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Abstract: A gel-based proteomics approach was used to screen for proteins of differential 

abundance between the saliva of smokers and those who had never smoked. Subjecting 

precipitated proteins from whole human saliva of healthy non-smokers to two-dimensional 

electrophoresis (2-DE) generated typical profiles comprising more than 50 proteins. While 

35 of the proteins were previously established by other researchers, an additional 

22 proteins were detected in the 2-DE saliva protein profiles generated in the present study. 

When the 2-DE profiles were compared to those obtained from subjects considered to be 

heavy cigarette smokers, three saliva proteins, including interleukin-1 receptor antagonist, 

thioredoxin and lipocalin-1, showed significant enhanced expression. The distribution 

patterns of lipocalin-1 isoforms were also different between cigarette smokers and  

non-smokers. The three saliva proteins have good potential to be used as biomarkers for 

the adverse effects of smoking and the risk for inflammatory and chronic diseases that are 

associated with it. 
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1. Introduction 

Cigarette smoking is the most preventable cause of addiction, sickness and mortality in the world. 

Death attributed to cigarette smoking is estimated to rise from 5.4 million in 2005 to 6.4 million by 

2015 [1]. Chronic cigarette smoking is the single most important risk factor for lung and oral cancers, 

cardiovascular diseases, chronic obstructive pulmonary disease (COPD) and other tobacco related oral 

diseases, including periodontitis [2–7]. Cigarette smoke contains more than 60 carcinogens and around 

4,000 chemicals, including bacteria-derived endotoxins, which are toxic to cells [8–10]. The risk of 

developing tobacco smoking-related diseases increases with the total exposure time to the cigarette 

smoke, which generally includes the number of cigarettes a person smokes each day and the number of 

years a person has been smoking [11]. 

The oral cavity is the first organ in the human body to be exposed to the cigarette smoke. The 

tobacco smoke alters normal homeostasis of the oral cavity, including the saliva’s antioxidant and 

other protective systems. This may lead to oral inflammatory diseases and oral cancers [12–15]. Early 

tumorigenic activities have been detected in normal oral mucosa of heavy smokers who have no overt 

precancerous or cancerous lesions [16]. The mucosal changes in smokers may also arise from the 

drying effects of the mucosa, high intraoral temperatures, intraoral pH changes, local alteration of 

membrane barriers and immune responses, or altered resistance to bacteria, fungal and viral infections. 

Smoking-related cell damage may leave molecular footprints in the saliva, offering the potential for 

non-invasive early diagnosis of tobacco-related oral diseases.  

Human saliva contains a large number of proteins and peptides that are easily accessible and may 

serve as a potential source of biomarkers to monitor changes that occur under pathological conditions. 

The value of saliva as a biological fluid for the detection of diagnostic and prognostic biomarkers has 

become increasingly well established [17–24]. Collection of human saliva is a simple, non-invasive 

and cost-effective approach for screening large populations. It is easy to handle and may be repeated 

without inflicting much discomfort to the subjects [17,18].  

Proteomic analysis is an important investigative tool used to systematically explore cellular proteins 

that are responsive to adverse environmental challenges. Several proteomic approaches, including 

those involving separation of proteins by two-dimensional electrophoresis (2-DE), have been applied 

in the investigation of biomarker candidates in the human saliva [25–29]. Recently, saliva has been 

shown to harbor potential informative biomarkers for oral cancer [30–32], head and neck  

cancer [33,34], and breast cancer [35]. While effects of the cigarette smoke on proteins expressed in 

the bronchoalveolar lavage [36–38], nasal lavage fluid [39], urine [40], lung tissue [41], bronchial 

airway epithelium and pooled exhaled breath condensate samples [42] have been analyzed, little 

information is available regarding the effects of smoking on the whole saliva proteome.  

To the best of our knowledge, there had been no reported studies that specifically compared the 

expression of proteins in the saliva of smokers and non-smokers. In this study, 2-DE-based proteomics 

was used to screen for saliva proteins of differential abundance between smokers and subjects who had 

never smoked. The aberrantly expressed proteins, when correlated to those similarly altered in the 
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saliva of patients with tobacco-related diseases including oral cancer, may potentially be used as 

biomarkers to indicate risks for the various diseases. 

