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Abstract: Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the 

flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells 

but with a much lower cost. This review not only covers the fundamentals of DSSC but 

also the related cutting-edge research and its development for industrial applications. Most 

recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO 

electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have 

all been included and discussed.  
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1. Introduction 

Photoelectrochemical solar cell is generally composed of a photoactive semiconductor working 

electrode and counter electrode made of either metal (e.g., Pt) or semiconductors. Both electrodes are 

immersed in the electrolyte containing suitable redox couples. If the semiconductor-electrolyte 

interface (SEI) is illuminated with a light having energy greater than the bandgap of the semiconductor, 

photogenerated electrons/holes are separated. The photogenerated minority carriers arrive at the 

interface of the semiconductor-electrolyte. Photogenerated majority carriers accumulate at the 

backside of the semiconductor. With the help of a charge-collecting substrate, photogenerated majority 

carriers are transported via a load to the counter electrode where these carriers electrochemically react 

with the redox electrolyte. A pioneering photoelectrochemical experiment was realized by obtaining 

photocurrent between two platinum electrodes immersed in the electrolyte containing metal halide 

salts [1]. It was later found that the photosensitivity can be extended to longer wavelengths by adding a 

dye to silver halide emulsions [2]. The interest in photoelectrochemistry of semiconductors led to the 

discovery of wet-type photoelectrochemical solar cells [3–5]. Grätzel has then extended the concept to 
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the dye sensitized solar cells (DSSC) by adsorption of dye molecules on the nanocrystalline  

TiO2 electrodes.  

2. Dye Sensitized Solar Cells (DSSCs) 

DSSCs differ from conventional semiconductor devices in that they separate the function of light 

absorption from charge carrier transport. Dye sensitizer absorbs the incident sunlight and exploits the 

light energy to induce vectorial electron transfer reaction. Thus DSSCs have the following advantages 

comparing with the Si based photovoltaics. (1) It is not sensitive to the defects in semiconductors such 

as defects in Si. (2) The SEI is easy to form and it is cost effective for production. (3) It is possible to 

realize the direct energy transfer from photons to chemical energy. The earlier photoelectrochemical 

studies of dye sensitization of semiconductors focused on flat electrodes, but these systems were 

facing an intrinsic problem [6]. Only the first monolayer of adsorbed dye results in effective electron 

injection into the semiconductor, but such light-harvesting from a single dye monolayer is extremely 

small. By application of nanoporous TiO2, the effective surface area can be enhanced 1000-fold. An 

intriguing feature in the nanocrystalline TiO2 film is that the charge transport of the photo-generated 

electrons passing through all the particles and grain boundaries is highly efficient [7]. Solar cell based 

on a dye sensitized porous nanocrystalline TiO2 photoanode with attractive performance was first 

reported by Grätzel et al. [8,9]. Interest in nanoporous semiconductor matrices permeated by an 

electrolyte solution containing dye and redox couples has been stimulated by their reports. The power 

conversion efficiency of the DSSC has been currently improved to 11.5% [10] since the first DSSC 

was reported with efficiency of 7.1% [9], comparable with the amorphous Si cells [11]. Large-size 

DSSC has been prepared on silver grid embedded fluorine-doped tin oxide (FTO) glass substrate by 

screen printing method [12]. Under the standard test condition, energy conversion efficiency of active 

area was achieved to 5.52% in 5 cm × 5 cm device, which is comparable to 6.16% of small-size cell 

prepared at similar condition. G24 Innovation Ltd., based on the technology invented by Grätzel, uses 

a low-cost, roll-to-roll process to make its flexible DSSC modules, which produce 0.5 watts of power 

under direct sunlight. Miyasaka et al. developed a 2.1 m × 0.8 m DSSC module by connecting eight 

pieces of 10 cm2 panels with six embedded cells. The module conversion efficiency is expected to be 

approximately 3% and was displayed at the 1st International Photovoltaic Power Generation  

Expo in 2008.  

In DSSC, the initial photoexcitation occurs in the light absorbing dye as shown in Scheme 1. 

