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Abstract:



Catostomid fishes (suckers) have duplicate copies of the growth hormone gene and other nuclear genes, due to a genome duplication event early in the group’s history. Yet, paralogs of GH in suckers are more than 90% conserved in nucleotide (nt) and amino acid (aa) sequence. Within paralogs across species, variation in nt and aa sequence averages 3.33% and 4.46% for GHI, and 3.22% and 2.43% for GHII, respectively. Selection tests suggest that the two GH paralogs are under strong purifying selection. Consensus trees from phylogenetic analysis of GH coding region data for 23 species of suckers, other cypriniform fishes and outgroups resolved cypriniform relationships and relationships among GHI sequences of suckers more or less consistently with analyses based on other molecular data. However, the analysis failed to resolve all sucker GHI and GHII sequences as monophyletic sister groups. This unexpected topology did not differ significantly from topologies constrained to make all GH sequences monophyletic. We attribute this result either to limitations in our GHII data set or convergent adaptive changes in GHII of tribe Catostomini.
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1. Introduction


Genome duplication has long been thought to play an important role in evolution, giving rise to duplicate copies of genes (paralogs) which subsequently diverge and assume other functions [1,2]. Recent work has highlighted three episodes of genome duplication in vertebrates, which have been linked to the diversification of vertebrates, gnathostomes and teleosts, respectively [3–6]. The three duplication events coincide with bursts of character acquisition and increases in phenotypic complexity in living species, which many researchers attribute to functional divergence of duplicate genes [4]. However, mechanisms of functional divergence are difficult to establish over such long periods of evolutionary time.



Growth hormone (GH) is a single-chain, pituitary-specific hormone essential for promotion and maintenance of somatic growth in vertebrates [7–9]. The GH genomic region in vertebrates is roughly 2 kb long, with the protein coding region divided into four to five blocks (exons) representing less than a third of the length of the genomic region. The GH coding region tends to be highly conserved across vertebrates, presumably because of functional constraints on structure of the hormone. However, rates of GH sequence evolution vary for other groups of vertebrates. GH paralogs in passerine birds were shown to exhibit rapid evolution compared to non-passerines [10]. Comparison of substitution rates in these two groups indicated a 2-fold faster rate of synonymous codon evolution and a 10-fold greater rate of amino acid evolution in passerine birds than in non-passerines. Variability in the rate of evolution of pituitary GH has also been detected in mammals [11]. Whereas GH is highly conserved across most eutherian orders, the gene exhibits 25–50 fold higher rates of evolution in primates and artiodactyls.



Sequences from the GH gene region have been used to infer evolutionary relationships at a variety of taxonomic levels in fishes. GH coding sequences were used to resolve phylogenetic relationships of major clades of fishes [12–16]. Amino acid (aa) sequences from the protein-coding region of GH were first used for inferring the phylogeny of “bony” fishes by Bernardi et al. [17]. Interrelationships of major groups of fishes based on GH coding and aa sequences are generally in agreement with relationships based on morphology and other data [12,13,16–19].



GH intron sequences have been used to infer sub-familial phylogenetic relationships of salmonids [20] and labeonines of family Cyprinidae [21], and to characterize intraspecific, population genetic structures of various groups of fishes [8,18,22,23]. GH coding region sequences are being used as part of a multi-gene study of phylogenetic relationships of fishes of Order Cypriniformes [24].



Like salmonids, cypriniform fishes of Family Catostomidae and certain groups of Family Cyprinidae are tetraploids, believed to have arisen due to a hybridization event early in the history of these groups [25]. However, this hypothesis was not tested in an explicitly phylogenetic context, until recently. Work on the GH gene in the catostomid, Ictiobus bubalus, has revealed that GH duplication in catostomids was independent of the duplication event that gave rise to paralogous copies of GH in cyprinids [16]. Catostomids are the oldest known cypriniform fishes with fossils dating back to the lower Paleocene, suggesting that the minimum age for the divergence of catostomid species and paralogs of GH is 60 million years.



In this study, we describe genomic organization and size variation of duplicate copies of the GH gene in catostomid fishes. We use GH coding region sequences to infer phylogenetic relationships of paralogous copies of the gene in suckers and other cypriniform fishes. We also use GH coding DNA to infer variation in amino acid composition and structure of the GH protein.




2. Results and Discussion


2.1. Sequences of Catostomid GH


Partial to complete sequences of two distinct copies of GH were determined for 14 catostomid species; complete sequences for one of the GH copies were obtained from nine additional species (Table 1). BLAST searches of the coding regions revealed high similarity of the new GH sequences with GH copies of Ictiobus bubalus and other cypriniform fishes. The two GH copies are named GHI and GHII based on their sequence homology with GH copies in I. bubalus [16].



Table 1. List of species used in the comparative and phylogenetic analysis of catostomid GH sequences.







