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Abstract: The relationship between phenolics and flavonoids synthesis/accumulation and 

photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale) 

varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 

790 μmol m
−2

s
−1

. High performance liquid chromatography (HPLC) was employed to 

identify and quantify the polyphenolic components. The results of HPLC analysis indicated 

that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin 

were high in plants grown under 310 µmol m
−2

s
−1

. The average value of flavonoids 

synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5%) 

when light intensity decreased. Photosynthetic rate and plant biomass increased in both 

varieties with increasing light intensity. More specifically, a high photosynthesis rate 

(12.25 µmol CO2 m
−2

s
−1

 in Halia Bara) and plant biomass (79.47 g in Halia Bentong) were 

observed at 790 µmol m
−2

s
−1

. Furthermore, plants with the lowest rate of photosynthesis 

had highest flavonoids content. Previous studies have shown that quercetin inhibits and 

salicylic acid induces the electron transport rate in photosynthesis photosystems. In the 

current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, 

higher concentration of quercetin (1.12 mg/g dry weight) was found in Halia Bara leaves 

grown under 310 µmol m
−2

s
−1

 with a low photosynthesis rate. Furthermore, a high content 

of salicylic acid (0.673 mg/g dry weight) was detected in Halia Bara leaves exposed under 

790 µmol m
−2

s
−1

 with a high photosynthesis rate. No salicylic acid was detected in gingers 
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grown under 310 µmol m
−2

s
−1

. Ginger is a semi-shade loving plant that does not require 

high light intensity for photosynthesis. Different photosynthesis rates at different  

light intensities may be related to the absence or presence of some flavonoid and  

phenolic compounds.  

Keywords: photosynthesis; flavonoids; salicylic acid; Halia Bentong; Halia Bara 

 

1. Introduction  

Ginger is an important horticultural crop in tropical Southeast Asia. It produces a pungent aromatic 

rhizome that is valuable all over the world as either a spice or herbal medicine [1]. In Malaysia, it has 

been used as a food and medicinal plant for over 2000 years for treating diabetes, high blood pressure, 

cancer and many other illnesses [1]. In recent studies, ginger varieties have been reported as a good 

potential source for anti-cancer, anti-microbial and anti-inflammation [2]. The bioactive molecules of 

ginger are 6-gingerol, flavonoids and phenolic acids [3]. Quality control of active ingredients in herbs, 

safety and environmental conservation has recently become serious issues in herb production. The 

concentration of secondary metabolites of plants can also be influenced by environmental conditions 

such as light intensity, temperature, insects, biotic and abiotic factors, which can alter the 

concentration of the active constituents and can be harmful to consumers [4,5]. Southwell et al. [4] 

have reported that the contents of some medicinal compounds (hypericin and pseudohypericin) in the 

leaves of Hypericum perforatum varied up to 50-fold between summer and winter grown plants. 

Therefore, growing plants under a controlled environment can be considered an alternative way to 

ensure safety and efficiency. When plants are grown under a controlled environment with simulated 

lighting, it is possible to enhance plant yield production with minimum use of resources and minimum 

or no pollutants released to the environment [6]. Under a controlled environment, uniform growth of 

plants can be expected and production planning and scheduling can be possible, and contamination by 

unexpected factors such as diseases, insects, metals and other harmful factors can be reduced or 

eliminated [6]. Recently, researchers have reported that some environmental factors such as light 

intensity and CO2 concentration can significantly alter the secondary metabolite synthesis and 

production in plants. Light is known to adjust not only plant growth and development, but also the 

biosynthesis of primary and secondary metabolites [7,8]. The synthesis of medicinal components  

in herbs is affected by light intensity with changes in plant morphology and physiology  

characteristics [7,9,10]. 

Briskin et al. [10] concluded that hypericin synthesis increased significantly in H. perforatum when 

grown under high light intensity (400 µmol m
−2

s
−1

). It seems that a high photosynthetic rate under high 

light intensity resulted in an increased amount of carbon assimilation and enhanced the secondary 

metabolites in the leaf tissues. In contrast, some researchers have obtained a high rate of secondary 

metabolite synthesis and content in non-photosynthetic tissues by enhancing the light intensity.  

Kurata et al. [7] reported that the high light irradiation enhanced purine alkaloid (caffeine and 

theobromine) content in Coffea arabica due to the physiological changes in cell growth.  

Zhong et al. [8] found that anthocyanin production increases in the cell culture of Perilla frutescens 
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(shiso) with increasing light intensity. Phenolic biosynthesis requires light or is enhanced by light, 

whereas flavonoids formation is absolutely light-dependent, and its biosynthetic rate is related to light 

intensity and density [11]. Previous studies showed that changes in light intensity are capable of 

changing the production of flavonoids and phenolics in herbs [12]. Furthermore, Chan et al. [13] 

reported much greater/higher concentration of flavones and flavonols in the leaves of vegetables that 

are exposed to shade. This finding is in agreement with Bergquist et al. [14], who indicated that the use 

of shade netting is acceptable for the production of baby spinach in relation to flavonoid concentration 

and composition. A similar trend of increasing total flavonoids (TF) content with decreasing light 

intensity was seen in Tanacetum parthenium and strawberry [15,16] and in some medicinal plants, 

illustrating considerable influence of low irradiance on enhancement of plant TF [9]. Michel et al. [17] 

reported TF production related to plant pigments (chlorophyll and carotenoids). In contrast with 

flavonoids, the xanthophyll cycle seems to be mainly relevant to the protection of photosynthesis 

against sudden increase in light intensity. Concurrently, it is necessary to consider whether the 

increased amount of secondary metabolites obtained under different light intensity is due to the 

increased amount of carbon production through photosynthesis or the stress induced by different light 

intensities, which stimulates secondary metabolites production. Flavonoids are important in plant 

biochemistry and play an important role in plant physiology, acting as antioxidants, enzyme inhibitors, 

pigments and light screens. These compounds are involved in photosensitization and electron transfer, 

growth regulation, photosynthesis and defense against infection [18]. It is possible that a relationship 

exists between flavonoids production and photosynthesis rate in plants. Sergio et al. [19] found that the 

first step in plant photosynthesis could be repressed by flavonoids and/or shikimic acid, with 

subsequent shift of carbon flux into secondary metabolism. He reported that under conditions of excess 

products of glycolysis (including PEP), or photosynthetic metabolites, the synthesis of secondary 

aromatic products increases. Though previous studies on the relationship between photosynthesis and 

flavonoids content have been carried out, most of the results remain contradictory. There are three 

different viewpoints: (1) There is a notable positive relationship between flavonoid content and 

photosynthesis [11]; (2) there is a positive but indirect relationship under given conditions. For 

example, the enhancement of carbohydrates resulted in an increase of flavonoids content in plant tissue 

culture [20]; (3) there is no relationship, not even a negative one. 

