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Abstract: Freeze dried protein powders (Fresh minced meat, FMM and Hot water dip, HWD) 

from tilapia (Oreochromis niloticus) were hydrolyzed by Alcalase 2.4 L (Alc), Flavourzyme 

(Flav) and Neutrase (Neut), and investigated for antioxidant activity and their functional 

properties. FMM and HWD hydrolysed by Alc, exhibiting superior antioxidant activity, had 

estimated degrees of hydrolysis (DH) of 23.40% and 25.43%, respectively. The maximum 

values of the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-

sulfonic acid) diammonium salt (ABTS), 3-(2-pyridyl) 5,6-bis(4-phenyl-sulphonic acid)-1,2,4-

triazine (ferrozine), radical scavenging activities and metal chelating properties were 86.67%, 

91.27% and 82.57%, and 84.67%, 92.60% and 78.00% for FMM and HWD, respectively, with 

a significant difference (P < 0.05) between the samples. Essential amino acids were above the 

amounts recommended by the Food and Agricultural Organization/World Health Organization 

(FAO/WHO/UNU) for humans. Lower molecular weight sizes <3,000 Da were more 

predominant in FMM and HWD hydrolysed by Alc, while in hydrolysed by Flav and Neut 

they were >8,000 Da. At pH 2, FMM and HWD hydrolysates have varying solubilities above 
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85% (Alc FMM; 91.33%, Flav FMM; 79.5%, Neut FMM; 83.8% and Alc HWD; 90.45%, 

Flav HWD; 83.5%, and Neut HWD; 85.8%). They have ‘U’ shaped solubility curves, water 

holding capacity was in the range of 2.77 and 1.77 mL/g, while oil holding capacity ranged 

between 3.13 and 2.23 mL/g. FMM and HWD have the highest bulk density of 0.53 and 0.53 

for Neutrase and Alcalase 2.4 L, respectively. Foam capacity and stability ranged from 125.5 

to 61.4, 138.5 to 45.2, 130.0 to 62.5, and 124.5 to 55.0, 137.5 to 53.3, 129.6 to 62.7 for FMM 

and HWD hydrolyzed with Alcalase 2.4 L, Flavourzyme and Neutrase, respectively. Tilapia 

fish protein hydrolysates are thus potential functional food ingredients. 

Keywords: tilapia; fresh minced meat; hot water dip; hydrolysis; antioxidant activity; 

functional foods 

 

1. Introduction  

Tilapias inhabit a variety of fresh water habitats. Traditionally they have been of major importance in 

small scale commercial or subsistence fishing worldwide, especially Africa and Asia. It is the third most 

widely cultured fish, after carp and salmonids [1]. The global production has been greatly influenced by 

rapid expansion of Nile tilapia (Oreochromis niloticus) and Mossambique tilapia (Oreochromis 

mossambicus), cultured in China, the Phillipines and Egypt [2]. Tilapia fish is nutritious and forms a 

healthy part of a balanced diet that is high in protein (16-25%), low in fat (0.5-3.0%) and substitutes well 

in any seafood recipe [3]. 

Modification of a protein is usually realized by physical, chemical, or enzymatic treatments, which 

change its structure and consequently its physicochemical and functional properties [4]. Enzymatic 

hydrolysis has been widely used to improve the functional properties of proteins, such as solubility, 

emulsification, gelation, water and fat-holding capacities, and foaming ability, and to tailor the 

functionality of certain proteins to meet specific needs [5]. Series of studies have demonstrated that 

enzymatic hydrolysis of fish and fish by-products including, capelin [6], salmon protein [7,8], shark 

protein [9], herring [10], and sardine [11,12] improved their functional properties. The production of Fish 

Protein Hydrolysates (FPH) under controlled conditions is a way of improving its nutritional value [6].  

Apart from fish protein hydrolysates’ functionalities, different sources, such as capelin mackerel and 

herring have been found to possess antioxidant properties [10,13,14]. Many human diseases are known to 

be caused by free radicals and the natural antioxidants can act as free radical scavengers. Protein 

hydrolysates with antioxidant properties, in particular, have become a topic of great interest for the 

pharmaceutical, health food, as well as the food processing and preservation industries [15,16]. There is 

also a growing interest in antioxidants from natural sources, which may have less potential health hazard 

compared with synthetic antioxidants. The bioactive molecules in FPH responsible for antioxidant 

properties are peptides that are released upon hydrolysis. As a result, the objectives of this study were to 
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investigate the degree of hydrolysis, amino acid content, molecular weight, functional properties, and 

antioxidant activity of Nile tilapia hydrolysates. 

