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Abstract: A shortcoming of most correlation distance methods based on the composition 
vectors without alignment developed for phylogenetic analysis using complete genomes is 
that the “distances” are not proper distance metrics in the strict mathematical sense. In this 
paper we propose two new correlation-related distance metrics to replace the old one in our 
dynamical language approach. Four genome datasets are employed to evaluate the effects 
of this replacement from a biological point of view. We find that the two proper distance 
metrics yield trees with the same or similar topologies as/to those using the old “distance” 
and agree with the tree of life based on 16S rRNA in a majority of the basic branches. 
Hence the two proper correlation-related distance metrics proposed here improve our 
dynamical language approach for phylogenetic analysis. 

Keywords: phylogenetic analysis; complete genome; composition vector; correlation-
related distance metric 
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1. Introduction  

Whole genome sequences are generally accepted as excellent tools for studying evolutionary 
relationships [1]. Traditional distance methods with multiple alignment or various sequence 
evolutionary models for phylogenetic analysis are not directly applicable to the analysis of  
complete genomes. 

A number of methods without sequence alignment for deriving species phylogeny based on overall 
similarities of complete genomes have been developed. These include fractal analysis [2–4], dynamical 
language model [5], information-based analysis [6–8], log-correlation distance and Fourier 
transformation with Kullback-Leibler divergence distance [9], Markov model [10–15], principal 
component analysis [16] and singular value decomposition (SVD) [17–19]. The analyses based on the 
Markov model and dynamical language model without sequence alignment using 103 prokaryotes and 
6 eukaryotes have yielded trees separating the three domains of life, Archaea, Eubacteria and Eukarya, 
with the relationships among the taxa consistent with those based on traditional analyses [5,11]. These 
two methods were also used to analyze the complete chloroplast genomes [5,12]. The SVD method 
was used to analyze mitochondrial genomes of 64 selected vertebrates [19]. A correlation-distance 
method without removing the random background (similar to [7]) was used to analyze rRNA gene 
sequences as DNA barcodes [20].  

In the above approaches of SVD, Markov model and dynamical language model, there is a step to 
calculate the correlation-related distance between two genomes after removing the randomness or 
noise from the composition vectors. A drawback is that these correlation-related distances are not 
proper distance metrics in the strict mathematical sense (Professor Bailin Hao, personal 
communication, 2009; see also [21]). There are some ways to overcome this problem. One way is to 
change the concept of distance to that of dissimilarity proposed by Xu and Hao [15] in the Markov 
model approach. Another way is to replace a pseudo-distance by a proper distance metric, which 
requires that the results are not worsened from the biological point of view. In the first way, there is no 
widely accepted mathematical definition for the concept of dissimilarity or similarity. Chen et al. [22] 
defined a similarity metric, but unfortunately the sample correlation between two vectors in a vector 
space does not yield a proper similarity under their definition. 

In this paper, we follow the second way and propose two proper correlation-related distance metrics 
to replace the pseudo-distance in the dynamical language approach used by Yu et al. [5]. We then 
evaluate the effects of this replacement on the analysis of a wide range of complete genomes from the 
biological point of view. 

2. Dynamical Language Approach for Phylogenetic Analysis 

Three kinds of data from the complete genomes can be analysed using the dynamical language 
approach proposed by Yu et al. [5]. They are the whole DNA sequences (including protein-coding and 
non-coding regions), all protein-coding DNA sequences and the amino acid sequences of all protein-
coding genes. We outline this approach here. 

There are a total of N = 4K (for DNA sequences) or 20K (for protein sequences) possible types of  
K-strings, that is, the strings with fixed length K. We denote the length of a DNA or protein sequence 
as L. Then a window of length K is used to slide through the sequences by shifting one position at a 
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time to determine the frequencies of each of the N kinds of K-strings in this sequence. We define 
=)...( 21 Kp ααα  /)...( 21 Kn ααα )1( +− KL  as the observed frequency of a K -string Kααα ...21 , where 

)...( 21 Kn ααα is the number of times that Kααα ...21 appears in this sequence. For the DNA or amino 
acid sequences of the protein-coding genes, denoting by m the number of protein-coding genes from 

each complete genome, we define ∑∑ ==
+−

m

j j
m

j Kj KLn
11 21 ))1(/())...(( ααα  as the observed 

frequency of a K -string Kααα ...21 ; here )...( 21 Kjn ααα means the number of times that 