The objectives of this study were to consider the effect of different natural light intensities on 

photosynthesis rate, primary (soluble carbohydrates) and secondary metabolites synthesis (flavonoids 

and phenolics acids) in Malaysian ginger varieties and to determine any relationship between 

photosynthesis rate and flavonoids and phenolics synthesis in these conditions.  

2. Results and Discussion  

2.1. Flavonoids and Phenolics Content (HPLC Analysis)  

High performance liquid chromatography (HPLC) analysis of flavonoids is present in Table 1. 

According to the data obtained (Table 1), the concentration of the majority flavonoids (quercetin, rutin, 

catechin, epicatechin and naringenin) was increased in plants when grown under 310 µmol m
−2

s
−1

. 

Accumulation of the studied flavonoid components from the sink (leaves) to the source (rhizomes) 
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increased under low light intensity. The analysis of flavonoid components using HPLC in leaves of 

ginger showed that quercetin possessed the highest concentration, followed by cathechin. The analysis 

of quercetin concentration under two light intensities indicated a higher concentration of quercetin in 

ginger leaves grown under 310 µmol m
−2

s
−1

 compared with plants grown under 790 µmol m
−2

s
−1

. In 

addition, quercetin decreased the photosynthesis rate through inhibition of the ATPase activity and 

electron transport rate in photosynthesis photosystems [21].  

Rutin in Malaysian ginger ranged from 0.173 and 0.451 mg/g dry weight. The highest concentration 

of rutin was recorded in rhizome of Halia Bentong exposed to low light; however, when light intensity 

increased, accumulation of rutin in rhizome decreased by about 31%. Rutin concentration in Halia 

Bentong leaves was low, especially when exposed to high light intensity. A moderate concentration of 

rutin was observed in Halia Bara rhizome under a high light level (0.324 mg/g dry weight). Rutin 

accumulation in Halia Bara, although still favored in the rhizomes more than the leaves, declined in 

concentration in both plant parts with increasing light intensity from 310 to 790 µmol m
−2

s
−1

. 

Catechin and epicatechin are polyphenolic antioxidant plant secondary metabolites. The term 

catechin is also commonly used to refer to the related family of flavonoids and the subgroup flavanols. 

Catechin concentration in Halia Bara under low light intensity was higher in the leaves than rhizomes, 

which was also comparable to that contained in the rhizomes of Halia Bentong under low light. 

Meanwhile, epicatechin concentration was highest in leaves of both varieties under low light intensity  

(0.117–0.118 mg/g dry weight) although the amount was not clearly different from those obtained in 

the rhizome of Halia Bara under low or high light conditions. Generally, the concentration of 

epicatechin in Halia Bentong was lower than that found in Halia Bara, especially in rhizomes under 

high light intensity (0.078 mg/g dry weight). 

Kaempferol is a rare flavonoid in plants. However, in the leaves and rhizomes of Halia Bara and 

Halia Bentong, it was detected in small concentrations (between 0.042 and 0.068 mg/g dry weight). 

Naringenin is a flavonoid that is considered to have a bioactive effect on human health as an 

antioxidant, free radical scavenger, anti-inflammatory, carbohydrate metabolism promoter, and 

immune system modulator. It is the predominant flavanone in grapefruit and was found to have an 

inhibitory effect on carcinogens [22]. Although a lack of information has been gathered about 

naringenin in ginger, from the present study, its concentration was low, ranging from 0.02 to 

0.094 mg/g dry weight. Naringenin concentration in ginger was clearly affected by the differences in 

varieties, light intensity, and plant parts. Generally, Halia Bentong had a higher concentration than 

Halia Bara, with more accumulation found in the leaves than in the rhizomes, especially under low 

light condition. 

Irradiance increases leaf area-based phenolics content, which is mainly accumulated in the 

epidermis [23,24]. Shui et al. [25] found that ecological factors influenced flavonoid concentration 

primarily during the young stage of Ginkgo biloba development; and amongst the ecological factors 

studied, light and temperature had the greatest effects on flavonoid synthesis in Ginkgo biloba.  

Salicylic acid, belonging to plant phenolics group, is found in some plant species, and its highest 

levels are observed in the inflorescence of thermogenic plants and in spice herbs [26]. According to 

Table 1, salicylic acid was not detected in gingers grown under a light intensity of 310 µmol m
−2

s
−1

. A 

high content of salicylic acid (0.673 mg/g dry weight) was detected from Halia Bara leaf extract grown 

under 710 µmol m
−2

s
−1

 light intensity. The results of previous studies showed that salicylic acid is 
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capable of enhancing plant growth and yield. Jeyakumar et al. [27] reported that salicylic acid was able 

to enhance the dry matter production in blackgram. Induction of photosynthesis rate and stomatal 

conductance by salicylic acid was provided in previous studies [28].  

Nevertheless, although the leaves’ flavonoid content is highly sensitive to biotic and abiotic control 

of PAL expression [29], the results of Waterman et al. [30] and Mole et al. [31] showed parallel 

variations of phenolics and flavonoids under different irradiance levels. Contrary to our results, higher 

phenolics content was reported in the rhizomes of Z. officinale rather than its leaves [32]. In addition, 

the results of Chan et al. [13], reporting a high level of flavonoid components in ginger leaves 

compared to the rhizomes of Z. officinale, supported our finding. The synthesis of isoflavones and 

some other flavonoids is induced when plants are infected or injured [33,34], or under low light and 

low nutrient condition [22,34]. The increase in soluble phenolics such as intermediates in lignin 

biosynthesis can reflect the typical anatomical change induced by stressors: An increase in cell wall 

endurance and the creation of physical barriers prevent walls against harmful actions [35]. However, 

some plant products such as anthocyanin, cumarin and lignin are biosynthesized while phenolic 

compounds are being transformed into flavonoids [36]. From Table 2, it can be observed that Halia 

Bentong had a higher average increase in flavonoid components (26.1%) compared to Halia Bentong 

(19.5%) when the light intensity was decreased.  

From Table 1, it is apparent that total flavonoids (TF) and total phenolics (TP) accumulation and 

partitioning in the plant were significantly affected by the differing light intensities (p ≤ 0.01). With 

decreasing TP in the leaves and rhizomes observed when decreasing light intensity from 790 to  

310 μmol m
−2

s
−1

, TF content increased significantly in the leaves and rhizome of both varieties. 

In this study, cinnamic acid was not detected in plants grown under 310 µmol m
−2

s
−1

 where instead 

high content of flavonoids was registered; but cinnamic acid was detected in ginger grown under 

790 µmol m
−2

s
−1

 with low content of flavonoids. 

These results suggest the ability of different light intensities to alter or modify both the 

concentration and profiling of phenolic components in ginger plants; although accumulation of 

phenolics components favored high light intensity, in contrast, low light intensity generally promoted 

the accumulation of flavonoids. Considering the intricacy of flavonoid biosynthesis and flavonoid 

metabolism processes, it is difficult to figure out linear relationship between flavonoids and their  

basic precursors. 
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Table 1. HPLC analysis of flavonoid and phenolic compounds extracted from different parts of ginger varieties grown under different  

light intensities.  

