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Abstract: The aim of this study was to explore the effect of picroside II on neuronal 

apoptosis and the expression of caspase-3 and poly ADP-ribose polymerase (PARP) 

following middle cerebral artery occlusion/reperfusion in male Wistar rats. Picroside II  

(10 mg/kg) was administered intravenously into the tail vein of the animals. The 

neurological function deficits were evaluated with the Bederson’s test and the cerebral 

infarction volume was visualized with tetrazolium chloride (TTC) staining. The apoptotic 

cells were counted by in situ terminal deoxynucleotidyl transferase-mediated biotinylated 

deoxyuridine triphosphate nick end labeling (TUNEL) assay. The immunohistochemistry 

stain and enzyme linked immunosorbent assay (ELISA) was used to determine the 

expressions of caspase-3 and PARP in brain tissue. The results indicated that rats in the 

control group showed neurological function deficit and cerebral infarction in ischemic 

hemisphere after two hours ischemia followed by 22 hours reperfusion. Caspase-3 and 

PARP expressions were also profound in the cortex, the striatum and the hippocampus, 

along with increased apoptotic cells in this group. Bederson's score, infarction volume, and 

expressions of caspase-3 and PARP, as well as apoptosis in the treatment group were, 

however, significantly decreased compared to those in the control group indicating that 

intravenous treatment with picroside II might be beneficial to inhibit neuronal apoptosis 

and, thus, to improve the neurological function of rats upon cerebral ischemia reperfusion 

injury. 

OPEN ACCESS



Int. J. Mol. Sci. 2010, 11             

 

 

4581

Keywords: picroside II; cerebral ischemia; reperfusion injury; caspase-3; PARP;  

apoptosis; rats 

 

1. Introduction  

Studies have shown that the caspase-family is the promoter and implementer of apoptosis in 

mammalian cells, among which, caspase-3 is the most critical downstream apoptosis protease in the 

caspase cascade "waterfall" [1]. A variety of extracellular signals activate caspase-8 through Fas 

receptor pathway and caspase-9 via mitochondrial cytochrome C in cerebral ischemia reperfusion 

injury. Activation of caspase-8 and caspase-9 then promote caspase-3, which in turn hydrolyzes 

cell-specific proteins, and poly ADP ribose polymerase (PARP), thereby inducing apoptosis [2,3]. 

The plant Picrorhiza scrophulariiflora (Scrophulariaceae) grows in a high altitude in certain 

regions of Tibet and China. The roots of this plant are used in traditional Chinese medicine for a 

number of conditions [4]. Extracts of the roots contain various terpenoids as well as glycosides [5,6]. 

One of the main active constituents of the extract is picroside II, which is an iridoid glucoside 

(Figure 1). 

Figure 1. The chemical structure of picroside II (β-D-glucopyranoside, 1a,1b,2,5a,6,6a-

hexahydro-6-[(4-hydroxy-3-methoxybenzoyl)oxy]-1a(hydroxymethyl)oxireno Cyclopenta 

[1,2-c]pyran-2-yl) [7]. 

 

Current research on picroside II is focused on its neuroprotective [8], antiapoptotic, anticholestatic, 

antioxidant, anti-inflammatory, immunemodulating activities [9–11]. Some studies implicate that 

picroside II protects hepatocytes against injury and counteracts apoptosis through maintaining the 

integrity of the mitochondria membrane, enhancing the activity of ATPase in mitochondria, thereby 

modulating the balance of the cell energy metabolism [12,13]. Li’s and Tao’s data show that 

picroside II can reduce H2O2-induced PC12 cell damage and improve cell survival [14–16]. 

Experiments on animal models indicate that the picroside extract could inhibit apoptosis in ischemic 

penumbra in rats following middle cerebral artery occlusion and reperfusion (MCAO/R) [17]. Our 

previous experiment showed that picroside II inhibited the expressions of NFκB and IκB following 
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MCAO/R in rats [18]. The present study aims to explore the properties of picroside II in rat model of 

focal cerebral ischemia. 

2. Results and Discussion 

2.1. Neurobehavioral Deficit Score 

There was no neurobehavioral dysfunction symptom in rats of the sham-operation group, whose 

Bederson’s score was 0. After cerebral ischemic reperfusion injury, all animals showed neurological 

defects. The Bederson’s scores in the treatment group were obviously lower than that in the control 

group (t = 5.21, P < 0.05). See Table 1. 

Table 1. Neurobehavioral deficit score and infarct volume ( x  ± s). 