2. Results and Discussion 

2.1. Degree of Hydrolysis (DH) 

The DH is an important factor highly related with the hydrolysis process yield [6]. The results of the 

DH are presented in Figure 1. There was an initial rapid increase in DH with increased time relating to the 

frequency of addition and volume of NaOH used to maintain pH. This indicated that maximum cleavage 

of peptides occurred within the first hour of hydrolysis. For all proteinases, Alcalase 2.4 L showed the 

highest value in terms of DH for HWD and FMM (Figure 1). The result agreed with reported enzymatic 

hydrolyses of fish protein substrates [10,17]. The significant difference (P < 0.01) of DH with Alcalase 

2.4 L treatment suggested that Alcalase 2.4 L has superior affinity hence, is a more efficient enzyme than 

Flavourzyme and Neutrase for preparing Nile tilapia protein hydrolysates.  

Figure 1. Effect of time on the degree of hydrolysis (DH) of tilapia (Oreochromis niloticus) 

fish protein hydrolysates (TFPH). FMMH: Fresh minced meat hydrolysate; HWDH: Hot water 

dip hydrolysate Value represent the mean ± standard deviation (SD) of n = 3 duplicate assays 

(Alc-Alcalase 2.4 L; Flav- Flavourzyme; Neut-Neutrase). 

 

2.2. Amino Acid Analysis 

The total amino acid composition of Tilapia fish protein hydrolysates (FMM and HWD) are shown in 

Table 1, along with the recommended essential amino acid composition according to the 
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FAO/WHO/UNU (2007) [18]. It is clear that tilapia fish protein contains all the essential amino acids in 

good proportion as compared to Sathivel et al. [10] with a significant difference (P < 0.05). The results in 

Table 1 indicate that the amino acid composition of FMM closely resembles to that of HWD. However, 

glutamic acid, aspartic acid and lysine were found to be abundant, as expected in most fish protein 

hydrolysates [8,29]. Both FMM and HWD have a well balanced amino acid composition and most of the 

essential amino acids compositions of their proteins were at a higher level than FAO/WHO/UNU protein 

and amino acid requirements in human nutrition [18]. The values are generally in accordance with 

previous studies [6,7,27].  

Table 1. Total amino acid composition of Tilapia Fish protein Hydrolysates (g/100 g Protein). 

Amino Acids Alcalase 2.4 L Flavourzyme Neutrase FAO/WHO/UNa 

FMM HWD FMM HWD FMM HWD Child Adult 

Essential Amino acids 

Isoleucine  3.79 ± 0.08d 3.48 ± 0.01c 3.12 ± 0.02a 3.22 ± 0.11ab 3.29 ± 0.01b 3.26 ± 0.01b 3.0 3.0 

Leucine  8.04 ± 0.01ab 8.23 ± 0.03bc 8.23 ± 0.03bc 8.69 ± 0.06d 7.88 ± 0.12a 8.26 ± 0.14c 6.0 5.9 

Lysine 9.08 ± 0.01a 10.14 ± 0.01c 10.51 ± 0.03d 10.81 ± 0.06e 9.87 ± 0.01b 10.53 ± 0.01d 4.8 4.5 

Methionine 2.96 ± 0.02e 2.66 ± 0.01c 2.34 ± 0.01a 2.52 ± 0.01b 2.73 ± 0.03d 2.63 ± 0.01c 2.3b 1.6b 

Met + Cys  3.60 ± 0.07d 3.35 ± 0.06c 2.85 ± 0.01a 3.11 ± 0.02b 3.22 ± 0.01c 3.29 ± 0.02c   

Phenylalanine  3.78 ± 0.02e 3.20 ± 0.01d 3.13 ± 0.01c 2.99 ± 0.01a 3.12 ± 0.01bc 3.09 ± 0.01b 4.1c 3.8c 

Phe + Tyr  6.70 ± 0.03d 5.31 ± 0.02c 4.64 ± 0.01a 4.66 ± 0.06a 5.24 ± 0.02bc 5.16 ± 0.01b   

