 Pseudovibrio Outer surface protein No 

Q0SCR7 Rhodococcus Aldehyde dehydrogenase Yes 

C1B3Y6 
Rhodococcus 

opacus 

Phenylacetic acid degradation 

protein PaaN 
Yes 

rM1 --- C5PX68 
Sphingobacterium 

spiritivorum 

Conserved hypothetical 

transmembrane protein 
No 

rM2 --- 

Q880S9 
Pseudomonas 

syringae 

AraC-family transcriptional 

regulator 
No 

Q1DCP2 
Myxococcus 

xanthus 
Tetratricopeptide repeat protein No/Yes 

Q8NLQ1 
Corynebacterium 

glutamicum 
UDP-galactopyranose mutase No 

A4CL95 
Robiginitalea 

biformata 
Type III restriction enzyme No 

rC1 --- ---  --- --- 

rC2 --- Q5AHB1 Candida albicans 
Actin cytoskeleton-regulatory 

complex protein PAN1 
Yes 

(a) “r” stands for reversed segment.  
(b)Only proteins other than original proteins and its family are included. 
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The similar segment of Q2C7B7 resides close to the C-terminus of the protein and is also predicted 

to be disordered and contain a shallow order dip. Although there are no obvious conserved 

hydrophobic sites, these proteins do have interesting patterns of positively and negatively charged 

residues. This is clearly an indication of their potential ability to bind to DNA and/or RNA. Actually, 

the C2 region of RNase E is responsible for RNA binding and oligomerization. Therefore, it is quite 

likely that all the five matched proteins will have the same functions.  

The alignment match of rC4 of RNase E in Figure 3(d) shows a similar picture as that for rC1 

region of RNase E. The aligned segment of A0RVW2 is located at the C-terminal part of the molecule 

and shows a dip within the disordered region. This is a sign of a potential binding motif. The sequence 

pattern may also support the formation of helix. Since the original C4 MoRF of RNase E is responsible 

for binding to PNPase, it is very likely that A0RVW2 may also bind to PNPase. 

In p53, only C1 MoRF region has reversely aligned matches in SwissProt. There are totally three 

matches as in Figure 3(e). B8F7I3 and Q0QE22 have p53-rC1-like segment at their C-termini. 

Compared to Q0QE22, B8F7I3 has several mutations. The p53-rC1-like segments of these two 

proteins are predicted to be disordered. Therefore, it is not clear whether these segments could be 

involved in binding. As to A8FF31, although the p53-rC1-like segment is close to the N-terminus, it is 

essentially a part of structured domain. Hence, it is hard to suggest its binding ability.  

Figure 3. Disorder prediction and sequence alignment for proteins in Table 2, which are 

reverse alignment matches of all the MoRF regions of three proteins. The alignment was 

also cut off at E-value of 0.001. Disorder scores were predicted by PONDR®VL-XT. In 

the insets of sequence alignment, the sequential order of original MoRF regions were 

shown in a reversed order, while other alignment hits were shown in normal sequential 

order. The curves of disorder score were also shifted to allowed the overlapped of aligned 

segments. N, C1, C2, and C4 MoRF regions of RNase E were shown in (a)–(d), 

accordingly. C1 MoRF region of P53 was presented in (e). N, M1, M2, and C2 MoRF 

regions of SRC-3 were plotted in (e)–(i), respectively. 
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Figure 3. Cont. 
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Figure 3. Cont. 
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structural complementation among all other parts of the protein and the partner. Due to this 

requirement of structural complementation, reversing the orientation of the fragment may invalidate 

the binding between the protein and the partner because the structure of the fragment is asymmetric. 

The integrated structure of the reversed fragment and all other parts of the same protein may not match 

to the structure of the partner. That is the reason why reverse alignment is not broadly adopted in the 

research of protein structural biology.  