	
Species

	
Copy

	
Source

	
GenBank number






	
Carpiodes cyprinus

	
I

	
this study

	
GU937834




	
Carpiodes sp. cf. cyprinus

	
I

	
this study

	
GU937849




	
Catostomus catostomus

	
I

	
this study

	
GU937824




	
C. catostomus

	
II

	
this study

	
GU937826




	
C. commersonii

	
I

	
Mayden et al. 2009

	
FJ265027




	
C. commersonii

	
II

	
this study

	
GU937823




	
C. discobolus

	
I

	
this study

	
GU937830




	
C. discobolus

	
II

	
this study

	
GU937832




	
C. plebeius

	
I

	
this study

	
GU937833




	
C. plebeius

	
II

	
this study

	
GU937829




	
Chasmistes brevirostris

	
I

	
this study

	
GU937825




	
C. brevirostris

	
II

	
this study

	
GU937827




	
Cycleptus elongatus

	
I

	
Mayden et al. 2009

	
FJ265028




	
Deltistes luxatus

	
I

	
this study

	
GU937831




	
D. luxatus

	
II

	
this study

	
GU937828




	
Erimyzon oblongus

	
I

	
this study

	
GU937837




	
E. oblongus

	
II

	
this study

	
GU945705




	
E. tenuis

	
I

	
this study

	
GU937838




	
E. tenuis

	
II

	
this study

	
GU937839




	
Hypentelium etowanum

	
I

	
this study

	
GU937836




	
H. nigricans

	
I

	
Mayden et al. 2009

	
FJ265055




	
Ictiobus bubalus

	
I

	
Clements et al. 2004

	
AY375301




	
I. bubalus

	
II

	
Clements et al. 2004

	
AY375302




	
I. cyprinellus

	
I

	
this study

	
GU937840




	
Minytrema melanops

	
I

	
Mayden et al. 2009

	
FJ265050




	
M. melanops

	
II

	
this study

	
GU937822




	
Moxostoma austrinum

	
I

	
this study

	
GU937841




	
M. breviceps

	
I

	
this study

	
GU937842




	
M. carinatum

	
I

	
this study

	
GU937843




	
M. carinatum

	
II

	
this study

	
GU937835




	
M. cervinum

	
I

	
this study

	
GU937844




	
M. cervinum

	
II

	
this study

	
GU937845




	
Myxocyprinus asiaticus

	
I

	
Mayden et al. 2009

	
FJ265052




	
Thoburnia atripinnis

	
I

	
this study

	
GU937846




	
T. rhothoeca

	
I

	
this study

	
GU937847




	
T. rhothoeca

	
II

	
this study

	
GU937848




	
Acheilognathus typus

	

	
Mayden et al. 2009

	
FJ265056




	
Carassius auratus

	
I

	
Law et al. 1996

	
AF069398




	
C. auratus

	
II

	
Law et al. 1996

	
AF069399




	
C. a. gibelio

	

	
unpublished

	
AY265352




	
Clarius batrachus

	

	
unpublished

	
AF416485




	
Cyprinella lutrensis

	

	
Mayden et al. 2009

	
FJ265061




	
Cyprinus carpio

	
I a

	
Mayden et al. 2009

	
FJ265047




	
C. carpio

	
I b

	
unpublished

	
AJ640136




	
C. carpio

	
II

	
unpublished

	
AJ640135




	
Gyrinocheilus aymonieri

	

	
Mayden et al. 2009

	
FJ265031




	
Hemibarbus barbus

	

	
Mayden et al. 2009

	
FJ265032




	
Heteropneustus fossilis

	

	
unpublished

	
AF416489




	
Homaloptera leonardi

	

	
Mayden et al. 2009

	
FJ265022




	
Labeo senegalensis

	

	
Mayden et al. 2009

	
FJ265034




	
Lefua echigonia

	

	
Mayden et al. 2009

	
FJ265023




	
Leptobotia mantschurica

	

	
Mayden et al. 2009

	
FJ265035










We were able to produce complete coding region data for GHI for most catostomid species using methods described in the experimental section. We were able to produce data for the 5’ end of GHII (Exons 2 and 3) for most catostomid species using GHII specific primers developed in a previous study [16]. However, despite several attempts involving a number of different techniques (also described in the experimental section), thus far we have only been able to produce data for the 3’ end of GHII for species representing tribes Erimyzonini and Catostomini of subfamily Catostominae, in addition to a previously published GHII sequence for I. bubalus of subfamily Ictiobinae [ 16].



The genomic organization of GH in suckers is the same as in other Cypriniformes [26,27]. The complete GH genomic sequence comprises five exons and four introns with a total length of 1,500–2,700 nt depending on lengths of the four introns. Exons of different sucker species are of fixed lengths as follows: 10 (Exon 1), 140 (Exon 2), 117 (Exon 3), 162 (Exon 4), and 204 (Exon 5) nt. Introns vary in size across species, from 155–269 (Intron 1), 154–215 (Intron 2), 311–1,188 (Intron 3), and 102–154 (Intron 4) nt (Table 2). The GHII genomic sequence is shorter than that of GHI, with much of the difference due to the substantially longer 3rd intron of GHI.



Table 2. Genomic organization of GH gene in suckers includes length of UTRs, introns, GH fragment sequenced (Gene), and coding sequence (CDS). Museum vouchers are included when available.