Nanoporous semiconductors such as TiO2 not only act as support for dye sensitizer but also function as 

electron acceptor and electronic conductor. Subsequent injection of electrons from the photo-excited 

dye into the conduction band of semiconductors results in the flow of current travelling across the 

nanocrystalline TiO2 film to the charge collecting electrode and then to the external circuit. Sustained 

conversion of light energy is facilitated by regeneration of the reduced dye sensitizer either via a 

reversible redox couple (O/R), which is usually I3
-/I- (Scheme 1A) or via the electron donation from a 

p-type semiconductor (Scheme 1B).  

Scheme 1A shows the mechanism of a traditional wet-type DSSC containing redox couples in 

electrolyte. The photoanode, made of a nanoporous dye-sensitized n-type semiconductor, receives 

electrons from the photo-excited dye sensitizer which is thereby oxidized to S+. The neutral dye 
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sensitizer (S) can be regenerated by the oxidation reaction (RO) of the redox species dissolved in the 

electrolyte. The mediator R will then be regenerated by reduction at the cathode (OR) by the 

electrons circulated through the external circuit. 

Scheme 1. Operation mechanism of the dye sensitized electrochemical solar cell (DSSC). 

S: Dye sensitizer, S*: Electronically excited dye sensitizer, S+: oxidized dye sensitizer O/R: 

redox couple (e,g, I3
-/I-). CB: Conduction band for semiconductors, VB: valence band for 

semiconductors. (A) Wet-type DSSC with redox couple in the liquid electrolyte. (B) Solid 

state DSSC with a p-type semiconductor to replace the electrolyte containing the redox 

couple.  
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The need for DSSC to absorb far more of the incident light was the driving force for the 

development of mesoscopic semiconductor materials with an enormous internal surface area. The 

major breakthrough in DSSC was the use of a high surface area nanoporous TiO2 layer. A single 

monolayer of the dye on the semiconductor surface was sufficient to absorb essentially all the incident 

light in a reasonable thickness (several um) of the semiconductor film. TiO2 became the semiconductor 

of choice with advantage properties of cheap, abundant, and non-toxic [14]. The choice of dye is also 

an important parameter. The first organic-dye photosensitization was reported in 1887 [13]. In 

traditional DSSC, the standard dye was tris(2,2’-bipyridyl-4,4’-carboxylate)ruthium (II) (N3 dye). The 

function of the carboxylate group in the dye is to attach the semiconductor oxide substrate by 

chemisorption [14]. The dye must carry attachment groups such as carboxylate or phosphonate to 

firmly graft itself to the TiO2 surface. The attachment group of the dye ensures that it spontaneously 

assembles as a molecular layer upon exposing the oxide film to a dye solution. It will make a high 

probability that, once a photon is absorbed, the excited state of the dye molecule will relax by electron 

injection to the semiconductor conduction band. The photovoltaic performance of N3 dye has been 

irreplaceable by other dye complexes since 1993 [15]. A credible challenger was identified with 

tri(cyanato-2,2’,2’’-terpyridyl-4,4’,4’’-tricarboxylate) Ru (II) (black dye) [8], whose response extends 

100 nm further into the IR than that of the N3 dye [16]. It is not until recently that a high molar 

extinction coefficient heteroleptic ruthium complex has been synthesized and demonstrated as more 

efficient sensitizer for DSSCs [10].  

Because of the encapsulation problem posed by the use of liquid in the conventional wet-type 

DSSC, much work is being done to make an all solid state DSSC [17,18]. The use of solvent free 

electrolytes in the DSSC is supposed to offer very stable performance for the device. To construct a 

full solid-state DSSC, a solid p-type conductor should be chosen to replace the liquid electrolyte. The 

redox levels of the dye and p-type materials have to be adapted carefully as Scheme 1B shows. It 

results in an electron in the conduction band of n-type semiconductors (e.g., TiO2) and a hole localized 

on the p-type conductor. Hole transporting amorphous materials have been used in nanocrystalline 

TiO2 based DSSC to transport hole carriers from the dye cation radical to the counter electrode instead 

of using the I3
-/I- redox species [17,19]. Early work focused on the replacement of I3

-/I- liquid 

electrolyte with CuI. CuI as a p-type conductor, can be prepared by precipitation from an acetonitrile 

solution at room temperature and it is also a solid state ionic conductor. Cells made this way gave solar 

efficiencies of several percent, but their stability is relatively poor due to the liability of CuI to air and 

light [18]. Besides CuI, CuSCN has also been tried [20,21]. Organic hole transporting materials will 

offer flexibility and easier processing. Bach et al. used a hole conducting amorphous organic solid 

deposited by spin coating [17]. However, deposition in nanoporous materials cannot be easily achieved 

by traditional methods such as evaporation or spin coating. Electrochemical deposition of organic 

semiconductors on high surface area electrodes for solar cells has also been described [22]. A thin 

layer of organic semiconductors can be electrochemically deposited on a nanoporous  

TiO2 electrode.  