Threonine 4.58 ± 0.09d 4.38 ± 0.04c 3.95 ± 0.01a 4.09 ± 0.02b 4.21 ± 0.05b 4.39 ± 0.04c 2.5 2.3 

Valine 4.30 ± 0.01f 4.10 ± 0.01e 3.77 ± 0.01a 3.91 ± 0.01b 3.94 ± 0.01c 3.98 ± 0.01d 2.9 3.9 

Histidine 2.28 ± 0.06d 2.09 ± 0.02ab 2.03 ± 0.03a 2.09 ± 0.02ab 2.17 ± 0.06bc 2.23 ± 0.01cd 1.6 1.5 

Tryptophan  5.42 ± 0.01e 2.79 ± 0.02d 1.32 ± 0.01a 1.67 ± 0.02b 2.78 ± 0.02d 2.33 ± 0.02c 0.66 0.6 

Nonessential Amino Acid 

Alanine  6.44 ± 0.02a 6.81 ± 0.02b 7.98 ± 0.01f 7.61 ± 0.01e 7.06 ± 0.03c 7.20 ± 0.03d   

Arginine 5.76 ± 0.02a 5.97 ± 0.01b 6.08 ± 0.02c 6.13 ± 0.04cd 6.17 ± 0.01d 6.17 ± 0.01d   

Aspartic acidd  9.96 ± 0.02c 10.25 ± 0.01d 9.91 ± 0.01b 10.39 ± 0.02e 9.85 ± 0.02a 10.59 ± 0.02f   

Cysteinee 0.66 ± 0.03c 0.55 ± 0.00b 0.51 ± 0.01a 0.56 ± 0.01b 0.51 ± 0.01a 0.65 ± 0.02c   

Glutamic acidf 16.37 ± 0.01a 18.56 ± 0.01c 19.62 ± 0.01d 21.15 ± 0.01e 18.14 ± 0.01b 19.61 ± 0.01d   

Glycine  5.04 ± 0.00c 4.71 ± 0.01a 6.68 ± 0.02f 5.16 ± 0.02d 5.63 ± 0.01e 4.90 ± 0.01b   

Serine  4.09 ± 0.01b 4.06 ± 0.03b 3.90 ± 0.01a 4.07 ± 0.03b 3.91 ± 0.01a 4.05 ± 0.02b   

Tyrosine 2.93 ± 0.04e 2.17 ± 0.03d 1.50 ± 0.01a 1.64 ± 0.01b 2.12 ± 0.02cd 2.08 ± 0.02c   

Proline 4.42 ± 0.01c 5.65 ± 0.01e 5.39 ± 0.01d 3.26 ± 0.01a 6.39 ± 0.02f 3.70 ± 0.03b   

The data are means and standard deviations of triplicate. Column with different letters indicate 
statistical differences (P < 0.05).  
a FAO/WHO/UNU. Energy and protein requirements (2007);  
b Requirements for methionine + cysteine;  
c Requirements for phenylalanine + tyrosine; 
d Aspartic acid + asparagines; 
e Cysteine + cysteine;  
f Glutamic acid + glutamine. FMM–Fresh minced meat; HWD–Hot water dip. 
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2.3. Molecular Weight Distribution 

Molecular weight distributions of tilapia fish protein (FMM and HWD) Hydrolysates were determined 

by SE-HPLC (Table 2) by a TSK gel, 2000SWXL (7.8 × 300 mm) column. The molecular weights for all 

samples were calculated according to the equation:  

Log Mol Wt = 6.70 − 0.2.14T with R2 = 0.9953   (1) 

The rising level of DH corresponds inversely to lower molecular weight distributions. The result in 

Table 2 shows that hydrolysates from Alcalase 2.4 L had lower molecular weights, below 3,000 Da.  

Table 2. Molecular weight distribution of Tilapia fish protein hydrolysates. 