Parameters 

Halia Bentong Halia Bara 

790 (µmol m
−2

s
−1

) 310 (µmol m
−2

s
−1

) 790 (µmol m
−2

s
−1

) 310 (µmol m
−2

s
−1

) 

Leaves Rhizomes Leaves Rhizomes Leaves Rhizomes Leaves Rhizomes 

Quercetin 0.871 ± 0.031
cd

 0.803 ± 0.028
d
 0.985 ± 0.015

b
 0.902 ± 0.042

bc
 0.978 ± 0.024

b
 0.865 ± 0.027

cd
 1.123 ± 0.11

a
 0.986 ± 0.032

b
 

Rutin 0.354 ± 0.0015
c
 0.311 ± 0.002

e
 0.365 ± 0.003

b
 0.451 ± 0.0045

a
 0.205 ± 0.003

b
 0.324 ± 0.002

d
 0.173 ± 0.0075

b
 0.331 ± 0.0092

d
 

Epicatechin 0.092 ± 0.068
a
 0.078 ± 0.0125

a
 0.118 ± 0.014

a
 0.083 ± 0.007

a
 0.111 ± 0.017

a
 0.091 ± 0.009

a
 0.117 ± 0.004

a
 0.103 ± 0.003

a
 

Catechin 0.328 ± 0.0405
e
 0.362 ± 0.021

e
 0.413 ± 0.028

d
 0.491 ± 0.019

bc
 0.455 ± 0.037

cd
 0.459 ± 0.026

cd
 0.671 ± 0.079

a
 0.533 ± 0.034

b
 

Kaempferol 0.044 ± 0.012
cd

 0.045 ± 0.005
cd

 0.042 ± 0.003
d
 0.051 ± 0.004

bcd
 0.048 ± 0.004

cd
 0.061 ± 0.0045

ab
 0.053 ± 0.003

bc
 0.068 ± 0.006

a
 

Naringenin 0.049 ± 0.0035
c
 0.046 ± 0.001

c
 0.094 ± 0.006

a
 0.047 ± 0.003

c
 0.039 ± 0.0045

d
 0.02 ± 0.002

f
 0.061 ± 0.0045

b
 0.028 ± 0.0035

e
 

Salicylic acid 0.491 ± 0.018
d
 0.522 ± 0.041

c
 n.d n.d 0.673 ± 0.027

a
 0.622 ± 0.055

b
 n.d n.d 

Cinnamic acid 0.124 ± 0.0087
b
 0.455 ± 0.027

a
 n.d n.d 0.0640 ± 0.014

c
 0.059 ± 0.01

c
 n.d n.d 

Flavonoids 5.41 ± 0.44
c
 3.31 ± 0.21

d
 6.11 ± 0.326

b
 4.1 ± 0.163

d
 6.87 ± 1.21

b
 3.83 ± 0.213

d
 8.22 ± 0.514

a
 4.73 ± 0.08

c
 

Phenolics 35.4 ± 1.205
a
 12.3 ± 0.41

c
 29.11 ± 2.44

b
 8.9 ± 0.31

d
 41.1 ± 1.53

a
 10.66 ± 0.44

c
 33.21 ± 1.620

b
 11.17 ± 0.33

d
 

All analyses are the mean of triplicate measurements ± standard deviation; Results expressed in mg/g dry weight; Subscript letters within the same row 

indicate significant (p ≤ 0.05) differences of means within the plant materials; n.d: not detected. 

Table 2. Alteration of flavonoids synthesis in ginger varieties by decreasing light intensity. 

Components 
Halia Bentong Halia Bara 

Leaves Rhizomes Leaves Rhizomes 

Quercetin +13 +12 +15 +14 

Rutin +3 +45 −16 +2 

Epicatechin +28 +6 +5 +13 

Catechin +26 +36 +47 +16 

Kaempferol −5 +13 +10 +11 

Naringenin +92 +2 +56 +40 

Mean  +26.1 +19 +19.5 +16 

Results expressed in percent: + and −, respectively, represent increasing and decreasing. 
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2.2. Photosynthesis Rate, Stomata Conductance and Transpiration 

The leaf net photosynthetic rate, stomata conductance and transpiration rate increased with 

increasing light intensity (Table 3). According to the results in Table 3, a high photosynthesis rate 

(12.25 µmol CO2 m
−2

s
−1

) was obtained in Halia Bara varieties when grown under 790 µmol m
−2

s
−1

. 

Under low light intensity (310 µmol m
−2

s
−1

), the stomata conductance was low compared to plants 

grown under high light intensity (790 µmol m
−2

s
−1

). Stomata behavior and regulation are very 

important factors in the control of photosynthetic rate. The current study also showed that increasing 

light intensity from 310 to 790 µmol m
−2

s
−1

 increased the net photosynthetic rate significantly as well 

as the stomata conductance and transpiration rate. This suggests that the increase in photosynthetic 

rates resulted from increased CO2 uptake activity at the chloroplast level, rather than simple increases 

in stomata opening (reduced resistance to CO2 entry in the leaves). Either situation could lead to an 

increase in photosynthetic rate, however, when an increase in stomata opening is the primary  

cause of increased photosynthetic activity, an increase in internal carbon would be expected.  

Ajithkumar et al. [37] point out that photosynthetic rate, stomata conductance, transpiration rate, 

stomatal index, and stomatal frequency decreased significantly with increasing shade level. The results 

of the current study showed that increasing flavonoids in ginger decreased the photosynthesis rate 

significantly and vice versa. A possible explanation is that flavonoids and shikimic acid could be part 

of the regulatory system controlling the flux of carbon into secondary compounds in plants [38]. 

Consequently, decreasing the photosynthesis rate resulted in increased shikimic acid activity and 

flavonoid contents. The effect of shikimic acid inhibition on photosynthesis enzymes is supported by 

Dixon plots study [39]. Further, competitive inhibition pattern on PEP carboxylase activities was also 

reported previously [39]. Although previous studies on the relationship between photosynthesis and 

flavonoids content have been carried out, most of the results remain contradictory. A number of studies 

have found that increased photosynthesis and carbohydrate content in leaves and dry weight of leaves 

were not accompanied by increased flavonoid content and its synthesis speed [39]. Stomata conductance, 

photosynthesis rate and transpiration also increased with increasing phenolic compounds [40]. The 

mechanism involved in increased photosynthetic rates and leaf area is not known. 

When photosynthesis occurs with the presence of light, flavonoid components are able to change 

the rate of electron transport and photophosphorylation, bringing about the change of ATP/NADPH 

ratio [21]. In carbon metabolism reactions, they can shift the dynamic equilibrium of pentosephosphate 

reduction cycle to enhance the synthesis of main metabolites due to both the change in energy 

substrate intake and the interaction with enzymes of the cycle. Additionally, flavonoids exercise a 

feedback control over their own biosynthesis, although this phenomenon is not clearly understood [41]. 