Theoretically, it was expected that a retro-protein; i.e., a protein obtained as a result of reading the 

sequence backwards, might adapt a topological equivalent of the mirror image of the 3-D structure of 

its parent protein [1,2,49]. However, the lattice model simulations of the retro-sequence of the B 

domain of Staphylococcal protein A revealed that the secondary structure elements in the retro-protein 

did not exactly match their counterparts in the original protein structure [2], and later the full-atom 

simulation analysis showed that this retro-protein was essentially unfolded [3]. Based on the analyses 

of inverse sequence similarity in proteins it has been concluded that the tertiary structures of  

retro-proteins did not imply folds comparable to their parent protein [6]. Furthermore, it was shown 

that the sequence inversion affected the foldability of some model peptides and proteins in such a way 

that retro-proteins were generally no more similar to their parent sequences than any random sequence, 

despite their common hydrophobic/hydrophilic pattern, global amino acid composition and possible 

tertiary contacts [9]. Therefore, it has been concluded that the direction of protein sequence is a critical 

factor for the formation of a unique structure. This directionality explains why the sequences of 

ordered proteins are generally not palindromic [9]. The differences between the parent and retro-

proteins likely originate from the differences in the local, detailed structures of amino acids, their 

dihedral angles, side chain orientations, and packing inside a protein structure.  

In agreement with this hypothesis, careful analysis of biologically active retro-protein, retro human 

metallothionein-2  domain, revealed that despite the significant alterations in the protein structure 

induced by the reversal direction of the domain sequence backbone, this retro-domain retained its 

metal binding ability and foldability mostly due to the fact that reversion of a sequence was not critical 

to the interaction between Cys side chains and metal ions [9]. Another potential exceptions form the 

mentioned spatial restrictions are polyproline II (PPII) helices, which tend to occur on the surface of 

the protein, and PPII-based binding motifs. These structural motifs are left-handed, all-trans extended 

helices with average backbone dihedral angles of (Φ,Ψ) = (−75°, +145°). Each PPII helix has precisely 

three residues per turn, compared with 3.6 residues per turn in an α-helix. This results in a 

considerably extended helical structure, with PPII helices translating 3.12 Å per residue compared to 

1.50 Å per residue in the α-helix. Each turn of a PPII helix spans approximately 9 Å, resulting in 

perfect three-fold rotational symmetry [50,51]. Furthermore, residues in PPII helices are significantly 

more solvent exposed than the average for all residues in ordered proteins, with polar residues in PPII 

helices 60% more solvent exposed and hydrophobic residues 50% more exposed than the average for 

all residues [50]. This high surface exposure of both the hydrophobic and polar side chains of residues 

in PPII conformation provides for an easily accessible hydrophobic or polar interaction surface. As a 

result, proline-rich sequences are very common recognition sites for protein-protein interaction 

modules such as the SH3 domain, the WW domain, and the EVH1 domain [52]. For example, the 

consensus ligand peptides interacting with various SH3-domain-containing proteins in yeast were 

assigned to class I (RXXPXXP) or class II (PXXPXR) motifs [53], which both regarded as a Pro-rich 
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core LPPLP motif, with the position of the R residue (N or C-terminal to the Pro core) dictating 

whether the ligand falls in class I or class II [54]. Furthermore, due to the high symmetry, and due to 

the fact that the PPII helix has three residues per turn, where residues at positions i and i + 3 lie on the 

same edge of the ligand structure, PPII-based binding motifs can be inverted. In fact, class I and class 

II ligands bind to the SH3 domain in reverse orientations relative to each other [55], where a class I 

ligand binds with its N-terminus at the RT loop and a class II ligand with its C-terminus at this site.  

Obviously, the mentioned restrictions in fine structure, dihedral angles, and side chain packing 

details imposed by backbone directionality that prevent normal folding of retro-sequences can be 

avoided if intrinsic disorder is taken into account. Intrinsic flexibility of IDPs and IDRs might allow 

them to gain specific structures needed for successful and specific binding to their partners. Therefore, 

the spatial hindrance of binding between a reversed fragment and a partner can be conquered by the 

flexibility of the flanking regions or the binding region itself. Hence, the combination of reverse 

sequence alignment with disorder analysis might provide very useful information for identifying the 

possible interaction regions.  

Taken fragment F in protein A can bind to partner P and protein B contains a segment rF which has 

a reversed sequence of fragment F, then the question is whether the protein B can interact with partner 

P? To answer this question, the software package, PONDR-RIBS was developed. This new tool 

provides a synthetic analysis of the binding capability of a reversed fragment and the partners. 