Groups  n Neurological function scores Infarction volume 
Sham-operation group 5 0.00 ± 0.00 0.00 ± 0.00 
Control group 5 2.16 ± 0.28Δ 77.32 ± 3.06Δ 
Treatment group 5 1.27 ± 0.26* 68.73 ± 3.46* 

Δ t = 5.21, P < 0.05 vs. the sham-operation group; * t = 4.19, P < 0.05 vs. the control group. 

2.2. Volume of Cerebral Infarction 

By TTC stain, no ischemia infarction was shown in the brain slices of the sham-operation group, 

while infarction lesion appeared in all the experimental rats after cerebral ischemic reperfusion injury. 

The volume of cerebral infarction in the treatment group were significantly lower than that in the 

control group (t = 4.19, P < 0.05); see Table 1 and Figure 2. 

Figure 2. Cerebral infarction volume shown by TTC stain. The normal brain tissue 

appeared uniformly red in the sham-operation group (A), while the infarction region 

showed white in the control group (B) and treatment group (C). 

 

2.3. Neuronal Apoptosis 

A few apoptotic cells were scattered in the cortex and the striatum in the sham-operation group. 

Apoptotic cells were significantly increased in the control group. As we expected, the amount of 

apoptosis in the treatment group was low compared to those found in the cortex (F = 194.10,  

q = 4.60–26.10, P < 0.01), striatum (F = 167.94, q = 5.13–24.57, P < 0.01) and hippocampus  

(F = 230.60, q = 6.51–28.95, P < 0.01) of the control group; see Table 2 and Figure 3. 
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Table 2. The number of apoptotic cells in different brain regions ( x  ± s). 

Groups n Cortex Striatum Hippocampus 

Sham-operation group 5 4.53 ± 1.13 3.79 ± 1.36 3.67 ± 1.15 

Control group 5 67.62 ± 8.25Δ 53.30 ± 6.26Δ 41.30 ± 4.24 

Treatment group 5 15.64 ± 4.28* 14.12 ± 4.46* 12.13 ± 2.46* 
Δ P < 0.05 vs. the sham-operation group; * P < 0.05 vs. the control group. 

Figure 3. Apoptotic cells in cortex shown by TUNEL × 200. Only a few apoptotic cells in 

the sham-operation group (A), increased in the control group (B) and decreased in the 

treatment group (C) significantly. Bar 50 µm. 

 

2.4. Caspase-3 Expression 

With the help of immunohistochemistry, we found that there were no region differences between 

the cortex, the striatum and the hippocampus. Thus, we calculated the absorbance values (A) in four 

confirmed views instead of the random ones in each brain slice. Only a small number of caspase-3 

positive cells with light yellow granules could be seen in the cortex, the striatum and the hippocampus 

in sham-operation group rats, and its expression was very weak. Caspase-3 expression in control group 

was significantly elevated along with the increased A value as compared with the sham-operation 

group rats. After the drug administration, the A values in the treatment group were obviously decreased 

in contrast to the control group rats in cortex (F = 99.95, q = 7.43–19.79, P < 0.01), striatum 

(F = 121.18, q = 7.49–21.68, P < 0.01) and hippocampus (F = 107.11, q = 8.02–20.54, P < 0.01). It is 

suggested that picroside II could inhibit the expression of caspase-3 protein and play neuroprotective 

effects (Table 3 and Figure 4). 

Table 3. The number of Caspase-3 positive cells ( x  ± s). 

Groups n Cortex Striatum Hippocampus 

Sham-operation group 5 5.25 ± 1.70 4.25 ± 1.95 3.75 ± 1.69 

Control group 5 33.4 ± 4.07Δ 32.80 ± 3.77Δ 28.00 ± 3.58 Δ 

Treatment group 5 15.82 ± 3.30* 14.12 ± 2.83* 13.22 ± 2.29* 
Δ P < 0.05 vs. the sham-operation group; * P < 0.05 vs. the control group. 
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Figure 4. Caspase-3 positive cells in cortex shown by immunohistochemical assay × 400. 

The expression of Caspase-3 was very weak in the sham-operation group (A), increased in 

the control group (B) and decreased in the treatment group (C) significantly. Bar 25 µm. 

 

2.5. PARP Expression 

Weak PARP expression was shown in the cortex, the striatum and the hippocampus in 

sham-operation group rats. The number of PARP-positive cells rapidly increased, and the A value was 

significantly higher than that in the sham-operation group. The expression of PARP both in the 

treatment group were apparently lower than that in the control group in cortex (F = 142.48,  

q = 9.23–23.68, P < 0.01), striatum (F = 137.25, q = 9.37–23.28, P < 0.01) and hippocampus 

(F = 141.94, q = 8.66–23.56, P < 0.01) shown in Table 4 and Figure 5.  