Molecular weight (Da) 
Area (%) 

Alc FMM Flav FMM Neut FMM Alc HWD Flav HWD Neut HWD 

>8000 – 10.00 9.87 – 14.32 10.96 

3000–8000 – 24.71 9.87 5.68 10.17 16.52 

2000–3000 4.98 17.201 30.81 – – – 

1000–2000 – 21.17 9.54 34.63 28.78 31.31 

600–1000 32.47 – 20.04 – 13.17 21.57 

300–600 27.87 14.72 6.91 26.9 20.43 10.69 

200–300 19.54 – 5.06 – 3.28 5.80 

< 200 15.11 12.83 7.87 32.79 9.85 3.38 

FMM–Fresh minced meat; HWD–Hot water dip. Alc-Alcalase 2.4 L; Flav–Flavourzyme; Neut–Neutrase. 

 

This result also indicated that cleavage of peptide bonds by the proteases had taken place. Hydrolysates 

from Flavourzyme and Neutrase with low DH (Figure 1) were characterized by a high percentage of 

peptides with molecular weights ranging from 8,000 Da to 15,000 Da. Different DH and proteases led to 

different peptide chain lengths which greatly influenced the antioxidant activities of the hydrolysates, 

corroborating with findings that purified peptides with a molecular weight of less than 1,000 Da from 

Alaska pollack frame proteins showed the strongest antioxidant activity among the hydrolysate 

fractions [19].  

2.4. DPPH Radical Scavenging Activity 

A rapid, uncomplicated and inexpensive method to measure antioxidant capacity of food involves the 

use of the free radical, 2,2-diphenyl-1-picrylhydrazyl (DPPH). DPPH is used to test the ability of 

compounds to act as free radical scavengers or hydrogen donors, and to evaluate antioxidant activity. 

DPPH scavenging activity of Tilapia fish protein hydrolysates (FMM and HWD) are listed in Table 3.  
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Table 3. Antioxidant activity of Tilapia fish protein hydrolysates. 

Sample 
Antioxidant activity (%) 

DPPH ABTS Fe2+ chelating 

FMM 

Alcalase 86.67 ± 1.15e 91.27 ± 0.25b 82.57 ± 0.51d 

Flavourzyme 70.20 ± 1.06b 88.13 ± 0.23a 75.80 ± 0.72ab 

Neutrase 82.00 ± 1.73cd 93.33 ± 0.58c 77.23 ± 0.32bc 

HWD 

Alcalase 84.67 ± 0.58de 92.60 ± 1.30bc 78.00 ± 0.20c 

Flavourzyme 64.67 ± 0.58a 93.50 ± 0.71c 75.00 ± 1.00a 

Neutrase 79.67 ± 1.53c 94.23 ± 0.68c 78.32 ± 0.40c 

Values are means ± standard deviation of three determinations. 
Rows with different letters indicate statistical differences (P < 0.05). 
DPPH/ Chelating activity were tested at 5 mg/mL. 
ABTS were tested at 66.67µg/mL. 
FMM–Fresh minced meat. HWD–Hot water dip. 

 

The DH data earlier reported (Figure 1) shows a reasonable link to this result. The samples (FMM and 

HWD) hydrolysed using Alcalase 2.4 L, Neutrase and Flavourzyme show an increasing DPPH radical 

scavenging activity: 86.67%, 82.00%, 70.20%, and 84.67%, 79.67%, 64.67% for both samples, 

respectively. There was a significant difference (P < 0.05) between the various samples. Moreover, FMM 

and HWD hydrolysates produced using Flavourzyme exhibited the lowest DPPH radical scavenging 

activity. The peptides in tilapia fish protein hydrolysates (FMM, HWD) demonstrated a role as good 

electron donors and could react with free radicals to terminate the radical chain reaction. DPPH is a stable 

free radical with a maximum absorbance at 517 nm in ethanol. When DPPH encounters a proton-donating 

substance, the radical is scavenged and the absorbance is reduced [20]. The results indicated that the 

tilapia FPH acted as a good electron donor and could react with free radicals to terminate the radical chain 

reaction, corroborating other findings [21,22]. 