One of the first solid state dye sensitized heterojunctions between TiO2 and conducting polymer 

was reported by Murakoshi and coworkers [23]. The prototype of this kind of solid state DSSC is 

shown in Figure 1.  
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Conducting polymer such as pyrrole was electrochemically polymerized on porous nanocrystalline 

TiO2 electrode, which was sensitized by N3 dye. Polypyrrole successfully worked as a hole transport 

layer connecting dye molecules anchored on TiO2 to the counter electrode. Conducting polyaniline has 

also been used in solid state solar cells sensitized with methylene blue [24]. This solid state DSSC was 

fabricated using conducting polyaniline coated electrodes sandwiched with a solid polymer electrolyte, 

poly(vinyl alcohol) with phosphoric acid. It exhibits good photoresponse to visible light. The presence 

of illumination enhances the electrochemical reaction (doping of polyaniline by migration of anions). 

The observed I-V characteristics are the superposition of the Ohmic charge transport and the 

electrochemical reaction. Recently, a low bandgap polymer consisting of alternating thiophene and 

benzothiadiazole derivatives was used in the bulk heterjunction DSSC. This solid state DSSC using 

conducting polymer exhibited a power conversion efficiency of 3.1% [25]. To date, the highest power 

conversion efficiency value with organic hole-transport materials in DSSC is over 5%, reported by 

Snaith et al. [26]. 

Figure 1. The prototype solid state DSSC.  

 

 

Construction of quasi-solid-state DSSC has also been explored. Quasi-solid-state DSSCs can be 

made based on the polymer grafted nanoparticle composite electrolyte [27], cyanoacrylate electrolyte 

matrix [28], and a novel efficient absorbent for liquid electrolyte consisting poly(acrylic acid)-

poly(ethylene glycol) hybrid [29]. The polymer gels in above cases function as ionic conductors. 

Room temperature ionic liquids are also known as good ionic conductors [30,31]. DSSCs using 

imidazolium type ionic liquid crystal systems as effective electrolytes were reported [32]. Solid state 

DSSCs based on ionic liquids were reported to enhance the conversion efficiency of DSSCs [33]. Ionic 

liquid oligomers, which were prepared by incorporating imidazole ionic liquid with polyethylene oxide 

oligomers have also been tried as electrolyte for DSSC [34]. It shows that the increase of the 

polyethylene oxide molecular weight in the ionic liquid oligomers results in faster dye regeneration 

and lower charge transfer resistance of I3
- reduction leading to the improvement of DSSC performance. 

However, the main limiting factors in the DSSC based on ionic liquids comparing with the 
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conventional wet-type DSSC are the higher recombination and lower injection of charge. At low 

temperatures, the higher diffusion resistance in the ionic liquid may also be the main limiting factor 

through its effect to the fill factor [35]. The non-volatile character of ionic liquids also offers the easy 

packaging for printable DSSCs. Plastic and solid state DSSCs incorporating single walled carbon 

nanotubes (SWNTs) and imidazorium iodide derivative have been fabricated [36]. The introduction of 

carbon nanotubes will improve the solar cell performance through reduction of the series resistance. 

TiO2 coated carbon nanotubes (CNTs) were recently used in DSSCs. Compared with a conventional 

TiO2 cell, the TiO2-CNT (0.1 wt%) cell gives an increase to short circuit current density (JSC), which 

results in ~50% increase in conversion efficiency from 3.32% to 4.97% [37]. It is supposed that the 

enhancement of JSC is due to improvement in interconnectivity between the TiO2 particles and the 

TiO2-CNTs in the porous TiO2 film. When employing SWNTs as conducting scaffolds in a TiO2 based 

DSSC, the photoconversion efficiency can be boosted by a factor of 2 [38]. In absence of SWNT 

network, a maximum internal photon-current efficiency (IPCE) of 7.36% (350 nm) at 0 V (vs. SCE) 

was observed. The IPCE was enhanced significantly to 16% when the SWNT scaffolds support the 