PONDR-RIBS aligns sequences by CLUSTALW [56] and predicts intrinsic disorder by  

PONDR-FIT [57]. Here, we restricted the criteria as follows: (1) the sequence identity between 

reversed fragment rF and the original fragment F is higher than 60%; (2) The aligned fragment rF has 

similar hydrophobic/charge pattern as that of fragment F; and (3) The aligned fragment rF is 

disordered or is flanked by disordered regions. If all these conditions are satisfied, then reversed 

fragment rF of protein B might interact with partner P with a high probability. 

Obviously, the principles of PONDR-RIBS may be used not only for the reversed alignment, but 

also for the normal-order alignment. Suppose a segment F binds to partner P and F* is a segment 

sequentially similar to F, the probability of F* binding to P should be much higher if F* is flanked by 

disordered regions or locates in a disordered tail. Hence, by combining the normal-order sequence 

alignment and disorder prediction, the certainty of identifying binding segments can be significantly 

improved. 

In addition, for proteins having interaction profile in STRING 8.2 [58], we will also cross-reference 

the results of this database to validate our assumptions on the interaction between two molecules. 

3.2. Disorder Prediction 

Two disorder predictors were applied in this study. The first predictor is PONDR-VLXT [20], 

which is one of the first disorder predictors. PONDR-VLXT applies various compositional 

probabilities and hydrophobic measures of amino acids as the input features for the prediction. 

Although it is no longer the most accurate predictor, it is very sensitive to the local compositional 

peculiarities of the amino acid sequence. Hence, it is capable of identifying disordered regions 

possessing increased capability to fold upon interaction with binding partners. Based on this property, 

another predictor called Molecular Recognition Feature (MoRF) predictor [22,26] was developed to 
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identify the structure-prone segment in a disordered region. The identified segment is known as MoRF 

region which generally corresponds to the specific dips in the PONDR-VLXT prediction. The second 

predictor applied in this study is PONDR-FIT [57], which is a meta-predictor combining six individual 

predictors, PONDR-VLXT [20], VSL2 [59], VL3 [60], FondIndex [61], IUPred [62], and 

TopIDP [63]. This meta-predictor is a bit more accurate than its individual components and other 

predictors. Because the identification of possible binding regions relies on the recognition of 

disordered regions, PONDR-FIT is a good choice for the disorder prediction.  

3.3. Proteins Studied by PONDR-RIBS 

Proteins interact with their partners in an almost endless variability of binding modes. Among them, 

MoRF is one of the simplest binding motifs which is strongly related to intrinsic disorder [22,26]. 

MoRFs, short protein segments undergoing disorder to order transition upon binding to a partner, play 

important functional roles in protein recognition, signaling, and regulation. Often, MoRFs correspond 

to dips in the PONDR-VLXT plots emphasizing the utility of this computational tool. Although 

PONDR-VLXT is not the most accurate predictor of intrinsic disorder at the amino acid level, it is 

absolutely indispensable for finding the short interspersed disordered/structured regions due to its 

sensitivity to local amino acid composition. These short interspersed disordered/structured regions 

may have many important types of biological functions. MoRFs, being actually one type of the 

interspersed structure-prone motif within disordered regions, are highly abundant in protein sequences. 

In fact, over 40% proteins in eukaryotes genomes are predicted to contain at least one -helical 

MoRF [22,64].  

Due to these considerations, three disordered proteins containing multiple MoRF regions were 

selected for further study, i.e., RiboNuclease E (RNase E) (SwissProt id: P21513), p53 (SwissProt id: 

P04637), and Steroid Receptor Co-activator 3 (SRC-3) (Swissprot id: Q9Y6Q9). RNase E is an 

important enzyme in the pathway of mRNA degradation. p53 plays a number of important roles in cell 

differentiation, development, and genome stability. SRC-3 assists the regulation of gene expression. 

Each of these three proteins binds to many partners through their MoRF regions. By our assumption, a 

query protein containing fragment similar to these MoRFs or their reversed versions may also interact 

with the same partners.  