However, inhibitory effect of flavonoids on photosynthesis rate was reported in previous studies [21]. 

As opposed to the shade leaves, the sun leaves typically exhibit high photosynthetic capacity [42], 

therefore, they have high carbon input, which can exceed the demand for protein synthesis and 

stimulate phenolic synthesis [43]. 

Ginger is a semi-shade loving plant that does not require high light intensity for its  

photosynthesis [44]. Furthermore, the difference in photosynthesis rate under different light intensities 

may be related to the absence or presence of salicylic acid in ginger. Hence, further study is required to 

establish the effect of salicylic acid on photosynthesis rate in ginger.   
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2.3. Chlorophyll Content 

Chlorophyll concentration significantly increased with decreasing light intensity from 790 to 

310 µmol m
−2

s
−1

. A high concentration of chlorophyll was obtained in Halia Bara 273.5 µg mL
−1

 

grown under 310 µmol m
−2

s
−1

. Such an increase in chlorophyll content when grown under shade 

conditions was reported by Khan et al. [45] and Souza et al. [46]. Chl a:b ratio decreased with 

increasing light intensity (Table 3). With increasing chlorophyll a + b content, TF increased but TP 

decreased in both varieties. This negative relationship between TP and chlorophyll a + b content was 

not significant. Competition between TP and chlorophyll synthesis was reported in previous  

studies [46,47]. The described competition between chlorophyll and phenolics in leaves fits well with 

the predictions of the Protein Competition Model (PCM), that is, that the total leaf mass-based 

polyphenols content is controlled by the competition between protein and polyphenol biosynthetic 

pathways and its metabolic regulation. This indicates an accumulation of dry matter that dilutes 

chlorophyll and polyphenols [47]. The increased TF in Halia Bentong with increasing shading could be 

associated with significantly higher leaf chlorophyll and carotenoids contents under lower light levels. 

Michel et al. [17] concluded that TF production is related to plant pigments (chlorophyll and 

carotenoids), and in contrast to flavonoids, the xanthophyll cycle seem to be mainly relevant to protect 

photosynthesis against sudden increases in light intensity. Increasing chlorophyll content is usually 

followed by an increase in flavonoid content in plant [47]. 

2.4. Total Soluble Carbohydrate (TSC)  

Different light intensities significantly affected TSC content (Table1). With increasing light 

intensity, TSC was increased significantly (p ≤ 0.01) in both varieties. Halia Bara had a higher content 

of TSC (18.49 mg/g dry weight) compared with Halia Bentong (17.4 mg/g dry weight) when the 

varieties were exposed to 790 µmol m
−2

s
−1

 light intensity. A positive and significant (p ≤ 0.01) 

correlation was observed between photosynthesis and TSC content. In addition, correlation between 

TP synthesis and TSC was positive and significant but the correlation between TF and TSC was not 

significant. On the contrary, flavonoid accumulation was observed when carbohydrate (sugar) content 

was lower [42]. The shikimic acid pathway participates in the biosynthesis of most plant phenolics. 

Soluble carbohydrates are basic compounds required to produce phenolic component in the shikimic 

acid pathway: The shikimic acid pathway is able to convert simple carbohydrate precursors derived 

from glycolysis and the pentose phosphate pathway to the aromatic amino acids [43]. The results of 

previous studies showed an increase in phenolic concentration related to the balance between 

carbohydrate source-sink, such that the greater the source:sink ratio, the greater the concentration of 

phenolic compounds [25,43]. In other words, high light intensity (790 µmol m
−2

s
−1

) enhanced soluble 

carbohydrate content through increasing the photosynthesis rate, thereby phenolics synthesis in ginger 

varieties were enhanced.  

A positive and highly significant correlation between total phenolics and soluble carbohydrate was 

observed in this study (Table 4). It was also observed that ginger with a high content of salicylic acid 

had higher soluble carbohydrate content. These results are in agreement with Amin et al. [48], who 
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reported that salicylic acid regulates sugar contents (translocation from source to sink) and causes a 

significant increase in total soluble sugars.  

2.5. Plant Biomass 

Different light intensities significantly affected (p ≤ 0.001) plant biomass production. With 

increasing light intensity, plant biomass increased significantly. A high content of plant biomass 

(75.6 g) was observed in Halia Bentong grown under a light intensity of 790 µmol m
−2

s
−1

. The quality 

and yield of ginger rhizomes increases when grown in the shade due to increased nutrient uptake [32]. 

According to previous studies, high ginger biomass was obtained when grown under a light 

intensity of 800 µmol m
−2

s
−1

 [49]. Increasing TSC in plants grown under 790 µmol m
−2

s
−1

 of light 

intensity was one of the parameters that could enhance plant biomass. According to our results, with an 

increased photosynthesis rate, biosynthesis of TP increased in ginger varieties, and previous studies 

showed that some phenolic compounds such as salicylic acid are able to regulate and enhance plant 

growth. A recent study by Nagasubramaniam et al. [26] showed that salicylic acid (100 ppm) increased 

the plant height, leaf area, crop growth rate and total dry matter production in baby corn. 

Jeyakumar et al. [27] reported that salicylic acid (125 ppm) was able to enhance the dry matter 

production in blackgram. A positive correlation was found between plant biomass and photosynthesis 

rate (Table 4). 

3. Experimental  

3.1. Plant Material and Maintenance 

Rhizomes of ginger varieties, Halia Bentong and Halia Bara (Zingiber officinale), were germinated 

for two weeks in a small pots. They were then transferred to white polyethylene bags, which were 

filled with soilless mixture media including burnt rice husk and coco peat (ratio 1:1) The plants were 

grown under four levels of glasshouse shade (0%, 20%, 40% and 60% shade) at the glasshouse 

complex of University Putra Malaysia (UPM). The average light intensity passing through to each 

shading treatment was 790, 630, 460 and 310 µmol m
−2

s
−1

 of photosynthetically active radiation 

(PAR), respectively. Relative humidity was 70 ± 5% and average temperature was 29 °C. The 

experiment was factorial based on Randomized Complete Block with three replications. The 

experiment was conducted for 16 weeks. Plants were harvested and fresh and dry mass of leaves, 

stems and rhizomes and number of stem nodes was measured.  

3.2. Extract Preparation for TP and TF Measurement  

Leaves, stems and rhizomes were freeze dried to constant weights before using in the extraction. 

For antioxidant analysis, the leaves, stems and rhizomes were made into powder and one gram of the 

powder was used in the extraction, using methanol (50 mL). The solutions were shaken for 1 h at room 

temperature using an orbital shaker. Extracts were filtered under suction and stored at −20 °C until 

further use. 
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Table 3. Effect of different light intensities on some physiological and morphological parameters in two varieties of ginger (Zingiber officinale). 