2. Materials and Methods 

2.1. Collection of Whole Saliva 

Unstimulated whole saliva samples were collected from 24 healthy Malay male volunteers aged 

between 35 and 55 years (12 smokers and 12 non-smokers), with no history of diabetes, autoimmune 

diseases or exposure to radiation and chemotherapy. Characteristics of the participants who were 

considered heavy smokers in this study are shown in Table 1. Saliva samples were collected with the 

volunteers’ consent and approval granted by the Ethical committee (Institutional Review Board) of the 

Faculty of Dentistry, University of Malaya. Each subject answered a questionnaire concerning 

personal data, smoking and alcohol drinking habits, health or dental problems, oral hygiene habits, 

previous dental examinations, use of prescriptions, quantity and length of cigarette smoking. 

Unstimulated whole saliva was collected in the morning between 9 and 11 am to minimize the 

circadian effect, and subjects refrained from eating, drinking, smoking or performing any oral hygiene 

for at least 2 h prior to the collection. The difference between the mean flow rates of non-smokers 

(0.39 ± 0.04 mL/min) and smokers (0.42 ± 0.04 mL/min) was not statistically significant. Protease 

inhibitor cocktail was added to the saliva immediately after collection as previously described [43]. To 

remove debris and cells, the saliva was centrifuged at 14,000 g for 20 min at 4 °C and the proteins 

were precipitated in 10% TCA/acetone/20 mM DTT. Saliva proteins were quantified using the 

Bradford protein assay kit (Bio-Rad, Hercules, USA) according to the manufacturer’s instructions. 

Table 1. Demographics and smoking history of smoker subjects. 

Subject(a) Age Cigarettes/Day Smoking Duration(b) Stick-year(c) 
1 35 20 15 300 
2 36 14 23 322 
3 38 20 15 300 
4 51 14 20 280 
5 36 14 15 210 
6 54 20 30 600 
7 38 20 17 340 
8 54 30 30 900 
9 39 20 20 400 
10 39 20 25 500 
11 48 24 17 408 
12 40 14 15 210 

(a) All subjects were male and of Malay ethnicity; (b) Duration in years since first started smoking;  
(c) Stick-year of exposure is in accordance to the Brickman index, which is the number of cigarettes 
smoked per day multiplied by the smoking duration. 
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2.2. Two-Dimensional Electrophoresis 

Two-dimensional electrophoresis (2-DE) was performed as previously described [43]. Saliva 

proteins (130 µg) were dissolved in rehydration buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 

0.5% IPG buffer, 65 mM DTT and 0.002% bromophenol blue and applied onto 13 cm rehydrated 

precast immobilized drystrips pH 4–7 (GE Healthcare BioSciences, Uppsala, Sweden). Isoelectric 

focusing (IEF) for the first dimension and SDS-PAGE for the second dimension were performed as 

described previously [43]. All samples were analyzed in triplicate. 

2.3. Silver Staining 

The 2-DE gels were developed by silver staining as described by Heukeshoven and Dernick [44]. 

For mass spectrometry analyses, gels were stained with compatible silver staining with slight 

modifications according to Yan et al. [45]. 

2.4. Image Analysis 

The LabScan image scanner was used to capture and store images of 2-DE gels. The GE 

ImageMasterTM 2D Platinum Software version 7 was used to evaluate the protein profiles and perform 

protein analyses. To detect proteins that were differentially secreted in the saliva, the percentage 

volume contribution (% vol) of a protein spot, which refers to the spot volume of a protein expressed 

as a percentage of the total spot volume of all detected saliva proteins, was calculated. Data expressed 

this way are independent of variations attributed to protein loading and staining. The 2-DE profiles and 

relative spot intensities obtained were reproducible when performed in triplicate.  