	
Species

	
Copy

	
Voucher

	
5′ UTR

	
Intron 1

	
Intron 2

	
Intron 3

	
Intron 4

	
3′ UTR

	
Gene

	
CDS




	








	
Carpiodes cyprinus

	
I

	
None

	

	
na

	
na

	
na

	
na

	

	

	
607




	
Carpiodes sp. cf. cyprinus

	
I

	
None

	

	

	
207

	
985

	
154

	

	
1878

	
532




	
Catostomus catostomus

	
I

	
UAIC 11218.05

	

	
228

	
194

	
949

	
154

	

	
2117

	
550




	
C. catostomus

	
II

	
UAIC 11218.05

	
39

	
174

	
194

	
311

	
145

	

	
1470

	
607




	
C. commersonii

	
I

	
None

	
47

	
235

	
175

	
592

	
102

	

	
1788

	
633




	
C. commersonii

	
II

	
None

	
31

	
222

	
194

	
311

	
145

	

	
1513

	
610




	
C. discobolus

	
I

	
BYU 57986

	
36

	
235

	
198

	
599

	
102

	

	
1711

	
541




	
C. discobolus

	
II

	
BYU 57986

	
48

	
220

	
194

	
311

	
142

	

	
1531

	
613




	
C. plebeius

	
I

	
MSB 49632

	

	
235

	
198

	
599

	
102

	

	
1683

	
542




	
C. plebeius

	
II

	
MSB 49632

	

	
220

	
194

	
311

	
145

	

	
1512

	
603




	
Chasmistes brevirostris

	
I

	
OS 15963

	
35

	
235

	
198

	
596

	
102

	

	
2037

	
633




	
C. brevirostris

	
II

	
OS 15963

	

	
210

	
194

	
311

	
145

	

	
1492

	
593




	
Cycleptus elongates

	
I

	
TU 192331

	

	
242

	
203

	
965

	
143

	

	
2125

	
571




	
Deltistes luxatus

	
I

	
OS 15922

	
35

	
236

	
198

	
596

	
102

	

	
1925

	
633




	
D. luxatus

	
II

	
OS 15922

	

	
210

	
194

	
311

	
145

	

	
1517

	
611




	
Erimyzon oblongus

	
I

	
NCSM 37439

	

	

	
185

	
955

	
154

	

	
1845

	
543




	
E. oblongus

	
II

	
NCSM 37439

	
557

	
227

	
199

	

	

	

	
1157

	
150




	
E. tenuis

	
I

	
None

	
259

	
259

	
192

	
947

	
154

	

	
2395

	
633




	
E. tenuis

	
II

	
None

	
139

	
225

	
199

	

	

	

	
826

	
263




	
Hypentelium etowanum

	
I

	
None

	
176

	
248

	
197

	
832

	
146

	

	
2293

	
633




	
H.nigricans

	
I

	
None

	
147

	
252

	
197

	
901

	
146

	

	
2212

	
569




	
H. nigricans

	
II

	
None

	
639

	
226

	
181

	

	

	

	
1287

	
225




	
Ictiobus bubalus

	
I

	
TU 196158

	
56

	
Na

	
na

	
na

	
na

	
590

	

	
633




	
I.bubalus

	
II

	
TU 196158

	
56

	
Na

	
na

	
na

	
na

	
590

	

	
633




	
I. cyprinellus

	
I

	
None

	

	

	
204

	
870

	
154

	

	
1787

	
559




	
Minytrema melanops

	
I

	
TU 193988

	
147

	
254

	
193

	
1188

	
154

	

	
2569

	
633




	
M. melanops

	
II

	
TU 193988

	
627

	
225

	
182

	
320a

	
154

	

	
2141a

	
633




	
Moxostoma austrinus

	
I

	
None

	

	
261

	
200

	
914

	
143

	

	
2074

	
548




	
M. breviceps

	
I

	
None

	
38

	
225

	
200

	
936

	
143

	

	
2084

	
542




	
M. carinatum

	
I

	
None

	
211

	
259

	
200

	
936

	
143

	

	
2392

	
633




	
M. carinatum

	
II

	
None

	

	
225

	
179

	

	

	

	

	
150




	
M. cervinum

	
I

	
None

	

	
263

	
200

	
928

	
143

	

	
2092

	
542




	
M. cervinum

	
II

	
None

	
618

	
224

	
181

	

	

	

	

	
267




	
Myxocyprinus asiaticus

	
I

	
None

	
31

	
269

	
215

	
969

	
154

	

	
2180

	
541




	
Thoburnia atripinnis

	
I

	
None

	
211

	
252

	
195

	
936

	
152

	

	
2442

	
633




	
T. rhothoeca

	
I

	
None

	
208

	
252

	
199

	
914

	
146

	
64

	
2416

	
633




	
T. rhothoeca

	
II

	
None

	
638

	
224

	
154

	

	

	

	

	
267










The GH coding region of catostomids is 633 nt in length. The predicted amino acid (aa) sequences of GHI and GHII encode a protein of 210 aa, which is identical to the protein size reported for other cypriniforms [16,22,28].The putative GH signal peptide cleavage site is serine at aa position 23, which gives a predicted mature polypeptide size of 188 aa, consistent with other cypriniform species [28].



The two GH copies are very similar in both nt and aa sequence composition. Mean nt divergence between GHI and GHII is 9.61%. Mean pairwise aa sequence divergence between copies is 8.53%. Mean pairwise nt sequence divergence within paralogs (coding region data only) across catostomid species is 3.33% for GHI and 3.22% for GHII. Mean aa divergence within paralogs is 4.46% for GHI and 2.43% for GHII. The lower percentage in aa divergence for GHII is due to the incomplete data for several of the catostomine species.



An interesting and potentially evolutionarily significant difference in GH copies of suckers involves variation in the number of cysteine residues in the mature peptide. Pairs of cysteine residues form disulfide bonds, important to protein folding and stability [29]. GH in all vertebrates has four cysteine residues in highly conserved positions in the amino acid sequence. Ostariophysan fishes have an unpaired, fifth cysteine in aa position 145. In GHI of catostomids, the extra cysteine is replaced by tyrosine. The functional significance of this disparity has yet to be established.