Parameters 

Halia Bentong Halia Bara 

Light intensities (μmol m
−2

s
−1

) Light intensities (μmol m
−2

s
−1

) 

310 460 630 790 310 460 630 790 

Chlorophyll a 249.8 ± 2.6
b
 227.9 ± 17.8

c
 175.5 ± 20.85

d
 174.2 ± 14.4

d
 273.5 ± 3.32

a
 245.4 ± 3.4

bc
 182.5 ± 4.1

d
 184.03 ± 7.05

d
 

Chlorophyll b 96.7 ± 29.7
a
 95.4 ± 25.8

a
 80.2 ± 8.29

ab
 59.06 ± 9.01

b
 103.3 ± 10.3

a
 89.1 ± 12.9

ab
 88.2 ± 19.3

ab
 94.8 ± 19.2

a
 

Chlorophyll a + b 346.6 ±3 0.5
ab

 323.4 ± 12.01
b
 255.8 ± 12.6

cd
 233.35 ± 23.3

d
 376.8 ± 7.08

a
 334.5 ±9.5

b
 270.7 ± 16.7

c
 278.8 ± 26.1

c
 

Chlorophyll a:b 2.7 ± 1.03
a
 2.5 ± 0.86

a
 2.2 ± 0.46

a
 2.9 ± 0.19

a
 2.6 ± 0.31

a
 2.8 ± 0.48

a
 2.1 ± 0.56

a
 1.9 ± 0.34

a
 

Soluble carbohydrate 12.27 ± 0.48
g
 12.85 ± 0.37

fg
 13.75 ± 0.77

de
 17.4 ± 0.71

b
 13.47 ± 0.59

ef
 14.53 ± 0.57

d
 15.82 ± 0.49

c
 18.49 ± 0.6

a
 

Photosynthesis 5.12 ± 0.992
c
 6.98 ± 0.272

b
 7.9 ± 0.738

b
 11.77 ± 0.41

a
 5.55 ± 0.533

c
 7.45 ± 0.667

b
 7.91 ± 0.757

b
 12.25 ± 1.06

a
 

Stomata conductance 0.108 ± 0.031
b
 0.074 ± 0.102

b
 0.215 ± 0.04

b
 0.555 ± 0.151

a
 0.113 ± 0.014

b
 0.181 ± 0.005

b
 0.214 ± 0.021

b
 0.686 ± 0.21

a
 

Transpiration 1.19 ± 0.325
b
 1.906 ± 0.545

ab
 2 ± 0.406

ab
 2.52 ± 0.522

ab
 1.978 ± 0.852

ab
 2.025 ± 0.738

ab
 1.73 ± 0.079

ab
 2.61 ± 0.36

a
 

Plant biomass 47.68 ± 0.36
cd

 53.22 ± 0.61
c
 63.72 ± 2.49

b
 79.47 ± 8.92

a
 40.25 ± 6.12

d
 42.45 ± 1.81

d
 53.77 ± 3.82

c
 70.06 ± 8.41

b
 

All analyses are the mean of triplicate measurements ± standard deviation; Subscript letters within the same row indicate significant (p ≤ 0.05) differences of means within 

the plant materials. Results of ch a, ch b, ch a + b expressed in µg mL
−1

; Result of soluble carbohydrate expressed in mg/g dry weight; Result of net photosynthesis 

expressed in µmol CO2 m
−2

s
−1

; Result of stomata conductance and respiration rate expressed in mmol m
−2

s
−1

; Result of dry matter is expressed in grams. 

Table 4. Correlation between measured parameters in two varieties of Zingiber officinale. 

No. Characteristic 1 2 3 4 5 6 7 8 9 10 11 

1 Plant biomass 1 
          

2 Transpiration 0.5
n.s

 1 
         

3 Photosynthesis 0.87
**

 0.66
*
 1 

        
4 Stomata conductance 0.68

*
 0.69

*
 0.95

**
 1 

       
5 Chlorophyll a −0.86

**
 −0.52

n.s
 0.64

*
 −0.9

**
 1 

      
6 Chlorophyll b 0.12

n.s
 0.22

n.s
 0.18

n.s
 0.13

n.s
 0.21

n.s
 1 

     
7 Chlorophyll a + b −0.83

**
 −0.37

ns
 −0.7

*
 −0.67

*
 0.89

**
 0.43

n.s
 1 

    
8 Chlorophyll a:b −0.68

*
 −0.51

n.s
 −0.86

**
 −0.79

**
 0.81

**
 −0.52

n.s
 0.48

n.s
 1 

   
9 Flavonoids −0.65

*
 0.11

n.s
 −0.63

*
 −0.64

*
 0.61

*
 0.13

n.s
 0.61

*
 0.36

n.s
 1 

  
10 Phenolics 0.78

**
 0.6

*
 0.85

**
 0.84

**
 −0.68

*
 0.14

n.s
 −0.54

n.s
 −0.69

*
 0.03

n.s
 1 

 
11 Soluble carbohydrate 0.81

**
 0.65

*
 0.92

**
 0.86

**
 −0.92

**
 0.07

n.s
 −0.8

**
 −0.82

**
 −0.41

n.s
 0.82

**
 1 

n.s = non significant; * = significant at p ≤ 0.05; ** = significant at p ≤ 0.01. 
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3.3. Determination of Total Phenolics Contents 

The total phenolics content was determined using Folin-Ciocalteu reagents with analytical grade 

gallic acid as the standard. 1 mL of extract or standard solution (0–500 mg/L) was added to deionized 

water (10 mL) and Folin-Ciocalteu phenol reagents (1.0 mL). After 5 minutes, 20% sodium carbonate 

(2.0 mL) was added to the mixture. After being kept in total darkness for 1 h, the absorbance was 

measured at 750 nm using a spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan). 

Amounts of TP were calculated using a gallic acid calibration curve. The results were expressed as 

gallic acid equivalents (GAE) g/g of dry plant matter [49].  

3.4. Determination of Flavonoids Contents  

Total flavonoids content was measured following the method of Bushra et al. [50]. Briefly, extracts 

of each plant material (1 mL containing 0.1 mg/mL) were diluted with water (4 mL) in a 10 mL 

volumetric flask. Initially, 5% NaNO2 solution (0.3 mL) was added to each volumetric flask; at 5 min, 

10% AlCl3 (w/w) was added; at 6 min, 1.0 M NaOH (2 mL) was added. Water (2.4 mL) was then 

added to the reaction flask and mixed well. Absorbance of the reaction mixture was read at 430 nm. 

The results were expressed in mg quercetin/g dry weight by comparison with the quercetin  

standard curve. 

3.5. High Performance Liquid Chromatography (HPLC) Apparatus  

3.5.1. Extract Preparation 

0.25 g aliquots of leaves and rhizomes were extracted with 20 mL 60% aqueous methanol. 