2.5. ABTS Radical Scavenging Activity 

Protein hydrolysates from many sources have been found to possess antioxidative activity [21,22]. The 

ABTS radical assay is a widely used method of screening for antioxidant activity and is reported as a 

decolorization assay applicable to both lipophilic and hydrophilic compounds [23]. The assay results of 

the different tilapia FPH after using different enzymes are shown in Table 3. They possesses high ABTS 

radical scavenging ability (P < 0.05) and could reduce more than 80% of the ABTS radicals in the assay 

media at 66.67 µg/mL sample concentration. The variation between the results of FMM and HWD were 

significantly different (P < 0.05). The findings indicated that 120 min hydrolysis of the samples (FMM 

and HWD), resulted in reasonable antioxidant ability and moreover, the conditions applied in the 

hydrolysis are sufficient in making antioxidative FPH from tilapia fish. Similarly, high antioxidative 
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scavenging quality is shown in tilapia fish protein hydrolysates from DPPH and metal chelating activities, 

exhibiting similar results reported by Klompong et al. [24]  

2.6. Metal-Chelating Activity 

A sample concentration of 5 mg/mL was used to determine the metal chelating properties of tilapia fish 

protein hydrolysates. The results from Table 3 show that tilapia fish protein (FMM and HWD) hydrolysate 

samples interacted with iron ion. The chelating activity however shows a significant difference (P < 0.05) 

between the samples. Alcalase-treated samples manifested a higher chelating activity (FMM; 82.5%, 

HWD; 78.0%) than Flavourzyme and Neutrase-treated ones (75.8%, 75.8% and 77.23%, 78.32%) for 

FMM and HWD respectively. This result also corroborates a linear relationship with the increased DH, 

lower molecular weight distribution, and high peptide solubility, that is showing higher metal chelating 

activity [25].  

2.7. Nitrogen Solubility 

An increase in the extent of enzymatic hydrolysis corresponded to a considerable increase in the 

nitrogen solubility over the pH range studied, indicating a positive relationship (Figure 2). Between pH 

4.5 and 5.5 near the isoelectric point (pI) at which the net charge of the original proteins are minimized 

and consequently, more protein-protein interactions and fewer protein-water interaction occur. FMM and 

HWD have very similar solubility profiles; exhibiting a “U” shaped curve in which FMM and HWD 

hydrolyzed with Alcalase 2.4 L have the highest solubility values at alkaline pH. Under acidic conditions, 

all proteins had solubility above (80%). At pH 6.0, nitrogen solubility increased rapidly with an increase 

in pH up to 12.0. These trends in solubility are in agreement with [7,9,10]. At pH 11.0, the solubility of 

FMM reached 96.93%, 93.23%, and 88.33% for Alcalase 2.4 L, Neutrase and Flavoourzyme respectively, 

whilst solubility for HWD were 96.0%, 91.63% and 89.83% for Alcalase 2.4 L, Neutrase and 

Flavoourzyme respectively. The maximum solubility was under alkaline conditions. Protein solubility at 

various pH values may serve as a useful indicator of how well protein hydrolysate will perform when they 

are incorporated into food systems. The solubility curve is typical of that of most fish protein hydrolysates. 

Enzymatic protein Hydrolysis leads to smaller peptides, consequently, to more soluble products. This is in 

accordance with the findings of [6,7] who reported that hydrolysates had an excellent solubility at high 

degrees of hydrolysis. The pH values influence the charge on the weakly acidic and basic side chain 

groups [4]. Solubility variations could be attributed to both net charge of peptides, which increase as pH 

moves away from pI, and surface hydrophobicity, that promotes the aggregation via hydrophobic 

interaction [26]. Since many functional properties of proteins depend upon their capacity to initially go 

into solution, the excellent solubility of the FPH suggests that they may have many potential applications 

in formulated food systems.  
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Figure 2. Effect of pH treatment on nitrogen solubility of tilapia fish protein hydrolysates 

(Oreochromis niloticus). Value represent the mean ± standard deviation (SD) of n = 3 

duplicate assays. FMMH-Fresh minced meat hydrolysates; HWDH-Hot water dip 

hydrolysates (Alc-Alcalase 2.4 L; Flav- Flavourzyme; Neut-Neutrase). 

 

2.8. Oil/Water Holding Capacity 

The ability of protein hydrolysates to absorb oil is an important functionality that influences the taste of 

the product that is required in various food industries. The OHC for FMM are in the ranges of 2.27, 3.07, 

2.77 mL/g for Alcalase 2.4 L, Flavourzyme and Neutrase respectively, with significant difference  

(P < 0.01). HWD hydrolysates have OHC of 2.23, 2.57, 3.13 mL/g for Alcalase 2.4 L, Flavourzyme and 

Neutrase, respectively (Table 4).  