2.2. Phylogenetic Analysis of GHI and GHII


The consensus trees obtained with MP and ML analyses are identical. Only the MP tree is shown (Figure 1). The MP analysis is based on 230 parsimony informative sites in the combined GHI/GHII data set (300 sites are constant). The MP consensus tree is 726 steps long. Order Cypriniformes (Node 1 in Figure 1) is recovered as a monophyletic group with strong bootstrap support. Gyrinocheilus aymonieri (Family Gyrinocheilidae) is strongly supported as the most basal cypriniform. Thus, GH data does not support a monophyletic Superfamily Cobitoidea inclusive of gyrinocheilids, loaches and catostomids, as supported by morphology [30,31] and analysis of multiple nuclear genes and mitogenome data [24].


Figure 1. Majority rule consensus tree of 2000 bootstrap replicates from maximum parsimony analysis of cypriniform GH sequence data. Filled circles at nodes represent bootstrap support greater than 95%.



[image: Ijms 11 01090f1]






Two strongly supported interfamilial groups make up the strongly supported sister group to Gyrinocheilus aymonieri. The first of these groups (Node 2) comprises a strongly supported family Cyprinidae (Node 3), sister to a strongly supported group of GHII sequences for representatives of tribe Catostomini (Node 4). The second group (Node 5) comprises a strongly supported basal group of cobitids and balitorids (Node 6), sister to a strongly supported group of GHI and GHII sequences representing other subfamilies and tribes of family Catostomidae (Node 7).



Family Cyprinidae comprises strongly supported subfamily groups of Cyprinines, and Leuciscines plus Gobionines. Within subfamily Cyprininae, the two copies of GH in tribe Cyprinini form a strongly supported monophyletic group, with sequences for each of the copies forming strongly supported monophyletic sister groups.



Five nt substitutions link cyprinid GH sequences with GHII sequences of suckers representing tribe Catostomini, thus rendering the two copies of GH in suckers, and catostomids as a whole, non monophyletic. In contrast, the GHI portion of the tree is well-resolved, monophyletic, and more or less consistent with hypotheses of catostomid relationships based on other data [32,33]. GHI of Myxocyprinus asiaticus is most basal. This species is sister to a strongly supported group comprising a monophyletic Catostominae GHI plus a strongly supported group of Cycleptus elongatus plus a monophyletic subfamily Ictiobinae GHI, the latter group comprising a monophyletic Carpiodes plus a monophyletic Ictiobus. The catostomid GHI tree is the strongly supported sister group to GHII sequences for the remaining catostomid species. In the latter group, Ictiobus bubalus GHII is basal and sister to a strongly supported group comprising GHII sequences for species representing tribes Erimyzonini, Moxostomatini and Thoburniini of subfamily Catostominae.



The sister group relationship of Catostomini GHII sequences with cyprinids was unexpected. Of the five nt substitutions inferred along this branch, four are not shared with other catostomid GH sequences, and two of these substitutions result in aa changes that are also not shared with other catostomids (valine to methionine at aa position 90 and leucine to methionine at aa position 169). The two aa substitutions are in C-terminal end of the protein, corresponding to Exons 4 and 5. GHII data from this end of the gene is available only for Minytrema melanops among Tribes Erimyzonini, Moxostomatini and Thoburniini. GHII sequences of Tribe Catostomini share nine nt characters with GHI and/or GHII sequences from other catostomids and would likely share more if GHII data were more complete. Two of the nine substitutions result in aa changes that are convergent with aa character states in other catostomid GH sequences (serine to cysteine in aa position 14 [signal peptide] and glycine to aspartic acid in aa position 81). It is possible that missing GHII data from the 3’ end of the gene, especially for other tribes of catostomines, would have supported a different tree topology.



When all catostomid GHII sequences are constrained to be monophyletic, the resulting tree is 11 steps longer than the MP consensus tree. When Catostomini GHII sequences are constrained to be the sister group of catostomid GHI plus the remaining GHII sequences, the resulting tree is only four steps longer than the MP consensus tree. Based on Templeton test results, neither constraint tree is significantly longer than the MP consensus tree (GHII monophyletic: Z = −1.9149, p = 0.0555; Catostomini GHII sister to remaining catostomid GHI and GHII sequences: Z= − 0.8944, p = 0.5034).




2.3. Selection Tests


We compared coding sequences of the mature GHI and GHII proteins of catostomids to gain insight into the possible evolutionary forces affecting the divergence of the two copies of the hormone. The comparison revealed a lower number of non-synonymous differences per non-synonymous site (dN) relative to the number of synonymous differences per synonymous site (dS) (P = 0.003, Z-test of positive selection), indicating a paucity of amino acid replacement changes compared with neutral expectations. Thus, the null hypothesis of strict neutrality (dN = dS) can be rejected in favor of the alternative hypothesis of purifying selection (dN < dS) for all catostomid species. Purifying selection is also suggested for pairwise comparisons of GHI and GHII of the cyprinids Carassius auratus and Cyprinus carpio. There is no evidence for positive selection among the GH sequences tested. The slow rate of divergence of the GH coding region observed across suckers and other cypriniforms is not surprising considering the protein’s critical role in promoting growth and differentiation at distant target sites [34] as well as its secondary functions in autocrine/paracrine regulation of cellular differentiation during embryonic development [35,36].