5 mL 6 M HC1 was added to each extract to give a 25 mL solution of 1.2 M HC1 in 50% aqueous 

methanol. Extracts were refluxed at 90 °C for 2 h. Extract aliquots of 500 µL, taken both before and 

after hydrolysis, were filtered through a 0.45 µm filter [51]. 

3.5.2. HPLC Analysis of Flavonoids 

Reversed-phase HPLC was used to assay the composition of flavonoids. Agilent HPLC system 

(Tokyo, Japan) consisted of a Model 1100 pump equipped with a multi-solvent delivery system and  

L-7400 ultraviolet (UV) detector. The column type was Agilent C18 5 µm, 4 mm internal diameter 

250 mm. The mobile phase was composed of (A) 2% acetic acid (aqueous) and (B) 0.5% acetic acid 

(aqueous)-acetonitrile (50:50 v/v), and gradient elution was performed as follows: 0 min, 95:5; 10 min, 

90:10; 40 min, 60:40; 55 min, 45:55; 60 min, 20:80; and 65 min, 0:100. The mobile phase was filtered 

under vacuum through a 0.45 µm membrane filter before use. The flow rate was 1 mL/min. UV 

absorbance was measured at 280 nm and, for flavone, at 365 nm. The operating temperature was 

maintained at room temperature [52]. Identification of the flavonoids was achieved by comparison 

with retention times of standards, UV spectra and calculation of UV absorbance ratios  

after co-injection of samples and standards. Commercial standards were purchased from  

Sigma-Aldrich (USA). 
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3.5.3. Extract Preparation of Phenolics 

1.2 mL phosphoric acid (H3PO4) was dissolved into about 950 mL water in a 1 L volumetric flask 

and brought to volume with water. 0.25 g of leaves and rhizomes were extracted with 20 mL of 

phosphoric acid. 5 mL 6 M HC1 was added to each extract to give a 25 mL solution of 1.2 M HC1 in 

50% aqueous methanol. Extracts were refluxed at 90 °C for 2 h and solutions were filtered through a 

0.45 µm filter [53]. 

3.5.4. HPLC Analysis of Phenolics 

Agilent HPLC system (Tokyo, Japan) consisted of a Model 1100 pump equipped with a  

multi-solvent delivery system and a L-7400 ultraviolet (UV) detector. The column type was Agilent 

C18, 5 µm, 4.6 mm internal diameter 250 mm. The mobile phase was composed of phosphoric acid 

(aqueous) and (B) acetonitrile gradient elution was performed as follows: 0 min, 85:15; 12 min, 75:25; 

20 min, 75:25; 22 min, 85:15; and 30 min, 85:15. The mobile phase was filtered under vacuum through 

a 0.45 µm membrane filter before use. The flow rate was 1 mL/min and injection volume was 20 µL. 

UV absorbance was measured at 220–365 nm. The operating temperature was maintained at room 

temperature [53]. Identification of the flavonoids was achieved by comparison with retention times of 

standards, UV spectra and calculation of UV absorbance ratios after co-injection of samples and 

standards. Commercial standards were purchased from Sigma-Aldrich (USA). 

3.6. Photosynthesis Rate, Stomata Conductance, Transpiration  

Photosynthetic rate, stomata conductance and transpiration rate of fully expanded leaves was 

measured by using a portable photosynthesis system (LICOR-64001 LI-COR Inc., USA). 

3.7. Chlorophyll Measurement  

For the measurement of chlorophyll concentration, the weighed fresh leaves (200 mg) were grinded 

using a mortar and pestle and immersed in 10 mL of 100% acetone. Samples were wrapped in 

aluminum foil and homogenized with the B-Brawn type homogenizer at 1000 rpm for one minute. The 

homogenate was filtered through two layer of cheesecloth, and was centrifuged at 2500 rpm for 

10 minutes. The supernatant was separated and placed in quartz cuvettes and absorbance measured 

against a blank of 100% acetone at 2 wavelengths. The two wavelengths of 662 nm and 645 nm were 

used as the peak absorbences of chlorophyll-a and chlorophyll-b. The total amount of chlorophyll-a 

and chlorophyll-b were then calculated according to the formulas of Lichtentaler and Wellburn [54].  

3.8. Determination of Total Soluble Carbohydrate (TSC) 

A few drops of ethanol (80%) were added to 0.1 g of dry samples and then 25 mL aqueous ethanol 

(5 mL water + 20 mL 80% ethanol) was added and mixed via shaking. Solutions were centrifuged at 

5000 rpm, the supernatant was separated and filtrated. Filtrate volume was adjusted to 100 mL with 

water. Approximately 1 mL of supernatant was placed into test tubes, 10 mL of anthron solution 

(0.15%) was added, and finally the samples were heated in a water bath at 95 °C for 8 min. Tubes were 
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immediately transferred into an ice bath and cooled down to room temperature. Absorption of the 

samples was recorded at 625 nm [55]. 

3.9. Plant Biomass 

Plants harvesting was carried out at the end of the experiment (after 16 weeks). Nine plants of each 

light level were chosen randomly and their total biomass was separated into three compartments: 

Leaves, stems and rhizomes, and their dry weight was calculated after drying at 70 °C (72 h). 

3.10. Statistical Analysis 

The experimental design was factorial based on Randomized complete block design (RCBD). 

Results are expressed as mean ± standard deviation of three replicates. Where applicable, the data were 

subjected to one-way analysis of variance (ANOVA) and Duncan’s Multiple Range test using the 

Statistical Analysis System (SAS, 1999) and Mstatc programs determined the differences between 

samples. p-value of ≤0.05 was regarded as significant. 

4. Conclusions  

This study demonstrated that different light intensities are able to change synthesis of phenolics and 

flavonoids components in ginger. High performance liquid chromatography analysis revealed that 

synthesis of flavonoids like as quercetin, catechin, epicatechin and naringenin were enhanced under 

low light intensity. With decreasing light intensity, the photosynthesis rate was decreased, and the 

result of decreasing the photosynthesis rate was a decrease in soluble carbohydrate and plant biomass 

in Halia Bentong and Halia Bara. According to previous studies, some flavonoid components like 

quercetin are able to change the rate of electron transport in photosynthesis photosystems and thereby 

control the photosynthesis rate. In the current study, high content of quercetin was detected in ginger 

with low photosynthesis rate. Contrary to flavonoids, salicylic acid is able to enhance photosynthesis 

rate [39] and in the current study, high content of salicylic acid was found in Halia Bara leaves grown 

under 790 µmol m
−2

s
−1

 with a high photosynthesis rate. Our results indicate that possible interference 

of flavonoids and phenolics in the photosynthetic processes may occur in the plant cell. However, with 

decreasing photosynthesis rate, carbons from the photosynthesis cycle shift to the shikimic acid 

pathway in order to produce higher flavonoid content. It could be concluded that phenolics and 

flavonoids are able to regulate plant growth and improve the physiological efficiency and can enhance 

effective partitioning of accumulate from the source-sink in plants. Further work is required to 

establish the phenolics and flavonoids components that may have a regulatory effect on plant growth. 