2.5. In Gel Trypsin Digestion and Mass Spectrometry  

Highly resolved protein spots were initially identified by visual comparison with previously 

published protein maps obtained from the human whole saliva [22–26]. The protein spots (1–2 mm 

diameter) were excised from silver-stained gels with pipette tips and kept hydrated in clean microfuge 

tubes containing Milli-Q water, prior to the in-gel digestion. Trypsin digestion and precise 

identification by mass spectrometry, using the MALDI-TOF/TOF instrument (Applied Biosystem 

4800 Proteomic Analyzer), were performed as previously described [46]. 

2.6. Database Searches 

Spectra were processed and analyzed by the Global Protein Server Workstation (Applied 

Biosystems), which uses the internal MASCOT (Matrix Science, London, UK) software for search of 

the peptide mass fingerprints and MS/MS data. Searches were performed against the Swiss-Prot 

database (Last update: October 23, 2008, containing 261513 sequences). Database search parameters 

were set as follows: The enzyme trypsin was used; up to one missed cleavage was allowed; variable 

modification included were carbamidomethylation of cysteine and oxidation of methionine; the mass 

tolerance for MS precursor ion and MS/MS fragment ion were 100 ppm and 0.2 Da, respectively; and 

only monoisotopic masses were included in the search. 
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2.7. Statistical Analysis 

All values are presented as mean ± S.E.M (standard error of the mean). The Student’s t-test was 

used to analyze the significance of difference between non-smokers and smokers. The false discovery 

rate control was performed using the method of Benjamini and Hochberg [47].  

3. Results 

Figure 1 shows a typical 2-DE profile of saliva proteins separated between pH 4 and 7 in healthy 

non-smokers. This range of pH was chosen as our earlier 2-DE results performed at a pH range of 3 to 

10 showed that most of the saliva proteins were located in the acidic region between pH 4 to 7. More 

than 120 spots were detected in the whole saliva samples using the 2-DE that was performed under the 

conditions of our study. Identities of 108 spots belonging to 57 different proteins were established by 

MS and database search (Table 2). Some of these proteins, including polymeric immunoglobulin 

receptor (spots 3–9), carbonic anhydrase VI (spots 27–32), prolactin inducible proteins  

(spots 81–86), zinc-alpha-2-glycoprotein (spots 43 and 44), short palate, lung and nasal epithelium  

carcinoma-associated protein 1 (spots 58–61), cystatin S (spots 90 and 91) and lipocalin-1  

(spots 87–89) were resolved in several isoforms and thus separated into distinct spots in the 2-DE gels. 

Figure 1. Typical 2-DE profile of precipitated saliva proteins obtained from non-smokers. 

A total of 108 protein spots (circled and numbered) were identified by mass spectrometry 

and database search (please refer to Table 2). Acid side of 2-DE gel is to the left and 

relative molecular mass declines from the top. 
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Table 2. Identification of saliva proteins by mass spectrometry. 

Accession 
No. (a) 

Protein Spot 
No.(b) 

MASCOT 
Score 

No. of Peptides 
Hit 

Sequence 
Coverage 

Ref. 

P02787 Serotransferrin 1 89 10 9 [22,23,25] 

2 78 16 8 

[22–26] P01833 

 

Polymeric immunoglobulin 

receptor  

3 282 9 8 

4 111 11 33 

5 99 17 27 

6 240 7 22 

7 246 20 55 

8 169 12 32 

9 120 18 28 

Q9Y6R7 IgGFc-binding protein 10 645 10 2 Npd 

Q8TDL5 *Long palate, lung and nasal 

epithelium carcinoma-

associated protein 1 

11 187 4 11 Npd 

P09960 *Leukotriene A-4 hydrolase 12 376 6 14 Npd 

P02768 Serum albumin  13 98 3 5 [22–26] 

14 122 5 7 

P04745 Human salivay α-amylase  15 101 15 27 [22–26] 

P08107 

 

Heat shock 70 kDa protein 1 16 572 8 14 [23] 