3.4. Alignment against Various Protein Databases 

PONDR-RIBS provides synthetic comparison between a segment and protein sequences by 

applying multiple sequence alignments and disorder prediction. However, these two steps are 

extremely  

rate-limiting in the whole process. In addition, multiple sequence alignments on a large number of 

proteins may produce a very complicated pattern of insertions and deletions, thus increasing the 

difficulty of analysis. In this paper, to improve the efficiency of identifying of the possible identical 

segments in a database, BLASTP was used and all sequences with E value less than 0.001 were  

pre-selected as the potential candidates. After this pre-selection step, PONDR-RIBS was applied for 

further analysis. 
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4. Conclusions  

Two well-accepted bioinformatics tools, sequence alignment and disorder prediction, were 

combined to probe possible binding partners in protein databases. For MoRF regions [22,26], it is clear 

that such combination has many advantages in identifying the possible binding interactions. 

Furthermore, based on the rationalization of structural properties of disordered proteins, a method 

called reverse alignment was also proposed to identify the potential interactions between the reversely-

similar segment and the partners of the original fragment. 

In this paper, when applying BLAST to search similar segments in PDB and SwissProt, a small  

E-value of 0.0001 is applied. The results from small E-value have many advantages: a limited number 

of examples with high confidence; high efficiency in analyzing the biologically important functions of 

these example proteins; simplicity in explaining the rules of application. However, important examples 

may be overlooked. In this newly developed method, the general intrinsic disorder and the 

hydrophobic pattern are more important than the value of confidence. Actually, in the case of segment 

N of RNase E, increasing E-value from 0.0001 to 0.1 resulted in finding two additional possible 

binding partners. These additional possible partners also had sound conserved hydrophobic patterns 

and interesting disorder prediction. Further increase of the E-value to 1000 produced more than  

70 proteins. All these proteins had more than 50% sequence identity to the segment and partially kept 

the hydrophobic pattern. However, the increased E-value provided more candidates and increased the 

technical difficulty of analysis. Therefore, in this paper, the attention was focused at lower E-values 

and small amount of candidates.  

The comparison of species in Tables 1 and 2 is very interesting. In our study, the sequence of 

RNase E is from E.coli, while other three sequences (p53, SRC-3, and 4E-BP1) are all from human. As 

shown in Table 1, the N MoRF of RNase E has three matches, a fragment of hydroxyethylthiazole 

kinase (A5UA75), rRNA pseudouridylate synthase C (A4NVQ3), and CafA proteins (Q65S31). The 

first two proteins are from Haemophilus influenza, while the last one is from Mannheimia 

succiniciproducens. Although more solid evidence is required, the possibility of trans-species gene 

transfer and the functional conservation of transferred gene are very interesting. Furthermore, both 

proteins from Haemophilus influenza have two segments similar to the corresponding segments in 

RNase E of E. coli. Further analysis shows that there is a high level of sequence conservation between 

these two proteins. In comparison with hydroxyethylthiazole kinase, rRNA pseudouridylate synthase C 

has an extra C-terminal region. These two proteins may share the same reading frame.  

As indicated by the comparison of the interaction profiles of RNase E, A5UA75, and Q65S31 in 

STRING 8.2 [58], with high confidence these three proteins can interact with PNPase, Enolase, Protein 

hfq, and 60 kDa chaperonin. It is known that C3 and C4 MoRF region are responsible for the binding 

to Enolase and PNPase, respectively [29]. However, A5UA75 and Q65S31 do not have the segments 

similar to the C4 region of RNase E. Therefore, there is still a question about the existence of common 

regions of binding to PNPase among these three proteins. Besides this, the common regions interacting 

with Protein hfq and 60 kDa chaperonin are also unknown. This is also the indication that more 

deliberate techniques are required in future study. 
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The normal-order sequence alignment results in 12 possible candidates out of 21 for 13 segments of 

three proteins as in Table 1, while the reversely identified sequences in Table 2 are 10 out of 20. As 

indicated by these data, the combination of sequence alignment and disorder prediction may greatly 

narrow down the number of high-confidence interaction partners. Furthermore, the reverse alignment 

may discover new interaction partners as effective as the normal-order alignment. This is definitely 

important for our further understanding of protein-protein interaction networks. 
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