Table 4. The number of PARP positive cells ( x  ± s). 

Groups n Cortex Striatum Hippocampus 

Sham-operation group 5 4.34 ± 1.24 3.72 ± 1.18 3.28 ± 1.16 

Control group 5 34.25 ± 4.21Δ 31.75 ± 3.70Δ 27.50 ± 3.29 Δ 

Treatment group 5 16.00 ± 2.16* 15.00 ± 2.58* 12.20 ± 1.92* 
Δ P < 0.05 vs. the sham-operation group; * P < 0.05 vs. the control group. 

Figure 5. PARP positive cells in cortex shown by immunohistochemical assay × 400. The 

expression of PARP was very weak in the sham-operation group (A), increased in control 

group (B) and decreased in treatment group (C) significantly. Bar 25 µm. 

 

2.6. The Concentration of Caspase-3 and PARP in Brain Tissue 

The concentrations of caspase-3 and PARP were low in the brain tissue of the sham-operation 

group rats, and increased significantly in the control group rats. In the treatment group, the 

concentration of caspase-3 (F = 86.25, q = 8.11–18.52, P < 0.01) and PARP (F = 108.11,  

q = 9.33–20.76, P < 0.01) were obviously lower than those in the control group (Table 5). 
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Table 5. The concentration in brain tissue of caspase-3 and PARP ( x  ± s). 

Sham-operation group n Caspase-3 PARP 

Control group 5 12.35 ± 2.21 12.24 ± 2.23 

Treatment group 5 54.23 ± 7.22Δ 48.12 ± 5.17Δ 

Sham-operation group 5 30.45 ± 4.44* 28.36 ± 3.62* 
Δ P < 0.05 vs. the sham-operation group; * P < 0.05 vs. the control group. 

2.7. Discussion 

Among various mechanisms, the modulation of caspases expression plays a critical role for the 

common pathway of apoptosis. Caspase-3 is a key member of executioner caspases. Using rat 

MCAO/R models, Yang et al. [19] found the expression of caspase-3 enhanced with the increased cell 

apoptosis in cerebral cortex at 1h ischemia and 24 h reperfusion. Xu’s studies [20] have shown that 

caspase-3 activity in the striatum and the dorsolateral cortex was significantly increased upon 50 min 

ischemia followed by 24 h reperfusion in MCAO/R rats. Apoptosis is significantly increased in 

ischemic central and penumbra area. Puerarin, a major isoflavonoid derived from the Chinese medical 

herb kudzu root can significantly reduce apoptosis and inhibit caspase-3 activity in dorsolateral cortex 

in the rat brain of 2 h cerebral ischemia followed by 46 h reperfusion [21]. The research results of 

Tang et al. [22] indicated that alkaloid, glycoside, polysaccharide and aglycone from Buyang huanwu 

decoction (BYHWD) could relieve the inflammatory reaction occurring after cerebral 

ischemia/reperfusion by inhibiting Caspase-1 expression to decrease production of inflammatory 

cytokine. PARP is a kind of protease with catalytic activity of poly ADP ribosylation (PAR) in 

eukaryotic cell, and plays a role in the maintenance of chromosome stability, DNA damage recovery, 

gene transcription, cell growth, death and apoptosis. Moroni [3] suggests that the cerebral ischemia 

caused oxidative DNA damage and PARP expression increased in neurons. With the duration of 

ischemia or reperfusion and the accumulation off DNA damage, PARP gene expression is also heavier. 

The recovery ability of PARP in cell DNA damage depends on the intracellular coenzyme I 

(dihydrouracil dehydrogenase, NAD+) level. Under conditions of adequate NAD+, the increasing 

PARP activity is conducive to DNA recovery and promotes neuron survival [23]. Chaitanya et al. [24] 

established ischemia 3 h and reperfusion 1–24 h rat models and found that the expression of caspase-3 

increases in cerebral cortex with the duration of ischemic time, caspase-3 hastens PARP degradation, 

resulting in neuronal apoptosis. Li et al. reported that picroside II could have a neuroprotective effect 

by inhibiting the apoptosis and the expressions of NFκB and IκB following MCAO/R in rats [18]. It 

also reduced brain tissue edema and the aquaporin-4 (AQP-4) expression, and established the best 

therapeutic time window was one hour after cerebral ischemic reperfusion [25]. The present 

experiments showed that the expressions of caspase-3 and PARP elevated in the cortex, the striatum 

and the hippocampus in rats after cerebral ischemia 2 h and reperfusion 22 h, together with the 

increased apoptosis cells and infarction volume, as well as aggravated neurobehavioral dysfunction. 