P13796 Plastin-2  17 555 32 16 Npd 

P07237 *Protein disulfide-isomerase  18 636 13 27 Npd 

P02774 

 

Vitamin D-binding protein 

precursor 

19 741 11 32 [27] 

20 575 10 27 

P01009 

 

Alpha-1-antitrypsin  
  

21 211 8 10 [25] 

22 112 6 12 

23 99 5 18 

P61158 Actin-related protein 3 24 327 13 17 Npd 

P50395 *Rab GDP dissociation 

inhibitor beta 

25 363 15 19 [28] 

P06733 Alpha-enolase 26 735 11 33 [22,23,26] 

P23280 

 

Carbonic anhydrase VI 

 

27 290 15 19 [22,23] 

28 90 4 4 

29 303 11 40 

30 488 32 48 

31 79 4 8 

32    

P30740 *Leukocyte elastase inhibitor 33 374 12 19 [29] 

 34 315 10 16 

Q99536 **Synaptic vesicle  membrane 

protein VAT-1 

35 76 2 4 Npd 

P40121 Macrophage-capping protein  36 579 16 20 Npd 
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Table 2. Cont. 

P02675 

 

Fibrinogen beta chain 37 676 12 26 [23,25] 

38 554 16 36 

39 467 15 20 

P00738 Haptoglobin 40 518 10 21 [28] 

P37837 *Transaldolase 

 

41 60 8 15 [28] 

42 77 6 13 

P25311 Zinc-alpha-2-glycoprotein 43 246 16 28 [22–26] 

44 285 11 20 

P60709 Actin, cytoplasmic 1  45 230 3 15 [23,25] 

46 188 4 15 

P27797 **Calreticulin 47 651 10 27 Npd 

P01024 Complement C3 48 330 15 6 Npd 

49 332 14 5 

P63261 Actin, cytoplasmic 2 50 285 11 20 [23] 

P60709 Actin, cytoplasmic 1 51 243 5 14 [23,25] 

P52907 F-actin-capping protein subunit 

alpha-1 

52 274 6 16 Npd 

P25311 Zinc-alpha-2-glycoprotein 53 82 3 10 [22–26] 

P12429 Annexin A3 54 331 8 14 Npd 

P00738 Haptoglobin 55 627 12 24 [28] 

P01876 Ig alpha-1 chain C region 56 274 5 17 [22–24,26] 

P30740 *Leukocyte elastase inhibitor 57 417 20 30 [29] 

Q96DR5 *Short palate, lung and nasal 

epithelium carcinoma-associated 

protein 2 

58 141 4 15 [22] 

59 119 5 18 

60 293 20 68 

61    

O00299 *Chloride intracellular channel 

protein 1 

62 561 9 52 Npd 

P63104 Protein kinase C inhibitor 

protein-1(14-3-3 protein 

zeta/delta) 

63 101 4 12 Npd 

P01834 Ig kappa chain C region 64 101 4 33 [23–26] 

P01591 Immunoglobulin J chain 65 241 11 32 [22,24,25] 

P52565 Rho GDP-dissociation  

inhibitor 1 

66 356 13 30 Npd 

P52566 *Rho GDP-dissociation 

inhibitor 2 

67 173 9 31 Npd 

P09211 Glutathione S Transferase 68 201 6 22 [22–24,26] 

69 493 19 61 

P32119 Peroxiredoxin-2 70 264 6 27 [28] 

P02763 Alpha-1-acid glycoprotein 1 71 317 6 27 Npd 

72 137 4 17 

P18510 Interleukin-1 receptor antagonist 

protein 

73 148 6 15 [22,24] 
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Table 2. Cont. 