3. Experimental Section


3.1. DNA Extraction, PCR, and Sequencing


Total DNA was extracted from ethanol preserved muscle or fin tissue with the Purelink Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA). PCR amplification was conducted in two steps, long PCR and full-nested short PCR. The long PCR primer pair GH22F (5′-YTGTCKDTGGTSCTGGTYAGT-3′) and GHR (5′-CAGGGTRCAGTTKGAATCSAR-3′) was used in a 15.5-μL reaction mixture containing 9.725 μL sterile water, 1.5 μL Ex Taq buffer, 1.2 μL dNTPs (2.5mM), 1.0 μL each primer (10 μM), 0.075 μL Taq polymerase (Takara Ex Taq, Takara, Japan), and 1.0 μL of template DNA (ca. 50 ng/μL). The thermal cycle protocol was as follows: (1) initial denaturation at 94 °C for 60 s; (2) then 30 cycles of denaturation at 94 °C for 30 s; annealing at 52 °C for 30 s; and extension at 72 °C for 120 s; and (3) final extension at 72 °C for 10 min. The first round PCR produced an amplicon ranging from 1,200 to 2,300 bp (depending on length of introns) that spans half of exon 2 to near the termination codon in exon 5. This product contained both GH copies and was cloned in the pGEM-T Easy Vector (Promega, Madison, WI). Positive colonies (i.e. white colonies) were selected and used as a template for short PCR. Short PCR was conducted using up to three internal primer pairs GH22F and GH264R (5′-GCTYTTYTGBGTTTCATSTTT-3′), GH181F (5′-CAGCTGAGTAAAATCTTYCCT-3′) and GH295R (5′-CTCCCARGAYTCAATGAGGYG-3′), and GH274F (5′-AAGCTBCTTCGYATCTCYTT-3′) and GHR with the same reaction mixtures as above [16,24]. Thermal cycling profile was the same as first round PCR except extension time was reduced to 30 s. Part of the 5’ UTR and exons 1 through 3 were amplified and sequenced for catostomids by pairing GH copy specific primers GHIF (5′-AAAGCCTTCAACTAAGACTAAC-3′) and GHIIF (5′-CAAACCTTCAACTAAGACTTCA-3′), developed for Ictiobus bubalus [24], with primer GH240R (5′-TTCTGGGTTTCATGTTTGTCA-3′). Short PCR products were purified with ExoSAP-IT (USB, Cleveland, OH) and directly sequenced using BigDye Terminator v3.1 Cycle Sequencing Kits (Applied Biosystems, Carlsbad, CA). The resulting products were analyzed on an ABI 3730xl Genetic Analyzer (Applied Biosystems).



Obtaining complete coding region sequences of GHII for all sucker species proved challenging because we were not able to design internal primers specific to the 3’ end of this gene copy. We tried designing primers specific to the different sucker tribes and nesting them with our GHII-specific upstream primer and a non-specific downstream primer. This amplified both GH copies. We varied PCR techniques to increase GH yield by performing re-extensions, reconditioning PCR, and varying primer and DNA volumes. This resulted in non-specific primer binding with multiple bands observed during gel electrophoresis. We extended electrophoresis runs on PCR products, cutting out and gel purifying double bands and cloning both products. This yielded large sequences of GHI, but very small fragments of GHII. Lastly, we diluted the ligation mix during cloning in an effort to decrease plasmid incompatibility, thereby increasing the cloning efficiency of paralogous sequences. This method yielded the 3’ GHII data for species we have completed thus far.




3.2. Sequence Alignment,Variation, and Phylogenetic Analysis


Sequence chromatograms were assembled into contigs and edited with Sequencher 4.6 (Gene Codes, Madison, WI). Inconsistencies in base calls in cloned fragments were infrequent and were resolved by simple majority or left ambiguous. Additional GH sequences were obtained from NCBI by taxonomy and BLASTN searches. Sequences were aligned using CLUSTAL W [37] as implemented in BioEdit [38] and visually inspected for errors and improved manually. Sequence divergence (Tamura-Nei distance), Maximum Likelihood (RAxML [39]) and Maximum Parsimony (PAUP* [40]) analyses were performed on GH coding region data only, using the CIPRES web portal ( www.phylo.org). Node support is based on 2,000 bootstrap replicates. The extent of nucleotide sequence divergence was estimated by means of the uncorrected differences (p distance). Sequence variation was examined by plotting pairwise transitional (TS) and transversional (TV) differences against p distance.



Templeton tests, implemented in PAUP* [40], were conducted to test for differences in the lengths of the MP consensus tree and two alternative topologies constrained as follows: 1) All catostomid GHII sequences monophyletic; 2) Catostomini GHII sister to remaining catostomid GHI and GHII sequences.




3.3. Selection Tests


The number of synonymous substitutions per synonymous site (dS) and nonsynonymous substitutions per nonsynonymous site (dN) used in selection tests were estimated using the method of Nei and Gojobori [41] as implemented in MEGA version 4 [42]. Nucleotide and amino acid distances were estimated using a pairwise deletion option for each catostomid species for which complete or partial GHI and GHII sequence were determined. The presence of positive selection was analyzed by testing the null hypothesis that Ho: dN = dS, versus the alternative positive selection hypothesis that H1: dN > dS using the codon based z-test for selection [43]. The z-statistic and the probability that the null hypothesis is rejected were obtained as indicated by P > 0.05.