Via the tail vein administration of picroside II, the expression of caspase-3 is weaker than that in the 

control group in the cortex, the striatum and the hippocampus. The cerebral infarction size was 

obviously reduced, and neurobehavioral function significantly improved in the treatment groups.  
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These data suggest that picroside II may inhibit caspase-3 expression and reduce PARP degradation 

after cerebral ischemic injury, which may contribute to the maintenance of NAD+ level in penumbra, 

thereby enabling PARP to utilize residual energy for the reparation of neuronal damage. Inhibiting 

apoptosis ultimately leads to improved neurobehavioral outcome. 

3. Experimental Section 

3.1. Animal Model of MCAO/R 

The total of 60 adult female Wistar rats, weight 230–250 g, SPF grade, were granted by Qingdao 

Laboratory Animal Center (SCXK (LU) 20070010). The local legislation for ethics of experiment on 

animals and guidelines for the care and use of laboratory animals were followed in all animal 

procedures [26]. All animals were given time to adapt to the laboratory environment, allowed free 

access to food and water in a temperature and humidity-controlled housing with natural illumination 

for a week, and fasted 12 h before operation. Fifteen rats were randomly selected as a sham-operation 

group, and the remaining 45 rats were subjected to the experimental middle cerebral artery ischemia 

for 2h followed by 22 h of reperfusion. Ischemia was induced by intraluminal monofilament suture in 

the left external-internal carotid artery [27]. Core body temperature was monitored with a rectal probe 

and maintained at 36–37 °C using a homeothermic blanket control unit (Qingdao Apparatus, China) 

during and after the surgery operation. Rats in sham-operation group were subjected to the same 

surgical procedure but the monofilament was advanced only about 10 mm and immediately 

withdrawn. Thirty successful MCAO/R rat models were internalized into the experiment group  

(15 unsuccessful animals were removed), and then randomly divided into a control group and a 

treatment group consisting of 15 rats in each group. 

3.2. Intervention Study  

Picroside II was obtained from Kui Qing, Tianjin Medical Technology Co., Ltd., (CAS No: 

39012-20-9, purity > 98%). It was diluted into 1% solution with 1 M PBS sodium. According to 

Xiao’s report [28], the rats in the treatment group were administrated picroside II (10 mg/kg) 250 μL 

via tail vein at the end of ischemic 2 h before reperfusion 22 h with a micro-syringe, while those in the 

control group and the sham-operation groups were simultaneously injected 1 M PBS 250 μL. 

3.3. Neurobehavioral Dysfunction Score 

All animals were scored at ischemia 2 h reperfusion 22 h by an investigator who was blinded to the 

experiment according to the standard of Bederson’s test [29]. 0 score: no neurological functional 

impairment; 1 score: any part of forepaw flexed (positive for tail suspension test) without other 

abnormal sign; 2 scores: lateral pushing resistance ability decreased (positive for lateral pushing 

experiment), accompanied with forepaw flexion without circling tendency; 3 scores: same behaviors as 

those for 2 scores, in addition to spontaneous rotation (circling around paralyzed limbs during free 

activity). The higher the score is, the worse the neurobehavioral dysfunction appears, and vice versa. 
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3.4. TTC Staining 

To determine the infarction volume, five rats in each group were decapitated at ischemia 2 h 

reperfusion 22 h after MCAO/R. The brain tissue was removed and successively sliced into 2.0 mm 

thick coronal sections. The total of five brain slices were incubated in 2% TTC solution for 10 min at 

37 °C and then transferred into 4% formaldehyde solution for fixation. Normal brain tissue appeared 

uniform red while the infarction region showed white. The infarction volumes were calculated in a 

blinded manner with Adobe PhotoShop CS analysis system. The data were expressed as the percentage 

of the infarction volume/the ipsilateral hemisphere volume (%) at the coronal section of optic chiasma.  