Table 4. Influence of enzyme on In vitro digestibility (IVD), water holding capacity (WHC), 

oil holding capacity (OHC), emulsifying capacity (EC), bulk density (BD) and foam capacity 

(FC). 

Sample 
FMM HWD 

Alc. Flav. Neut. Alc. Flav. Neut. 

IVPD (%) 92.73 ± 0.76b 88.23 ± 0.06a 92.43 ± 0.06b 93.2 ± 0.20b 89.37 ± 0.67a 92.83 ± 0.76b 

WHC (mL/g) 2.10 ± 0.10a 2.77 ± 0.06b 2.57 ± 0.12b 1.77 ± 0.06a 2.10 ± 0.17a 2.57 ± 0.06b 

OHC (mL/g) 2.27 ± 0.06a 3.07 ± 0.06c 2.77 ± 0.06bc 2.23 ± 0.25a 2.57 ± 0.06ab 3.13 ± 0.15c 

EC (mL/0.5g) 22.33 ± 0.58ab 27.33 ± 0.58c 22.50 ± 0.10ab 21.40 ± 0.36a 26.40 ± 0.17c 23.20 ± 0.20b 

BD (g/mL) 0.45 ± 0.01ab 0.35 ± 0.01a 0.53 ± 0.06b 0.53 ± 0.06b 0.34 ± 0.01a 0.46 ± 0.01ab 

FC (g/mL) 125.50 ± 0.10de 138.50 ± 0.50b 130.20 ± 0.76c 124.50 ± 1.08e 137.50 ± 0.20a 129.60 ± 0.58d 

Values are means ± standard deviation of three determinations. 
Columns with different letters indicate statistical differences (P < 0.01). 
FMMH-Fresh minced meat hydrolysate; HWDH-Hot water dip hydrolysate. 
Alc–Alcalase 2.4 L; Flav–Flavourzyme; Neut–Neutrase. 
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On the other hand, the functional properties of proteins in food systems broadly depend on the  

water-protein interactions. The ability of protein to imbibe water and retain it against a gravitational force 

within a protein matrix is known as Water Holding Capacity (WHC). The WHC for FMM is in the range 

of 2.10, 2.77, 2.57 mL/g for Alcalase 2.4 L, Flavourzyme and Neutrase respectively, with significant 

difference (P < 0.01). HWD hydrolysates have WHC of 1.77, 2.10, 2.57 mL/g for Alcalase 2.4 L, 

Flavourzyme and Neutrase, respectively, with significant difference (P < 0.01).  

2.9. Emulsifying Capacity (EC) 

The ability of proteins to form stable emulsions is important due to the interactions between proteins 

and lipids in many food systems. An increase in the number of peptide molecules and exposed 

hydrophobic amino acid residues due to hydrolysis of proteins should contribute to an improvement in the 

formation of emulsions. From the results, samples hydrolyzed using Alcalase 2.4 L (FMM and HWD) had 

lower emulsifying capacities of 22.33 and 21.40 mL/0.5g of protein with a significant difference  

(P < 0.01). Samples hydrolyzed with Neutrase and Flavourzyme (FMM and HWD) have an EC of 22.50 

and 23.20, and 27.33 and 26.40 mL/0.5g of protein, respectively (Table 4). Our result is in agreement with 

with [7]. Extensive protein hydrolysis may result in a marked loss of emulsion properties. Though small 

peptides diffuse to, and absorb fast at the interface, they are less efficient in reducing the interfacial 

tension due to lack of unfolding and reorientation at the interface that large peptides are [7].  

2.10. Foam Capacity and Foam Stability (FC/FS) 

The formation of protein based foams involves the diffusion of soluble proteins toward the air-water 

interface and rapid conformational change and rearrangement at the interface; the foam stability requires 

formation of a thick, cohesive, and viscoelastic film around each gas bubble [27]. Hence, ability to form 

foam is a function of the configuration of protein molecules. FMM and HWD show a significant 

difference (P < 0.01) in the foaming capacity. Samples hydrolyzed with Alcalase 2.4 L have a FC of 125.5 

and 124.5 g/mL, Flavourzyme with FC of 138.5 and 137.5 g/mL and Neutrase 130.2, and 129.6 g/mL for 

FMM and HWD, respectively. The results imply an increase in surface activity, probably due to the initial 

greater number of polypeptide chains that arose from partial proteolysis, allowing more air to be 

incorporated. Similar FC data was obtained in previous studies [27,28].  