4. Conclusions


Suckers possess two copies of the growth hormone gene, presumably as a result of a genome duplication event early in the family’s history. The two gene copies are remarkably similar in both coding region nt sequence and aa sequence composition (>90% sequence homology) considering the antiquity of Family Catostomidae. Both GH copies have four cysteine residues in highly conserved positions in the amino acid sequence, which are common to all vertebrates. GHII has a fifth cysteine residue in aa position 145, which is common to all ostariophysan fishes. In GHI of catostomids, the fifth cysteine is replaced by tyrosine. The functional significance of this disparity has yet to be established.



The genomic organization of GH in suckers is the same as in other Cypriniformes, comprising five exons and four introns with a total length of 1,500–2,700 nt, depending on lengths of the four introns. The GHII sequence is shorter than GHI, with much of the difference due to the substantially longer 3rd intron of GHI. An important limitation of this study is that we were only able to produce data for the 5’ end of GHII (Exons 2 and 3) for several species representing tribes Erimyzonini and Moxostomatini of Subfamily Catostominae.



The pattern of phylogenetic relationships among cypriniform fishes inferred from coding region sequences of the nuclear GH gene agrees in most respects with relationships inferred from other molecular data. The patterns of relationships among suckers inferred from sequences of GHI and a subset of the GHII sequences are consistent and in basic agreement with relationships based on other data. The only unusual result is the sister relationship between GHII sequences of Tribe Catostomini and cyprinid GH sequences. Although this topology is not significantly different from topologies constrained to make all catostomid GHI and GHII sequences monophyletic, it is the most parsimonious topology and it is supported by uniquely derived nt and aa characters. There are two possible explanations for this result, both requiring additional study: (1) it reflects the effects of incomplete GHII data for a number of catostomine species on character state reconstruction in this portion of the GHII tree; (2) it reflects homoplasy resulting from purifying selection or other functional constraints on GHII evolution. We are gathering the necessary data to address the first of these possibilities before addressing the second.







Acknowledgments


This work was supported by NSF grants DEB 0212991 (Systematics of Subfamily Ictiobinae) and EF 0431259 (Collaborative Cypriniformes Tree of Life) to H.L.B. We thank Mark Clements (Harvard University Herbaria) for his contributions to both of these projects. We thank Rick Mayden, Rob Wood, and Kevin Tang (St. Louis University), Andrew Simon (University of Minnesota), Phil Harris (University of Alabama), Wayne Starnes and Gabriela Hoag (North Carolina State Museum), Tom Turner and Lex Snyder (Museum of Southwestern Biology), Doug Markle (Oregon State University), Bob Jenkins (Roanoke College), Guenter Schuster (Eastern Kentucky University) and Mollie Cashner (Tulane University) for help securing tissues of many of the cypriniform fishes and outgroups used in this study. We thank Donnielle Minor (Dillard University) for assistance with laboratory work. Lastly, we thank two anonymous reviewers for comments and editorial suggestions that improved the manuscript.




References and Notes


	1. 
Ohno, S. Evolution by Gene Duplication; Springer-Verlag: New York, NY, USA, 1970. [Google Scholar]

	2. 
Lynch, M; Conery, JS. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar]

	3. 
Vogel, G. Doubled genes may explain fish diversity. Science 1998, 281, 1119–1121. [Google Scholar]

	4. 
Meyer, A; Schartl, M. Gene and genome duplications in vertebrates: The one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol 1999, 1, 699–704. [Google Scholar]

	5. 
Meyer, A; van de Peer, Y. From 2R to 3R: Evidence for a fish-specific genome duplication (FSGD). Bioessays 2005, 27, 937–945. [Google Scholar]

	6. 
Volff, JN. Genome evolution and biodiversity in teleost fish. Heredity 2005, 94, 280–294. [Google Scholar]

	7. 
Chen, TT; Marsh, A; Shamblott, M; Chan, K-M; Tang, Y-L; Cheng, CM; Yang, B-Y. Structure and evolution of fish growth hormone and insulinlike growth factor genes. In Fish Physiology: Molecular Endocrinology of Fish; Sherwood, NM, Hew, CL, Eds.; Academic Press, Inc: San Diego, CA, USA, 1994; Volume 13, pp. 179–209. [Google Scholar]

	8. 
Yowe, DL; Epping, RJ. Cloning of the barramundi growth hormone-encoding gene: a comparative analysis of higher and lower vertebrate GH genes. Gene 1995, 162, 255–259. [Google Scholar]

	9. 
Kawauchi, H; Suzuki, K; Yamazaki, T; Moiryama, S; Nozaki, M; Yamaguchi, K; Takahashi, A; Youson, J; Sower, SA. Identification of growth hormone in the sea lamprey, an extant representative of a group of the most ancient vertebrates. Endocrinology 2002, 143, 4916–4921. [Google Scholar]

	10. 
Yuri, T; Kimball, RT; Braun, EL; Braun, MJ. Duplication of accelerated evolution and growth hormone gene in passerine birds. Mol. Biol. Evol 2008, 25, 352–361. [Google Scholar]

	11. 
Forsyth, IA; Wallis, M. Growth hormone and prolactin—Molecular and functional evolution. J. Mam. Gland Biol. Neoplasia 2002, 7, 291–312. [Google Scholar]