3.5. Neuronal Apoptosis Assay 

At ischemia 2 h reperfusion 22 h after MCAO/R, five rats in each group were deeply anesthetized 

by 10% chloral hydrate (300 mg/kg), reperfused with sodium chloride and 4% formaldehyde 200 mL 

from the heart into the aorta, and then decapitated at given time. Brain samples were chosen from 

frontal fontanelle 2 mm to occipital fontanelle 4 mm by a stereotaxic point, post-fixed in 4% 

formaldehyde for 2 h, dehydrated in alcohol gradually, hyalinized by dimethylbenzene, embedded in 

paraffin, then sectioned at a thickness of 5 μm, adhered to the sections prepared with poly-L-lysine, 

and finally stored at 4 °C. To detect cell apoptosis, TUNEL staining was performed according to the 

protocol of DendEnd fluorometric TUNEL detection system (Santa Cruz Co. Ltd.). In each rat, four 

coronal paraffin sections as described above were deparaffinaged by dimethylbenzene, hydrated by 

gradient ethanol and washed by distilled water. To some sections DNase I at a dose of 1 μg/mL was 

added and were regarded as the positive control sample, and those treated without TdT were the 

negative ones. Under a 400-fold immunofluorescent microscope (wavelength 488 nm), the apoptosis 

cells appeared fluorescent yellow-green in the nucleus, and averaged in four random views of the 

cortex, and striatum, respectively. 

3.6. Immunohistochemical Staining  

Rabbit anti-rat Caspase-3 and PARP moloclonal antibody, SABC immunohistochemistry kit, DAB 

dye were purchased from Boster Biological Company, Wuhan, China. Paraffin-embedded sections 

were deparaffinaged in dimethylbenzene, hydrated successively in gradient ethanol, and antigen was 

restored twice in a microwave oven. Immunohistochemical procedures were performed strictly 

according to the manufacturer’s guidelines. Under a microscope, those with brown granules in 

cytoplasm were considered as positive cells. And the slides with the addition of 0.01 mmol/L PBS 

(containing 1:200 non-immunity animal serum), instead of primary antibody, showed no response. 

Four serial sections were chosen from each experimental rat, and four views of the cortex, striatum 

hippocampus in each section were observed randomly under a 400-fold fluorescent microscope. 

Absorbance value (A) of each view was detected by a LEICA Qwin microgramme analytical system 

(Leica Company). 



Int. J. Mol. Sci. 2010, 11             

 

 

4588

3.7. Enzyme Linked Immunosorbent Assay (ELISA) 

Rat caspase-3 and PARP ELISA kits were purchased from Blue Gene Co. Ltd. Five rats in each 

group were deeply anesthetized and decapitated at given time after MCAO/R. At ischemia 2 h 

reperfusion 22 h after MCAO/R, the ischemic hemisphere tissues (0.5 g) from rats in all groups were 

quickly removed and ground fully into brain tissue homogenate. Normal sodium 500 µL was then 

added, mixed well and centrifuged for 10 minutes at 12,000 rpm. The upper limpid liquid was 

collected and stored at −20 °C (to avoid repeated freeze-thaw cycles). All standards were prepared 

before starting assay procedures. Firstly, we secured the desired number of coated wells in the holder 

and added 50 μL of standards or samples to the appropriate well of the antibody pre-coated microtiter 

plate. 100 μL of conjugate was then added to each well, mixed thoroughly, covered and incubated for  

1 h at 37 °C. The microtiter plate was washed five times using distilled or de-ionized water; 50 μL of 

substrate A and B was added to each well, covered and incubated for 15 minutes at 25 °C. Finally, 

50 μL of stop solution was added to each well, thoroughly mixed and the mean absorbance value at 

450 nm for each set of reference standards and samples was calculated. Calculation of results: The 

average A450 value for each standard, control and test sample was divided by the average A450 of the 

standard 0 and multiplied by 100 to obtain %B/B0 for each sample. A standard curve was prepared by 

plotting the average absorbance or the %B/B0 value of each standard (on the y axis) versus the 

corresponding concentrations of the standards (on the x axis) on linear-log graph paper or logit-log 

graph paper. According to the B/B0 value of the samples, the concentration of the samples can be 

determined from the standard curve. The sensitivity by this assay is 1.0 ng/mL. 

3.8. Statistical Analysis 

SPSS11.5 software was used for statistical analysis. Data were expressed as mean ± standard error 

( x  ± s). Multi-group comparison was made by analysis of variance (ANOVA) and Student’s test, and 

two-group comparison by t-test. Values were considered to be significant when P was less than 0.05. 

4. Conclusions 

This study suggested that picroside II might reduce the expressions of Caspase-3 and PARP to 

inhibit the neuronal apoptosis induced by cerebral ischemia reperfusion injury and improve the 

neurological function of rats. 
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