Kααα ...21 appears in the jth protein-coding DNA sequence or protein sequence, and jL  the length of 

the jth sequence in this complete genome. Then we can form a composition vector for a genome using 
)...( 21 Kp ααα  as components for all possible K-strings Kααα ...21 . We use ip  to denote the i -th 

component corresponding to the string type i , i  = 1,…,N (N strings are arranged in a fixed order as 
the alphabetical order). In this way we construct a composition vector ),...,,( 21 Npppp =  for  

a genome. 
Yu et al. [5] considered an idea from the theory of dynamical language [23] that a K -string 

Ksss ...21 is possibly constructed by adding a letter Ks  to the end of the )1( −K -string 121 ... −Ksss or a 
letter 1s  to the beginning of the )1( −K -string Ksss ...32 . After counting the observed frequencies for 
all strings of length )1( −K  and the four or 20 kinds of letters, the expected frequency of appearance 
of K -strings is predicted by:  

2
)...()()()...()...( 321121

21
KKK

K
ssspspspssspsssq +

= −     (1) 

where )( 1sp and )( Ksp are frequencies of nucleotides or amino acids 1s and Ks appearing in this 
genome. Then )...( 21 Ksssq  of all K4 or K20  kinds of K-strings is viewed as the noise background. We 
then subtract the noise background before performing a cross-correlation analysis through defining: 

1 2 1 2 1 2
1 2

1 2

( ... ) / ( ... ) 1, ( ... ) 0,
( ... )

0, ( ... ) 0,
K K K

K
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p s s s q s s s if q s s s
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  (2) 

The transformation ( / ) 1X p q= −  has the desired effect of subtraction of random background in p 
and rendering it a stationary time series suitable for subsequent cross-correlation analysis. 

Then we use )...( 21 KsssX for all possible K -strings Ksss ...21 as components and arrange according 
to a fixed alphabetical order all the K -strings to form a composition vector ),...,,( 21 NXXXX =  for 
genome X , and likewise ),...,,( 21 NYYYY =  for genome Y . 

Then we view the N components in the vectors X and Y as samples of two random variables 
respectively. The sample correlation ),( YXC  between any two genomes X  and Y is defined in the 
usual way in probability theory as:  

1
1

2 2 2
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The distance ),( YXDr  between the two genomes is then defined by 2/)),(1(),( YXCYXDr −= . A 
distance matrix for all the genomes under study is then generated for the construction of phylogenetic 
trees. This distance method to construct phylogenetic tree is referred to as the dynamical language 
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model method [5]. Finally, we construct all trees using the neighbour-joining (NJ) method [24] in the 
software SplitsTree4 V4.10 [25] or in the Molecular Evolutionary Genetics Analysis software  
(MEGA 4) [26] based on the distance matrices. 

To determine a best length of strings (K) in our model, we plot the mean value of X over all  
K-strings from a genome (whole DNA sequences or protein sequences) as a function of K (see  
Figure 1 for examples from our data). The mean value of X starts to approach zero at K = 6 or 7 if we 
use protein sequences from genome and at K = 11 or 12 if we use whole DNA sequence. The mean 
value of X being close to zero means that the value of p (from the sequence) is almost equal to value of 
q (from the model). Hence these K values are suitable for phylogeny reconstruction using our 
approach. This result is also confirmed later in this paper from a biological point of view. 

Figure 1. The plot of mean value of X over all K-strings as a function of K. The 
abbreviations “Mycge”, “PorpuC” and Dvir” are one of genomes in our first three datasets. 

 

3. Proper Distance Metrics in Vector Spaces 

Each genome can be considered as a point in N = 4K (for DNA sequences) or 20K (for protein 
sequences) dimensional space represented by its composition vector ),...,,( 21 NXXXX = . 

A function ),( YXD  between two vectors X and Y is said to be a distance metric if it satisfies the 
following properties: 

(i) 0),( ≥YXD ; and 0),( =YXD  if and only if YX = ; 
(ii) ),(),( XYDYXD = ; 
(iii) ( , ) ( , ) ( , )D X Z D X Y D Y Z≤ +  for any X, Y and Z.  
The inequality (iii) is called the triangle inequality. A distance metric ),( YXD is said to be 

normalized if 1),(0 ≤≤ YXD  for any X and Y. 
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If we denote: 

|| X
XX u =

, || Y
YYu =

 

where || X  and || Y  are the lengths of the vectors X and Y respectively, then uX  and uY  are unit 

vectors (i.e., have length 1). Let θ  be the angle between two vectors of X and Y. It is well known that 
( , ) cosu uC X Y θ= . 
The distance defined by 2/)),(1(),( YXCYXDr −=  is not a proper distance metric because it does 

not satisfy condition (i) (except for unit vectors) and the triangle inequality (iii) [21]. In the following 
we describe two proper distance metrics related to the sample correlation. 