	12. 
Rubin, DA; Dores, DM. Cloning of a growth hormone from a primitive bony fish and its phylogenetic relationships. Gen. Comp. Endo 1994, 95, 71–83. [Google Scholar]

	13. 
Rubin, DA; Youson, JH; Marra, LE; Dores, DM. Cloning of a gar (Lepisosteus osseus) GH cDNA: trends in actinopterygian GH structure. J. Mol. Endo 1996, 16, 73–80. [Google Scholar]

	14. 
Schneider, JF; Myster, SH; Hackett, PB; Guise, KS; Faras, AJ. Molecular cloning and sequence analysis of the cDNA for northern pike (Esox lucius) growth hormone. Mol. Mar. Biol. Biotech 1992, 1, 106–112. [Google Scholar]

	15. 
Venkatesh, B; Brenner, S. Genomic structure and sequence of the pufferfish (Fugu rubripes) growth hormone-encoding gene: A comparative analysis of teleost growth hormone genes. Gene 1997, 187, 211–215. [Google Scholar]

	16. 
Clements, MD; Bart, HL, Jr; Hurley, DL. Isolation and characterization of two distinct growth hormone cDNAs from the tetraploid smallmouth buffalofish (Ictiobus bubalus). Gen. Comp. Endo 2004, 136, 411–418. [Google Scholar]

	17. 
Bernardi, G; D'Onofrio, G; Caccio, S; Bernardi, G. Molecular phylogeny of bony fishes, based on the amino acid sequence of the growth hormone. J. Mol. Evo 1993, 37, 644–649. [Google Scholar]

	18. 
Almuly, R; Cavari, B; Ferstman, H; Kolodny, O; Funkenstein, B. Genomic structure and sequence of the gilthead seabream (Sparus aurata) growth hormone-encoding gene: identification of minisatellite polymorphism in intron I. Genome 2000, 43, 836–845. [Google Scholar]

	19. 
Rubin, DA; Dores, DM. Obtaining a more resolute teleost growth hormone phylogeny by introduction of gaps in sequence alignment. Mol. Phylo. Evol 1995, 4, 129–138. [Google Scholar]

	20. 
Oakley, TH; Phillips, RB. Phylogeny of salmonine fishes based on growth hormone introns: Atlantic (Salmo) and Pacific (Oncorhynchus) salmon are not sister taxa. Mol. Phylo. Evol 1999, 11, 381–393. [Google Scholar]

	21. 
Rajesh, R; Majumdar, KC. A comparative account of the structure of the growth hormone encoding gene and genetic interrelationship in six species of the genus Labeo. Fish Physiol. Biol 2007, 33, 311–333. [Google Scholar]

	22. 
Schlee, P; Fuchs, H; Blusch, J; Werner, T; Rotmann, O; Stein, H. Genetic polymorphism in the intron of the growth hormone gene of the bleak. J. Fish Biol 1996, 48, 1275–1277. [Google Scholar]

	23. 
Yue, G; Li, Y; Orban, L. Characterization of microsatellites in the IGF-2 and GH genes of Asian seabass (Lates calcarifer). Mar. Biotech 2001, 3, 1–3. [Google Scholar]

	24. 
Mayden, RL; Chen, W-J; Bart, HL, Jr; Doosey, MH; Simons, AM; Tang, KL; Wood, RM; Agnew, MK; Yang, L; Hirt, MV; Clements, MD; Saitoh, K; Sado, T; Miya, M; Nishida, M. Reconstructing the phylogenetic relationships of the Earth’s most diverse clade of freshwater fishes—Order Cypriniformes (Actinopterygii: Ostariophysi): A case study using multiple nuclear loci and the mitochondrial genome. Mol. Phylo. Evol 2009, 51, 500–514. [Google Scholar]

	25. 
Uyeno, T; Smith, GR. Tetraploid origin of the karyotype of catostomid fishes. Science 1972, 175, 644–646. [Google Scholar]

	26. 
Chiou, C-S; Chen, H-T; Chang, W-C. The complete nucleotide sequence of the growth-hormone gene from the common carp (Cyprinus carpio). Biochim. Biophys. Acta 1990, 1087, 91–94. [Google Scholar]

	27. 
Zhu, Z; He, L; Chen, TT. Primary-structural and evolutionary analyses of the growth-hormone gene from grass carp (Ctenopharyngodon idellus). Eur. J. Biochem 1992, 207, 643–648. [Google Scholar]

	28. 
Noh, JK; Cho, KN; Nam, YK; Kim, DS; Kim, CG. Genomic organization and sequence of the mud loach (Misgurnus mizolepis) growth hormone gene: A comparative analysis of teleost growth hormone genes. Mol. Cells 1999, 9, 638–645. [Google Scholar]

	29. 
Deeds, EJ; Shakhnavich, EI. A structure-centric view of protein evolution, design, and adaptation. Adv. Enzymol. Relat. Areas Mol. Biol 2007, 75, 133–191. [Google Scholar]

	30. 
Sawada, Y. Phylogeny and zoogeography of the superfamily Cobitoidea (Cyprinoidei, Cypriniformes). Mem. Fac. Fish. Hokkaido Univ 1982, 28, 65–223. [Google Scholar]

	31. 
Siebert, DJ. Interrelationships among Families of the ORDER CYPRINIFORMES (Teleostei) Unpubl. Ph.D. Thesis, City University of New York: New York, NY, USA, 1987.