P00738 

 

Haptoglobin 

 

74 358 6 22 [28] 

75 491 7 20 

76 439 8 22 

P15531 **Nucleoside diphosphate 

kinase A 

77 132 6 25 Npd 

P52566 Rho GDP-dissociation  

inhibitor 2 

78 185 4 32 Npd 

O15511 Actin-related protein 2/3 

complex subunit 5 

79 69 2 7 Npd 

P12273 

 

Prolactin-inducible protein 

 

80 385 6 45 [22–25] 

81 116 32 6 

82 375 5 44 

83 365 6 45 

84 410 6 45 

85 413 7 54 

86 279 5 45 

P31025 

 

*Lipocalin-1 

 

87 169 5 18 [22,24] 

88 168 3 17 

89 213 4 21 

P01036 *Cystatin S 90 535 15 62 [22–24,26] 

91 444 8 58 

P09228 *Cystatin SA 92 437 7 64 [22–26] 

P10599 Thioredoxin 93 88 4 16 [21] 

94 111 3 15 

P12273 Prolactin-inducible protein 95 413 7 54 [22–25] 

P02766 Transthyretin 96 80 3 33 [28,33] 

Q14019 **Coactosin-like protein 97 379 8 60 Npd 

P08118 **Beta-microseminoprotein 98 119 2 8 Npd 

P02766 Transthyretin 99 269 7 40 [28,33] 

Q01469 *Fatty acid-binding protein, 

epidermal 

100 219 6 47 [22–24,29] 

P01036 *Cystatin S  101 192 4 37 [22–24,26] 

P06702 Calgranulin-B 102 296 6 51 [22,24,26] 

P01040 Cystatin-A  103 42 1 18 [22,25,26] 

P06702 Calgranulin-B 104 395 7 63 [22,24,26] 

P28325 *Cystatin D 105 172 6 34 [22,24] 

Q01469 *Fatty acid-binding protein, 

epidermal 

106 347 8 52 [22–24,29] 

Q05315 **Eosinophil lysophospholipase 107 108 3 9 Npd 

P01037 *Cystatin SN 108 293 20 68 [22–26] 
(a) Accession no. are in accordance to Swiss-Prot; (b) Spot numbers are those referred to in Figures 1 
and 2 and identified by MS/MS; Npd—proteins not previously detected in the saliva proteome 
using 2-DE; * Proteins found only in saliva and not in plasma; ** Proteins detected for the first 
time in the saliva proteome of this study. 
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Among the total of 57 saliva proteins, 35 had been previously identified using 2-DE [32–39], 

whereas 16, including plastin-2, actin-related protein-3, C3 complement precursor, macrophage 

capping protein, F actin capping protein, annexin A3, protein kinase C inhibitor protein-1,  

rho-GDP-dissociation inhibitor 1, rho-GDP-dissociation inhibitor 2, actin-related protein  

2/3 complex subunit 5, alpha-1-acid glycoprotein 1, chloride intracellular channel protein 1,  

protein disulfide-isomerase, leukotriene A-4 hydrolase, IgGFc-binding protein and long palate,  

lung and nasal epithelium carcinoma-associated protein 1, were previously detected using  

liquid-based proteomics [21,23]. The other six saliva proteins, eosinophil lysophospholipase,  

beta-microseminoprotein, coactosin-like protein, nucleoside diphosphate kinase A, calreticulin and 

synaptic vesicle membrane protein VAT-1, are reported for the first time by this study.  

When 2-DE was performed on whole saliva samples of heavy smokers, the profiles obtained were 

similar to those from non-smokers. All 57 different proteins that were expressed in the saliva of the 

non-smokers were also detected in the saliva of the heavy smokers although the rates of presence of  

16 proteins in the 2-DE profiles of the cigarette smokers were different from those of the non-smokers. 

When the 2-DE protein profiles obtained from the non- and heavy smokers were subjected to 

densitometry analysis, initially a significantly enhanced expression of seven proteins including 

polymeric immunoglobulin receptor, complement C3, α1-antitrypsin, calgranulin B, interleukin-1 

receptor antagonist, thioredoxin and lipocalin-1, was detected between the two subject groups. 

However, only three of the proteins, i.e., interleukin-1 receptor antagonist (+3 fold), thioredoxin 

(+2.5 fold) and lipocalin-1 (+4.4 fold) were found to be truly significant when the p-values were 

corrected for false significant results using the method of Benjamini and Hochberg [47] (Table 3). 