To have foam stability, protein molecules should form continuous intermolecular polymers enveloping 

the air bubbles, since intermolecular cohesiveness and elasticity are important to produce stable foams. 

Foam stability values ranged from 125.5 to 61.4, 138.5 to 45.2, 130.0 to 62.5, and 124.5 to 55.0, 137.5 to 

53.3, 129.6 to 62.7 for FMM and HWD hydrolyzed with Alcalase 2.4 L, Flavourzyme and Neutrase, 

respectively. The FS for tilapia fish protein hydrolysates were within the range of the results reported by 

Wasswa et al. [29]. 

On the other hand, there was a significant decrease (P < 0.05) in the foaming stability, (Alc. FMM, 

38.2; Alc. HWD, 37.2 g/mL), (Flav. FMM, 47.3; Flav. HWD, 47.7 g/mL) and (Neut. FMM, 48.0, Neut. 

HWD, 50.5 g/mL). An opposite effect on the surface activity is probably due to the lower surfactant 
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activity of smaller peptide chains from extensive hydrolysis [28]. These foaming properties suggest that 

tilapia fish protein hydrolysate is a better foaming agent in protein foods.  

Figure 3. Foam stability of fish protein hydrolysates (Oreochromis niloticus). Value represent 

the mean ± standard deviation (SD) of n = 3 duplicate assays FMMH-Fresh minced meat 

hydrolysate; HWDH-Hot water dip hydrolysate. Alc-Alcalase 2.4 L; Flav-Flavourzyme;  

Neut-Neutrase. 

 

2.11. Bulk Density 

There was a significant difference (P < 0.01) among the various samples studied (Table 4). FMM and 

HWD hydrolyzed with Neutrase and Alcalase 2.4 L shared a comparable and higher bulk density of 0.53 

and 0.54 g/mL, while the samples hydrolyzed with Flavourzyme had the lowest (FMM: 0.35 g/mL;  

HWD: 0.34 g/mL). Furthermore, the bulk density of tilapia fish protein hydrolysates demonstrated lower 

bulk density compared to tilapia skin protein hydrolysate [29]. Bulk density represents the behavior of a 

product in dry mixes, and is an important parameter that can determine the packaging requirements of a 

product. Also it varies with the fineness of particles. High bulk density is unfavorable for the formulation 

of weaning foods, where low bulk density is required [30].  

2.12. In Vitro Protein Digestibility  

In vitro protein digestibility of FMMH and HWDH samples were evaluated by the release of TCA-

soluble nitrogen, after incubation time of 120 min at 37 °C. Table 4 shows that all protein samples 

exhibited very good trypsin digestibility. Nonetheless, HWD fractions hydrolysed using Alcalase, 

Flavourzyme, and Neutrase have digestibility values with trypsin of 93.2%, 89.3%, and 92.83%, whereas 

FMM fractions showed digestibility values with trypsin of 92.72%, 88.23%, and 92.43%, respectively, 

with a significant difference (P < 0.01). Our results are within the values reported by Aziz et al. [31]. The 
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pretreatment undergone by the samples during the cause of hydrolysis improved digestibility of protein 

and may be attributed to the increase in protein solubility, or structural unfolding of protein molecules [32]. 

3. Experimental  

3.1. Materials and Methods 

Fresh minced meat (FMM) and Hot water dip (HWD) samples were obtained as byproducts from Fresh 

Nile tilapia, Oreochromis niloticus, 480-600 g/fish with length range of 25-30 cm/fish, purchased from a 

local fresh water product market in Wuxi, China. The fish samples were transported within 24 h after 

purchased in ice boxes to the School of Food Science and Technology (SFST) laboratory of Jiangnan 