TiO2 pariticles. TiO2 nanoparticles were dispersed on SWNT films to improve photoinduced charge 

separation and transport of carriers to the collecting electrode surface. Another type of carbon 

nanomaterial, graphene, was also introduced to the study of DSSC recently. Transparent, conductive, 

and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window 

electrodes are used for solid-state DSSCs [39].These graphene films are fabricated from exfoliated 

graphite oxide, followed by thermal reduction. The obtained films exhibit a high conductivity of  

550 S/cm and a transparency of more than 70% over 1,000−3,000 nm. Furthermore, they show high 

chemical and thermal stabilities as well as an ultrasmooth surface with tunable wettability. 

A strong increase in energy conversion efficiency could also be observed when tertiary 

butylpyridine was introduced into the matrix of the organic hole conductor [40] with similar effects for 

classic DSSC with electrolyte/TiO2 junctions [15]. The increase in Voc may be due to either a charging 

of surface states or a shift of the conduction band edge [41]. Lithium ion interactions into TiO2-B 

nanowires [42], nanocrystalline rutile TiO2 particles [43] and a class of perovskite based lithium ion 

conductors [44] have been reported. Photovoltages of nanoporous TiO2 based DSSC was found to be 

improved by up 200 mV with a negligible decrease in photocurrent by treating TiO2 electrodes with 

intercalation of Li+ [45]. The enhancement of photovoltage is explained in terms of the formation of a 

dipole layer due to adsorption of Li+ on the TiO2 surface generated by the reaction of intercalated Li 

atoms with moisture in air. Addition of lithium salt Li[(CF3SO2)2N] to the spin coating solution of the 

hole conductor also resulted in a strong performance increase in the final device. The underlying 

mechanism remained unidentified although charge screening due to partial ionic mobility inside the 

hole conductor matrix and/or the effect of the present lithium ions on the flat band potential of TiO2 

were postulated as possible mechanisms [46].  

Other n-type semiconducting electrodes besides TiO2 have been probed for DSSC. The best studied 

of the alternative materials to TiO2 is ZnO [47–49]. ZnO has similar band gap (3.2 eV) and band edge 

position to TiO2 [50] with similar or smaller crystallite sizes than for typical TiO2. The fabrication of 

DSSC with a branched structure of ZnO nanowires was recently reported [51]. ZnO nanoparticles and 

nanowires have been used enabling lower temperature manufabricated DSSC electrodes [52,53]. 

Unlike TiO2, ZnO does not need high-temperature annealing process and extends the electrodes to 
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flexible polymer substrates. The striking optical properties of nanoporous silicon obtained by 

photoanodic etching [54] extended the materials research scope of photoelectrochemistry to other 

porous crystalline semiconductors [55]. At present, there is a considerable effort being devoted to 

DSSC with nanoporous photoanodes [9,56]. Nanoporous semiconductor electrodes were further 

investigated within the scope of quantum dots. Photoelectrochemical activity has been shown when the 

quantum dots such as CdS and PbS are attached to a metal electrode in a sub-monolayer array [57–61]. 

An ordered or disordered monolayer/sub-monolayer of nanometer-sized semiconductor particles (e.g., 

PbS quantum dots) can be attached to a conducting substrate either by directly or via a self-assembled 

organic monolayer [62,63]. Photoelectrochemical study of organic-inorganic hybrid thin films via 

electrostatic layer by layer assembly was reported [64]. This provides a new way to produce 

nanoporous semiconductor electrodes for DSSCs. 

3. Conclusions 

Solid state and printable DSSCs will have a promising future for the development of efficient and 

flexible optoelectronics. Even though DSSCs have lower light to electricity conversion efficiency than 

the best thin film Si solar cells, they are considerably cheaper to be made and feasible to be printed on 

flexible substrate. Amorphous Si thin-film cells degrade in sunlight over time, and their efficiencies 

also go down if the sunlight hits them at some special incident angle. DSSCs are longer lasting and 

work at wide angles. In addition, DSSCs work more efficiently in indoor light, because the dye 

absorbs diffuse sunlight as well as fluorescent lighting. With improvements on nonvolatile electrolytes, 

organic dyes and nanoporous semiconducting electrode, cheaper but more robust DSSCs will 

definitely take their share in the solar cell markets competing with the traditional thin film  

solar technologies.  
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