Figure 2 demonstrates examples of 2-DE spot clusters of proteins whose levels were altered in the 

saliva obtained from the heavy smokers as compared to those of the non-smokers.  

Table 3. Densitometry analysis of saliva proteins and their rates of presence in  

2-DE profiles. 

Protein 

Non-smokers Smokers  

% volume(a) 
(±S.E.M) 

RP(b)/12 % volume(a) 
(±S.E.M) 

RP(b)/12 p(c) 

1: Energy/Metabolism      
Amylase 14.15 (±0.54) 12 12.72 (±0.85) 12 0.168 
Carbonic anhydrase VI 1.48 (±0.17) 12 1.07 (±0.14) 12 0.077 
Zinc-alpha-2-glycoprotein 1.02 (±0.09) 12 1.09 (±0.13) 12 0.673 
Fatty acid-binding protein, 
epidermal 

0.08 (±0.01) 12 0.12 (±0.02) 12 0.111 

Transaldolase 0.04 (±0.01) 12 0.04 (±0.01) 12 0.543 
Alpha-enolase 0.06 (±0.02) 10 0.10 (±0.02) 12 0.183 
2: Defence/Immune response      
Polymeric immunoglobulin 
receptor 

4.58 (±0.12) 12 3.57 (±0.40) 12 0.024 

Immunoglobulin J chain 0.38 (±0.06) 12 0.41 (±0.06) 12 0.305 
Interleukin-1 receptor antagonist 
protein 

0.01 (±0.00) 7 0.04 (±0.01) 11 0.004 
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Table 3. Cont. 

Prolactin-inducible protein 2.27 (±0.20) 12 2.35 (±0.23) 12 0.787 
Short palate, lung and nasal 
epithelium carcinoma-associated 
protein 2 

1.22 (±0.18) 11 1.42 (±0.18) 12 0.456 

Alpha-1-acid glycoprotein 1 0.01 (±0.00) 2 0.02 (±0.01) 5 0.159 
3: Protein degradation inhibitor     
α1-Antitrypsin 0.02 (±0.01) 6 0.05 (±0.01) 8 0.027 
Cystatin A 0.08 (±0.02) 12 0.09 (±0.03) 12 0.620 
Cystatin S 0.04 (±0.01) 12 0.05 (±0.01) 12 0.775 
Cystatin SA 0.28 (±0.05) 12 0.27 (±0.07) 12 0.916 
Cystatin SN 0.28 (±0.06) 12 0.30 (±0.04) 12 0.744 
Cystatin D 0.12 (±0.02) 12 0.12 (±0.02) 11 0.769 
Leukocyte elastase inhibitor 0.10 (±0.01) 12 0.10 (±0.01) 12 0.922 
4: Cell adhesion/communication     
Calgranulin B 0.13 (±0.01) 12 0.21 (±0.04) 12 0.032 
5: Protein folding/repair      
Heat shock 70 kDa protein 1 0.06 (±0.01) 12 0.05 (±0.01) 12 0.818 
6: Redox      
Thioredoxin 0.03 (±0.00) 1 0.07 (±0.02) 8 0.001 
Peroxiredoxin-2 0.01 (±0.01) 3 0.02 (±0.01) 7 0.617 
7: Signaling      
Complement C3 precursor 0.00 (±0.00) 3 0.01 (±0.00) 9 0.012 
Glutathione-S Transferase 0.10 (±0.01) 12 0.12 (±0.02) 12 0.444 
Rho GDP-dissociation inhibitor 1 0.14 (±0.03) 3 0.15 (±0.03) 3 0.557 
Rho GDP-dissociation inhibitor 2 0.03 (±0.01) 10 0.04 (±0.01) 12 0.327 
Protein kinase C inhibitor 
protein-1 

0.11 (±0.03) 7 0.17 (±0.05) 11 0.282 

Annexin A3 0.07 (±0.02) 11 0.00 (±0.01) 6 0.088 
8: Structural/cytoskeletal      
F-actin-capping protein subunit 
alpha-1 