3.1. Chord Distance  

The chord distance is defined on the set of unit vectors in a vector space as the length of the chord 
constructed from two unit vectors. Mathematically, let Xu = (Xu1, Xu2,…,XuN) and Yu = (Yu1, Yu2,…, YuN) 
be two unit vectors; then the chord distance Dchord (Xu,Yu) is defined as: 

∑ ∑ ∑∑
= = ==

−+=−=
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)],(1[2)],(1[2 YXCYXC uu −=−=    (3) 
 

It is seen that 0),( =uuchord YXD if and only if 1),( =uu YXC , i.e., 1),(cos =uu YXθ , which implies 
that 0),( =uu YXθ  because the angle ),( uu YXθ between the two vectors uX and uY  is in ],0[ π . This 
result means that the two vectors uX and uY  are identical. It is obvious that 

),( uuchord YXD ),( uuchord XYD= . Because the three chords constructed by the pairs uX and uY , uX and 

uZ , uY and uZ  are the three edges of a triangle, and the sum of the lengths of any two edges of a 

triangle is larger or equal to the length of the third edge, the triangle inequality of the chord distance 
follows. Hence the chord distance is a proper distance metric in the strict mathematical sense. The 
chord distance ),( uuchord YXD  can be normalized by ),( uu

norm
chord YXD  = 2/),( uuchord YXD . This distance 

is also called Cavalli-Sforza chord distance [27] or described on pp. 163-166 of [28]. This distance 
performed well in simulations of tree-building algorithms by Takezaki and Nei [29]. It has also been 
used to analyze microarray gene expression data [30]. 

3.2. Piecewise Distance 

This distance metric is also defined on the set of unit vectors in a vector space. For any two unit 
vectors uX and uY , we define:  





=
≠−

=
1),(0
1),(/),(1

),(
uu

uuuu
uupiecewise YXCif

YXCifYXC
YXD

ρ
   (4) 

where ρ is any positive real number which is not smaller than 3. We call ),( uupiecewise YXD the 

piecewise distance. 



Int. J. Mol. Sci. 2010, 11             
 

 

1146 

By definition, 0),( =uupiecewise YXD if and only if 1),( =uu YXC , which means that the two vectors 

uX and uY  are identical as shown above. It is also obvious that ),( uupiecewise YXD ),( uupiecewise XYD= . 
Using the facts 3≥ρ , 1),(1 ≤≤− uu YXC for any two unit vectors and +),( uupiecewise YXD  

−),( uupiecewise ZYD =),( uupiecewise ZXD ),(),([ uuuu ZYCYXC ++ρ ρ/)],( uu ZXC− 0≥ , we get the 

triangle inequality for the piecewise distance. Hence the piecewise distance is a proper distance metric 
in the strict mathematical sense. The piecewise distance ),( uupiecewise YXD can be normalized by 

=),( uu
norm
piecewise YXD  2/),( uupiecewise YXD . Usually we may take 3=ρ . 

4. Evaluation of the Proposed Distance Metrics from the Biological Point of View 

We propose to replace the pseudo-distance in the dynamical language approach [5] by the chord 
distance or piecewise distance. We need to examine the effects of this replacement from the biological 
point of view. In order to do this, we evaluate the new distance metrics on four datasets, namely 
Dataset 1 of 109 complete genomes of prokaryotes and eukaryotes used in [11], Dataset 2 of 34 
prokaryote and chloroplast genomes used in [12], Dataset 3 of mitochondrial genomes of 64 selected 
vertebrates used in [19], and Dataset 4 of 62 complete genomes of alpha-proteobacteria  
used in [31]. (Note: Chan et al. [21] recently tested the chord distance with different denoising 
formulas on Dataset 2). 