It would be worthwhile if future studies address this by investigating the effects of several polyphenols 

alone or in combination on selected plant processes.  

Acknowledgments 

The authors are grateful to the Ministry of Higher Learning Malaysia for financing this work under 

the Fundamental Research Grant Scheme FRGS/PHASE1-2009/FUNDAMENTAL SCIENCE/UPM/ 

(01-11-08-646FR). 



Int. J. Mol. Sci. 2010, 11                           

 

 

4552 

References 

1. Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. Screening of the antioxidant potentials of six 

Salvia species from Turkey. Food Chem. 2006, 95, 200–204. 

2. Mohd Habib, S.H.; Makpol, S.; Abdul Hamid, N.A. Ginger Extract (Zingiber Officinale) has  

Anti-Cancer and Anti-Inflammatory Effects on Ethionine-Induced Hepatoma Rats. Clinics 2008, 

63, 807–813. 

3. Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Identification and Concentration of Some Flavonoid 

Components in Malaysian Young Ginger (Zingiber officinale Roscoe) Varieties by a High 

Performance Liquid Chromatography Method. Molecules 2010, 15, 6231–6243. 

4. Southwell, I.A.; Bourke, A.C. Seasonal variation in hypericin content of Hypericum perforatum L. 

(St. John’s wort). Photochemistry 2001, 56, 437–441. 

5. Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A.; Wahab, P.E.M.; Halim, M.R.A. Effect of Different 

Light Intensities on Total Phenolics and Flavonoids Synthesis and Anti-oxidant Activities in 

Young Ginger Varieties (Zingiber officinale Roscoe). Int. J. Mol. Sci. 2010, 11, 3885–3897. 

6. Kozai, T.; Kubota, C.; Chun, C.; Afreen, F.; Ohyama, K. Necessity and Concept of the Closed 

Transplant Production System. In Proceedings of International Symposium on Transplant 

Production in Closed System; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2000;  

pp. 3–19. 

7. Kurata, H.; Matsumura, S.; Furusaki, S. Light irradiation causes physiological andmetabolic 

changes for purine alkaloid production by a Coffea Arabica cell suspension culture. Plant Sci. 

1997, 123, 197–203. 

8. Zhong, J.J.; Seki, T.; Kinoshita, S.; Yoshida, T. Effect of light irradiation on anthocyanin 

production by suspended culture of Perilla frutescens. Biotechnol. Bioeng. 1991, 38, 653–658. 

9. Jaafar, H.; Rahmat, A. Accumulation of partitioning of total phenols in two varieties of  

Labisia pumila benth under manipulation of greenhouse irradiance. Acta Hortic. 2008, 797,  

387–392.  

10. Briskin, D.P.; Gawienowski, M.C. Differential effects of light and nitrogen on production of 

hypericins and leaf glands in Hypericum perforatum. Plant Physiol. 2001, 39, 1075–1081. 

11. Xie, B.D.; Wang, H.T. Effects of light spectrum and photoperiod on contents of flavonoid and 

terpene in leaves of Ginkgo biloba L. J. Nanjing For. Univ. 2006, 30, 51–54. 

12. Graham, T.L. Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiol. 

Biochem. 1998, 36, 135–144. 

13. Chan, E.W.C.; Lim, Y.Y.; Wong, F.L.; Lianto, F.S. Antioxidant and tyrosinase inhibition 

properties of leavess and rhizomes in ginger species. Food Chem. 2008, 109, 477–483. 

14. Bergquist, S.; Gertsson, U.; Nordmark, L.Y.; Olsson, M.E. Effects of shade nettings, sowing time 

and storage on baby spinach flavonoids. J. Sci. Food. Agric. 2007, 87, 2464–2471. 

15. Fonseca, J.M.; Rushing, J.W.; Rajapakse, N.C. Potential implications of medicinal plants 

production in controlled environments: the case of feverfew (Tanacetum parthenium). Hortic. Sci. 

2006, 41, 531–535. 

16. Mosaleeyanon, K.; Zobayed, S.M.A.; Afreen, F. Relationship between net photosynthesis rate and 

secondary metabolite content in Strawberry. Plant Sci. 2005, 169, 523–553. 



Int. J. Mol. Sci. 2010, 11                           

 

 

4553 

17. Michel, H.; Klaus, K. The protective functions of carotenoids and flavonoids pigments against 

excess visible radiation at chilling temperature investigated in Arabidopsis. Planta 2001, 213, 

953–966. 

18. Harborne, J.B. The Flavonoids: Advances in Research since 1986; Chapman and Hall: New York, 

NY, USA, 1996; pp. 441–497. 

19. Sergio, L.C.; Claudio, F.P.; Carlos, S.A. Inhibitory effects of shikmic acid on pep carboxylase 

activity. Plant Cell Physiol. 1996, 37, 870–872. 

20. Kim, M.S.; Lee, W.K.; Kim, H.Y.; Kim, C.; Ryu, Y.W. Effect of environmental factors on 

flavonol glycoside production and phenylalanine ammonia-lyase activity in cell suspension 

cultures of Ginkgo biloba. J. Microbiol. Biotechnol. 1998, 8, 237–244. 

21. Carlos, L.; Spedes, C.; Lahoucine, A.; Lotina-Hennsen, B.; Juan, R.; Gómez-Garibay, F.; José, S. 

Inhibition of Photophosphorylation and Electron Transport by Flavonoids and Biflavonoids from 

Endemic Tephrosia spp. of Mexico. Pestic. Biochem. Physiol. 2001, 69, 63–76. 

22. Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Régerat, F.; Rémésy, C. 

Bioavailability of the flavanone naringenin and its glycosides in rats. Am. J. Physiol. Gastrointest. 

Liver Physiol. 2000, 279, G1148–G1154. 

23. Wand, S.J.E. Concentration of ultraviolet-B radiation absorbing compounds in leaves of a range 

of fynbos species. Vegetatio 1995, 116, 51–61. 

24. Liakoura, V.; Bornman, J.F.; Karabourniotis, G. The ability of abaxial and adaxial epidermis of 

sun and shade leaves to attenuate UV-A and UV-B radiation in relation to the UV absorbing 

capacity of the whole leaf methanolic extract. Physiol. Plant. 2003, 117, 33–43. 

25. Shui-Yuan, C.; Feng, X.; Yan, W. Advances in the study of flavonoids in Ginkgo biloba leaves.  

J. Med. Plant Res. 2009, 3, 1248–1252. 

26. Nagasubramaniam, A.; Pathmanabhan, G.; Mallika, V. Studies on improving production potential 

of baby corn with foliar spray of plant growth regulators. Annu. Rev. Plant Physiol. Plant Mol. 

Biol. 2007, 21, 154–157. 