0.02 (±0.01) 4 0.03 (±0.01) 8 0.521 

Macrophage-capping protein 0.03 (±0.01) 7 0.02 (±0.00) 9 0.261 
L-plastin 0.11 (±0.01) 12 0.09 (±0.01) 12 0.376 
9: Transport      
Lipocalin-1  0.15 (±0.05) 8 0.65 (±0.13) 12 0.001 
Haptoglobin 0.06 (±0.01) 11 0.07 (±0.01) 12 0.694 
Transthyretin 0.07 (±0.01) 12 0.10 (±0.02) 12 0.108 
Serum albumin 1.63 (±0.14) 12 1.71 (±022) 12 0.758 

(a) volume of a protein expressed as a percentage of the total spot volume of all proteins; (b) rate of 
presence of the protein spots in the 12 2-DE profiles that were analyzed; (c) p-values of less than 
0.0068 (p < 0.0068) were considered statistically significant when the false discovery rate 
procedure of Benjamini and Hochberg [47] was performed to the data set.  
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Figure 2. Cropped images of saliva proteins in the 2-DE gels of non-smokers and smokers. 

Representative gels of two differentially expressed saliva proteins are shown. Spot 

numbers are those referred to in Table 2. 

 

 

When the different isoforms of polymeric immunoglobulin receptor (spots 3–9), carbonic anhydrase 

VI (spots 27–32), prolactin inducible proteins (spots 81–86), zinc-alpha-2-glycoprotein (spots 43  

and 44), short palate, lung and nasal epithelium carcinoma-associated protein 1 (spots 58–61) and  

cystatin S (spots 90 and 91) were similarly analyzed by densitometry, their volume distribution 

patterns were found to be consistent between the saliva of non-smokers and smokers. In contrast, the 

2-DE volume distribution pattern for isoforms of lipocalin-1 in the saliva of non-smokers was different 

from that detected in the saliva of the heavy smokers (Figure 3). Among the seven isoforms analyzed, 

the isoform f was almost exclusive to the saliva of the smokers (Table 4). 

Figure 3. Cropped images of lipocalin-1 isoform spots in the 2-DE gels of non-smokers 

and smokers. Six representative gels are shown. The isoform spots a to g are marked in the 

gels (only represented in one of the images so as not to affect image display). Detailed 

densitometry analysis of the isoform spots is demonstrated in Table 4. 

 
  

Non-smoker     Smoker 
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Table 4. Densitometry analysis of lipocalin-1 isoforms and their rates of presence in 2-DE profiles. 

Isoform 
Spot(a) 

Non-smokers Smokers 
p 

Fold 
Change(d) % vol(b) RP(c) % vol(b) RP(c) 

a 0.056 8 0.195 12 0.005 +3.5
b 0.007 4 0.150 10 0.000 +21.4
c 0.085 11 0.305 12 0.012 +3.7
d 0.013 5 0.108 11 0.012 +8.3
e 0.006 4 0.069 9 0.038 +11.5
f 0.003 1 0.089 6 0.031 +29.7
g 0.110 12 0.316 12 0.018 +2.9 

(a) isoforms of lipocalin-1 as depicted in Figure 3; (b) volume of a protein expressed as a percentage 
of the total spot volume of all proteins; (c) rate of presence of the protein spots in the 12 2-DE 
profiles that were analyzed; (d) fold change is the ratio of %vol of smokers to non-smokers. 

4. Discussion 

Human whole saliva contains fluid from the salivary glands, gingival crevicular fluid, bronchiol and 

nasal secretions, desquamated epithelial cells, oral tissues, and very often, the components of blood, 

bacteria and viruses [48–50]. Therefore, whole saliva—in contrast to serum—is a hostile environment 

with proteins subjected to the effects of many host- and bacteria-derived enzymes. Some saliva 

proteins are synthesized in the salivary glands and subsequently subjected to intracellular processing 

including glycosylation, phosphorylation and proteolysis. Once the secretions enter the non-sterile oral 

environment, additional and continuous protein modifications by host- and bacteria-derived enzymes 

occur. This results in the possible generation of many modified proteins in whole saliva [51].  