	32. 
Harris, PM; Mayden, RL. Phylogenetic relationships of major clades of Catostomidae (Teleostei: Cypriniformes) as inferred from mitochondrial SSU and LSU rDNA sequences. Mol. Phylo. Evol 2001, 20, 225–237. [Google Scholar]

	33. 
Doosey, MH; Bart, HL, Jr; Saitoh, K; Miya, M. Phylogenetic relationships of catostomid fishes (Actinopterygii: Cypriniformes) based on mitochondrial ND4/ND5 gene sequences. Mol. Phylo. Evol 2010, 54, 1028–1034. [Google Scholar]

	34. 
Etherton, TD; Bauman, DE. Biology of somatotropin in growth and lactation of domestic animals. Physiol. Rev 1998, 78, 235–241. [Google Scholar]

	35. 
Waters, MJ; Shang, CA; Behnchen, SN; Tam, SP; Li, H; Shen, B; Lobie, PE. Growth hormone as a cytokine. Clin. Exp. Pharmacol. Physiol 1999, 26, 760–764. [Google Scholar]

	36. 
Sanders, ES; Harvey, S. Growth hormone as an early embryonic growth and differentiation factor. Anat. Embryol 2004, 209, 1–9. [Google Scholar]

	37. 
Thompson, JD; Higgins, DG; Gibson, TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22, 4673–4680. [Google Scholar]

	38. 
Hall, TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 1999, 41, 95–98. [Google Scholar]

	39. 
Stamatakis, A; Hoover, P; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Systemat. Biol 2008, 57, 758–771. [Google Scholar]

	40. 
Swofford, DL. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods), 4th ed; (40b10); Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]

	41. 
Nei, M; Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol 1986, 3, 418–426. [Google Scholar]

	42. 
Tamura, K; Dudley, J; Nei, M; Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol 2007, 24, 1596–1599. [Google Scholar]

	43. 
Nei, M; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]













© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).







nav.xhtml


  ijms-11-01090


  
    		
      ijms-11-01090
    


  




  





media/file0.png
Achellognathus lypus
Cyprinella lutrensis
Hemibarbus barbus
Carassius auratus |
Carassius auratus gibelio
Carassius cuvier
Cyprinus carpio | a
Cyprinus carpio 1 b
Carassius auratus I
Cyprinus carpio I
Labeo senegalensis
4 [ Catostomus catostomus I
Catostomus commersonii Il
Catostomus discobolus Il
Chasmistes brevirostris I
Detistes luxatus 1|
Catostomus plebeius I
Carpiodes cyprinus |
Carpiodes sp. cf. cyprinus |
Ictiobus bubalus |
Ietiobus cyprinelus |
Cycleptus elongatus |
Catostomus catostomus |
Catostomus commersoni |
Catostomus discobolus |
Catostomus plebeius |
Chasmistes brevirostris |
Deltistes luxatus |
Hypentelium etowanum |
Hypentelium nigricans |
Thoburnia atripinnis |
Moxostoma austrinum |
Moxostoma breviceps |
Moxostoma carinatum |
Moxostoma cervinum |
Thoburmia rhothoeca |
Erimyzon oblongus |
Erimyzon tenuis |
Minytrema melanops |
Myxocyprinus asiaticus |
Erimyzon oblongus 1
Minytrema melanops 1
Erimyzon tenuis 1|
Hypentelium nigricans 1
Moxostoma carinatum I
Moxostoma cervinum Il
Thoburmia rhothoeca I

Ietiobus bubalus 1|

Homaloptera leonardi
Lefua echigonia
Leptobotia mantschurica

Gyrinocheilus aymonieri

— 5changes

§ Clrusvaraous
Het

teropneustes fossilis





media/file1.png
Achellognathus lypus
Cyprinella lutrensis
Hemibarbus barbus
Carassius auratus |
Carassius auratus gibelio
Carassius cuvier
Cyprinus carpio | a
Cyprinus carpio 1 b
Carassius auratus I
Cyprinus carpio I
Labeo senegalensis
4 [ Catostomus catostomus I
Catostomus commersonii Il
Catostomus discobolus Il
Chasmistes brevirostris I
Detistes luxatus 1|
Catostomus plebeius I
Carpiodes cyprinus |
Carpiodes sp. cf. cyprinus |
Ictiobus bubalus |
Ietiobus cyprinelus |
Cycleptus elongatus |
Catostomus catostomus |
Catostomus commersoni |
Catostomus discobolus |
Catostomus plebeius |
Chasmistes brevirostris |
Deltistes luxatus |
Hypentelium etowanum |
Hypentelium nigricans |
Thoburnia atripinnis |
Moxostoma austrinum |
Moxostoma breviceps |
Moxostoma carinatum |
Moxostoma cervinum |
Thoburmia rhothoeca |
Erimyzon oblongus |
Erimyzon tenuis |
Minytrema melanops |
Myxocyprinus asiaticus |
Erimyzon oblongus 1
Minytrema melanops 1
Erimyzon tenuis 1|
Hypentelium nigricans 1
Moxostoma carinatum I
Moxostoma cervinum Il
Thoburmia rhothoeca I

Ietiobus bubalus 1|

Homaloptera leonardi
Lefua echigonia
Leptobotia mantschurica

Gyrinocheilus aymonieri

— 5changes

§ Clrusvaraous
Het

teropneustes fossilis





media/file2.png