27. Jeyakumar, P.; Velu, G.; Rajendran, C.; Amutha, R.; Savery, M.A.J.R.; Chidambaram, S. Varied 

responses of blackgram (Vigna munga) to certain foliar applied chemicals and plant growth 

regulators. Legume Res. Int. J. 2008, 31, 110–113. 

28. Khodary, S.E.A. Effect of Salicylic Acid on the Growth, Photosynthesis and Carbohydrate 

Metabolism in Salt Stressed Maize Plants. Int. J. Agric. Biol. 2004, 6, 5–8. 

29. Margna, U. Control at the level of substrate supply—an alternative in the regulation of 

phenylpropanoid accumulation in plant cells. Phytochemistry 1977, 16, 419–426. 

30. Waterman, P.G.; Ross, J.A.M.; McKey, D.B. Factors affecting levels of some phenolic 

compounds, digestibility, and nitrogen content of the mature leaves of Barteria fistulosa 

(Passifloraceae). J. Chem. Ecol. 1984, 10, 387–401. 

31. Mole, S.; Ross, J.A.M.; Waterman, P.G. Light-induced variation in phenolic levels in foliage of 

rain-forest plants. J. Chem. Ecol. 1988, 14, 1–21. 

32. Katsube, T.; Tabata, H.; Ohta, Y.; Yamasaki, Y.; Anuurad, E.; Shiwaku, K. Screening for 

antioxidant activity in edible plant products: Comparison of low-density lipoprotein oxidation 

assay, DPPH radical scavenging assay and Folin-Ciocalteu assay. J. Agric. Food Chem. 2004, 52, 

2391–2396. 



Int. J. Mol. Sci. 2010, 11                           

 

 

4554 

33. Takahama, U.; Oniki, T. Flavonoid and some other phenolics as substrates of peroxidase: 

physiological significance of the redox reactions. J. Plant Res. 2000, 113, 301–309. 

34. Ruiz, J.M.; Rivero, R.M.; Lopez-Cantarero, I.; Romero, L. Role of Ca
2+

 in metabolism of 

phenolic compounds in tabacco leaves (Nicotiana tabacum L.). Plant Growth 2003, 161–173. 

35. Diaz, J.; Bernal, A.; Pomar, F.; Merino, F. Induction of shikimate dehydrogenase and peroxidase 

in pepper (Capsicumannum L.) seedlings in response to copper stress and its relation to 

lignification. J. Plant Res. 2001, 161, 179–188. 

36. Dixon, M.; Webb, B.C. Enzymes; Academic Press: New York, NY, USA, 1973. 

37. Ajithkumar, K.; Jayachandran, B.K.; Ravi, V. Influence of shade regimes on photosynthetic rate 

and stomatal characters of ginger (Zingiber officinale R.). J. Spices Aromat. Crops 2002, 11,  

26–29. 

38. Sakihama, Y.; Yamasaki, H. Lipid peroxidation induces by phenolics in cinjunction with 

aluminium ions. J. Biol. Planta 2002, 45, 249. 

39. Fan, Y.; Wang, Y.; Tan, R.; Zhang, Z. Seasonal and sexual variety of ginkgo flavonol glycosides 

in the leaves of Ginkgo biloba L. J. Tradit. Chin. Med. 1998, 23, 267–269. 

40. Khana, W.; Prithiviraja, B.; Smith, D.L. Photosynthetic responses of corn and soybean to foliar 

application of salicylates. J. Plant Physiol. 2003, 160, 485–492.  

41. Kefeli, V.I.; Kalevitch, M.V.; Borsari, B. Phenolic cycle in plants and environment. J. Cell Mol. 

Biol. 2003, 2, 13–18.  

42. Niinemets, Ü.; Kull, O.; Tenhunen, J.D. Within-canopy variation in the rate of development of 

photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous 

trees. Plant Cell Environ. 2004, 27, 293–313. 

43. Bryant, J.P.; Chapin, F.S.; Klein, D.R. Carbon/nutrient balance of boreal plants in relation to 

vertebrate herbivory. Oikos 1983, 40, 357–368. 

44. Ginger: The Genus Zingiber; Ravindran, P.N., Nirmal Babu, K., Eds.; C.H.I.P.S.: Weimar, TX, 

USA, 2005; p. 545. 

45. Khan, S.R.; Rose, R.; Haase, D.L.; Sabin, T. Effects of shade on morphology, chlorophyll 

concentration, and chlorophyll fluorescence of four Pacific Northwest conifer species. New For. 

2000, 19, 171–186. 

46. Suza, R.; Valio Ivani, F.M. Leaf optical properties as affected by shade in samplings of six 

tropical tree species differing in successional statu. Braz. J. Plant Physiol. 2003, 15, 49–54. 

47. Meyer, S.; Cerovic, Z.G.; Goulas, Y.; Montpied, P.; Demotes, S.; Bidel, L.P.R.; Moya, I.; Dreyer, 

E. Relationship between assessed polyphenols and chlorophyll contents and leaf mass per area 

ratio in woody plants. Plant Cell Environ. 2006, 29, 1338–1348. 

48. Amin, A.A.; Rashad, M.; El-Abagy, H.M.H. Physiological Effect of Indole-3-ButyricAcid and 

Salicylic Acid on Growth, Yield and Chemical Constituents of Onion Plants. J. Appl. Sci. Res. 

2007, 3, 1554–1563. 

49. Kim, D.; Jeond, S.; Lee, C. Antioxidant capacity of phenolic phytochemicals from various 

cultivars of plums. Food Chem. 2003, 81, 321–326. 

50. Bushra, S.; Farooq, A.; Muhammad, A. Effect of Extraction Solvent/Technique on the 

Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. 



Int. J. Mol. Sci. 2010, 11                           

 

 

4555 

51. Crozier, A.; Jensen, E.; Lean, M.E.J.; Mc Donald, M.S. Quantitative analysis of flavonoids by 

reversed-phase highperformance liquid chromatography. J. Chromatogr. 1997, 761, 315–321. 

52. Wang, T.C.; Chuang, Y.C.; Ku, Y.H. Quantitation of bioactive compounds in citrus fruits 

cultivated in Taiwan. Food Chem. 2007, 102, 1163–1171. 

53. Standard Operating Protocol for Phenolics (SOP). SOP No.: CB0103, 2001. Technical report for 

Botanical Center For Age-Related Diseases. Available online: http://www.cfs.purdue.edu/fn/bot/ 

Downloads/PDF/polyphenolSOP.pdf (accessed on 27 October 2010). 

54. Lichtenthaler, H.K.; Wellburn, A.R. Determination of Total Carotenoids and Chlorophylls A and 

B of Leaf in Different Solvents. Biochem. Soc. Trans. 1985, 11, 591–592. 

55. Sivaci, A. Seasonal changes of total carbohydrate contents in three varieties of apple  

(Malus sylvestris Miller) stem cuttings. Sci. Hortic. 2006, 109, 234–237. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