We used the dynamical language approach for Datasets 1 and 2 in [5] and Dataset 3 in [32]. Some 
biological comparisons of this approach with the Markov model approach on Datasets 1 and 2 were 
given in [5]. Recently we found that wrong data of the Archaea Crenarchaeota bacterium Pyrobaculum 
aerophilum (Pyrae) from Dataset 1 was used in [5]. Using the right genome data, Pyrobaculum 
aerophilum (Pyrae) groups with the other Archaea Crenarchaeota bacteria correctly (when we use the 
amino acid sequences of all protein-coding genes from genomes and K = 6). After this correction, the 
resulting tree is better than the one in [11] from the biological point of view, with all firmicutes group 
together and the other branches are similar. For Dataset 2, we obtained two trees with the same 
topology to those using the dynamical language approach in [5] and the Markov model approach in [12] 
(also using the amino acid sequences of all protein-coding genes from genomes and K = 6). For 
Dataset 3, we reported in [32] a good tree in agreement with the current understanding of the 
phylogeny of vertebrates revealed by the traditional approaches using the dynamical language 
approach (based on the whole DNA sequences of genomes and K = 11). This tree is better than the one 
in [19] and the one obtained by the Markov model approach. Hence we just need to compare the best 
trees obtained by the dynamical language approach using the two proper distance metrics with the best 
trees obtained from the pseudo-distance in [5] based on the first three datasets. In 2009, Guyon et al. 
[31] compared four alignment free string distances for complete genome phylogeny using Dataset 4. 
We will compare our method in this paper with the results in [31] based on Dataset 4. 

The whole DNA sequences (including protein-coding and non-coding regions), all protein-coding 
DNA sequences and the amino acid sequences of all protein-coding genes from genome data are used 
for phylogenetic analysis. For Dataset 1, we have seen that amino acid sequences of all protein-coding 
genes from genomes give better results than those given by the whole DNA sequences and all protein-
coding DNA sequences. We evaluated the dynamical language approach with chord distance and 
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piecewise distance on the amino acid sequences of all protein-coding genes from genomes for  
K = 3, 4, 5 and 6. We find the trees using the new distance metrics have the same topology as the trees 
using the old “distance” for the same value of K, and the trees for K = 6 are the best. Here we present 
the tree for K = 6 using dynamical language approach with chord distance in Figure 2. The phylogeny 
shown in Figure 2 supports the broad division into three domains and agrees with the tree of life based 
on 16S rRNA in a majority of basic branches. For further biological discussions, one can refer to [5] 
with the correction for the position of Pyrobaculum aerophilum (Pyrae). 

Figure 2. Phylogeny of 109 organisms (prokaryotes and eukaryotes) using the dynamical 
language approach with chord distance in the case K = 6 based on all protein sequences. 
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For Dataset 2, we have seen that the amino acid sequences of all protein-coding genes from 
genomes give better results than those given by the whole DNA sequences and all protein-coding 
DNA sequences. We evaluated the dynamical language approach with chord distance and piecewise 
distance on the amino acid sequences of all protein-coding genes from genomes for K = 3, 4, 5 and 6. 
We find the tree using the piecewise distance has the same topology as the tree using the old 
“distance” for the same value of K, the tree using the chord distance has similar topology (a little bit 
worse because Pinus thunbergii is separated from its correct position) to the tree using the old 
“distance” for the same value of K. And the trees of K = 6 are the best. Hence we present the tree for  
K = 6 using the dynamical language approach with piecewise distance ( 3=ρ ) in Figure 3. We also 
note that the topology of the tree in Figure 3 is the same as that of the tree obtained by the Markov 
model in [12]). The phylogeny of Figure 3 shows that the chloroplast genomes are separated to two 
major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the 
chloroplasts are largely in agreement with the current understanding on chloroplast evolution. For 
further biological discussions, one can refer to [12]. 

Figure 3. Phylogeny of chloroplast genomes using the dynamical language approach with 
piecewise distance in the case K = 6 based on all protein sequences. 

 

For Dataset 3, after comparing all the trees with the traditional classification of the 64 vertebrates 
(the traditional classification from the KEGG database is available under “Complete Mitochondrial 
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Genomes" on http://www.genome.jp/kegg/genes.html)), we find that the whole DNA sequences give 
better results than those given by the amino acid sequences of all protein-coding genes from genomes 
and all protein-coding DNA sequences. We evaluated the dynamical language approach with the 
proposed distance metrics on the sequences of whole genomes for K = 6 to 13. We find the tree using 
the piecewise distance has the same topology as the tree using the old “distance” for the same value of 
K, the tree using the chord distance has similar topology (a little bit better because  
Dasypus novemcinctus.(Dnov) is close to but does not remain in a branch of primates) to the tree using 
the old “distance” for the same value of K. And the trees for K = 11 are the best. Hence we present the 
tree for K = 11 using the dynamical language approach with chord distance in Figure 4. The tree 
(Figure 4) generated is similar in topology to the tree obtained using the SVD method in the case 