The 2-DE profiles of proteins in whole saliva from healthy non-smokers that were generated in the 

present study showed strong resemblance to those that were previously reported [22–26]. Almost 90% 

of the protein spots that were highly resolved were eventually identified. The remaining spots were 

unidentifiable as the proteins generated low intensity spectra probably due to their low amounts, 

resistance to proteolytic cleavage, low recovery of digested peptides, and/or low efficiency in peptide 

ionization. Nevertheless, it is also possible that some of the unidentified proteins were of bacterial 

origin since the mouth is likely to harbor a lot of microorganisms.  

In addition to the 35 human saliva proteins that have previously been established by other research 

groups using 2-DE [22–26], the present study detected the presence of 22 additional proteins. This is 

an important contribution to the human saliva proteome as a whole. Among the newly identified 

proteins (see Table 2), nucleotide diphosphate kinase A, annexin A3, Rho-GDP-dissociation inhibitor 1, 

beta-microseminoprotein, chloride intracellular channel protein 1, protein disulfide-isomerase, 

calreticulin, peroxiredoxin-2, alpha-1-acid glycoprotein 1 and IgG Fc-binding protein are considered 

clinically interesting as they have been previously associated with cancer and other diseases [52–61]. 

The establishment of highly resolved 2-DE protein profiles enabled investigations on protein 

changes associated with cigarette smoking. Densitometry analyses on the 2-DE protein profiles 

obtained from the non- and heavy smokers showed differential abundance of interleukin-1 receptor 

antagonist, thioredoxin and lipocalin-1 between the saliva samples of the two subject groups (Table 3). 

The three proteins have good potential to be used as non-specific complementary biomarkers for the 
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adverse effects of smoking although this requires further evaluation and correlative studies. Some of 

the proteins may be used as risk indicators for inflammatory and chronic diseases that are associated 

with smoking as they have been shown to be of increased levels in the saliva of the patients. In the 

case of lipocalin-1, the isoform distribution pattern detected was also found to differ between smokers 

and non-smokers. This suggests that the carbohydrate moieties of lipocalin-1 of the heavy cigarette 

smokers were different from those of the non-smokers and that they may be differently glycosylated or 

modified. However, this remains to be further established.  

Despite being distinctly categorized according to their primary biological roles [62], the three saliva 

proteins that were altered in abundance reflect the body’s overall response to the damaging effects of 

heavy smoking. The high levels of IL-1 receptor antagonist in the saliva of the heavy smokers detected 

in this study reflect an anti-inflammatory response in the oral cavities of the smokers. Increased 

generation of the proteins in smokers may be induced by the proinflammatory cytokines that were 

promoted by oxidative stress [63–65]. An imbalance between IL-1 receptor antagonist and IL-1 has 

been hypothesized to play a role in the pathogenesis of various inflammatory diseases [65].  

Lipocalin-1 and thioredoxin are proteins most likely involved in the response to stress in relation to 

tissue damage. The high levels of lipocalin-1 and thioredoxin in the cigarette smokers’ saliva may 

reflect their function as an oxidative stress-induced scavenger against toxic and pro-inflammatory 

lipids [66–68]. Lipocalin-1 had been suggested to be a cysteine proteinase inhibitor [67] and may have 

a role in the control of inflammatory processes in oral tissues. Thioredoxin, on the other hand, was 

shown to modulate remodeling factors in response to the cigarette smoke [68]. Increased secretion of 

thioredoxin had been previously demonstrated in the saliva of patients with oral cancer [32].  

5. Conclusion 

Comparative proteomics analysis of human saliva samples from subjects who were considered 

heavy cigarette smokers and those who did not smoke detected altered abundance of interleukin-1 

receptor antagonist, thioredoxin and lipocalin-1, as well as a change in the isoform distribution  

patterns of lipocalin-1. These proteins may be used as early biomarkers to indicate risks of  

tobacco-related diseases.  
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