4=K  [19], and is also similar to a recently generated tree of 69 species [33], placing a vast majority 
of species into well-accepted groupings. As shown in Figure 4, our distance-based analysis shows that 
the mitochondrial genomes are separated into three major clusters. One group corresponds to 
mammals; one group corresponds to the fish; and the third one represents Archosauria (including birds 
and reptiles). The interrelationships among the mitochondrial genomes are roughly in agreement with 
the current understanding of the phylogeny of vertebrates revealed by the traditional approaches. For 
further biological discussion, one can refer to [32]. 

For Dataset 4, Guyon et al. [31] first reconstructed a reference tree using Maximum Likelihood 
(ML) method based on the large (LSU) and the small (SSU) ribosomal subunits sequences (i.e., the 
traditional alignment method). Then they compared the results using four alignment free string 
distances for complete genome phylogeny. The four distances are Maximum Significant Matches 
(MSM) distance, k-word (KW) distance (i.e., the Markov model in [11]), Average Common Substring 
(ACS) distance and Compression (ZL) distance. Guyon et al. [31] found the MSM distance out 
performs the other three distances and the KW cannot give good phylogenetic topology for the  
62 alpha-proteobacteria (see Figure 3 in [31]). We tested our dynamical language approach with 
pseudo-distance in [5] and the two proper distances in this paper on Dataset 4. We found that amino 
acid sequences of all protein-coding genes from genomes give better results than those given by the 
whole DNA sequences and all protein-coding DNA sequences. We evaluated the dynamical language 
approach with pseudo-distance in [5] and the two proper distances in this paper on the amino acid 
sequences of all protein-coding genes from genomes for K = 3, 4, 5 and 6. We found the trees using 
the new distance metrics have the same topology as the trees using the old “distance” for the same 
value of K, and the topology of trees for K = 5 and 6 are the same and the best. Here we present the 
tree for K = 6 using dynamical language approach with chord distance in Figure 5. As shown in  
Figure 5, all Rhizobiales (Bartonellaceae, Brucellaceae, Rhizobiaceae and Phyllobacteriaceae) (A), 
Rhizobiales (Bradyrhizobiaceae) (B), Rickettsiales (Rickettsiaceae and Anaplasmataceae) (C), 
Rhodospirillales (D), Sphingomonadales (E); Rhodobacterales (Rhodobacteraceae) (F) group into 
correct branches respectively. Even inside each lineage (groups A to F), our phylogentic topology is 
more similar to that of ML reference tree (the right side tree in Figure 1 of [31]) than that obtained by 
the MSM distance (the best result in [31]). After comparing our Figure 5 with the tree obtained using 
KW distance (i.e., the Markov model in [11]) (the tree in Figure 3 of [31]), our dynamical language 
model performs much better than the KW distance.  

http://www.genome.jp/kegg/genes.html)�
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There is no significant effect by the normalization of the distances and different values of 3≥ρ . 
Using the proposed distance metrics, we compared the trees before and after normalization and found 
that the topology of the trees is the same. Then we set ,4=ρ  6, 8, 10 and found that we could get the 
trees with the same topology as the tree for 3=ρ . As a result, there seems to be no noticeable effect 
by normalization of the distances and different values of 3≥ρ . 

Figure 4. The NJ tree of mitochondrial genomes based on the whole DNA sequences using 
the dynamical language approach with chord distance in the case K = 11. In this tree the 
birds and reptiles group together as Archosauria. 
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Figure 5. Phylogeny of 62 alpha-proteobacteria using the dynamical language approach 
with chord distance in the cases K = 5 and 6 based on all protein sequences. The topology 
of trees obtained by the dynamical language approach with pseudo-distance in [5] and 
piecewise distance in the cases K = 5 and 6 based on all protein sequences are the same as 
that in this figure. 

 



Int. J. Mol. Sci. 2010, 11             
 

 

1152 

5. Conclusions 

We proposed two new mathematically proper distance metrics based on the lengths of the chords 
constructed from unit vectors and on proportions of the sample correlation function of unit vectors to  
replace the pseudo-distance in the dynamical language approach [5]. The results showed 
improvements with this replacement from a biological perspective. These results confirm their 
usefulness in phylogenetic analysis. 
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