University, Wuxi, Jiangsu, China. On arrival at the University laboratory, the fresh fish were prepared 

using the standard handling method; gutted, beheaded, and skin removed before thoroughly washing with 

clean water to remove contaminants or unwanted particles. Fish muscle was retrieved with care, 

separating the bones from the meat, chopped into pieces (about 0.25 cm) and divided into two portions. A 

portion of the chopped meat was dipped in hot water (95 ± 5 °C) and maintained for 15 min (HWD), 

hence endogenous enzymes were supposedly inactivated and further impurities removed. It was allowed 

to cool at room temperature, eventually vacuum packed in polyethylene bags, and kept frozen at −20 °C 

till needed for the experiments. The remaining portion was subjected to mincing using a meat mincer and 

the pulverized fish meat (homogenate) were also vacuum packed in polyethylene bags (100-250 g per 

unit), and kept frozen at −20 °C till needed for the experiments. Alcalase 2.4 L from a strain of Bacillus 

licheniformis, Flavourzyme 500 LAPU/g from Aspergillus oryzae and Neutrase 1.5 AU/g from Bacillus 

subtulis strain were obtained from Novozymes China Inc. and stored at 4 °C for subsequent analysis.  

1,1-Diphenyl-2-picrylhydrazyl (DPPH), 3-(2-pyridyl)-5,6-bis(4-phenylsulphonic acid)-1,2,4-triazine 

(ferrozine), and 2,2-azino-bis(3-ethylbenzothiazoline -6-sulfonic acid) diammonium salt (ABTS) were 

obtained from Sigma-Aldrich (Shanghai, China). All chemical reagents used for experiments were of 

analytical grade. 

Table 5. Characteristics used in preparation of samples in the evaluation with different 
proteases. 

Enzyme   Form  pH  T (°C)  

Alcalase 2.4 L(AU/g)*   Liquid/grain  8.0  55  
Flavourzyme (500 LAPU/g)†   Powder  7.0  50  
Neutrase (1.5 AU/g)  Liquid/grain  7.0  45  

* AU (Anson units) is the amount of enzyme that under standard conditions 
digests hemoglobin at an initial rate that produces an amount of trichloroacetic 
acid-soluble product which gives the same color with the Filon reagent as one 
milliequivalent of tyrosine released per minute. 

† LAPU (Leucine aminopeptidase unit) is the amount of enzyme that hydrolyze 1 
µmol of leucine-p-nitroanilide per minute. 
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3.2. Preparation of Fish Protein Hydrolysates 

HWD and FMM were hydrolyzed with three different enzymes, under the conditions given in Table 5 

based on optimum hydrolysis conditions. One hundred grams of tilapia fish were weighed into a vessel 

immersed in a water bath maintained at an appropriate temperature and 300 mL of distilled water was 

added to make a suspension. The suspension, for each enzyme applied, was adjusted to a suitable pH and 

pre heated to an appropriate temperature, then (0.5%, 1%, and 1.5%) enzymes:substrate ratio was added 

with continuous stirring. Hydrolysis was carried out for 120 min. After hydrolysis, the enzymes were 

inactivated by placing in boiling water for 15 min. The hydrolysate was allowed to cool down and 

centrifuged at 7,500 × g for 15 min. at 4 °C with a D-3756 Osterode am Harz model 4515 centrifuge 

(Sigma, Hamburg, Germany). The tilapia fish protein hydrolysate (FPH) was lyophilized and stored at  

−20 °C until used. All experiments were performed in triplicate and the results are the average of the  

three values. 

3.3. Determination of the Degree of Hydrolysis DH 

Reactions were monitored by measuring the extent of proteolytic degradation by means of the DH 

according to the pH-stat method described by Adler-Nissen [33]. The degree of hydrolysis (DH%), is 

defined as the percent ratio of the number of peptide bonds broken (h) to the total number of bonds per 

unit weight (htot), in each case, was calculated from the amount of base consumed [32], as given below:  

100(%) 





tot

bb

hmP

NV
DH


     (2) 

where Vb is base consumption in mL; Nb is normality of the base; α is average degree of dissociation of 

the α-NH2 groups; mP is mass of protein (N × 6.25) in g; and htot is total number of peptide bonds in the 

protein substrate. All the experiments were performed in triplicate and the results are the average of  

three values. 

3.4. Amino Acid Analysis  

Amino acid determination commenced by placing samples of FPH (100 mg) for all the samples and  

5 mL 6 M HCl in a 50 mL bottle that was sealed. The air was removed by keeping the sample in a vacuum 

chamber. The sealed samples were placed in an oven at 120 °C for 16 hours to hydrolyze. After hydrolysis, 

5 mL of 2 mM norleucine internal standard was added and the solution was filtered in a 0.2 µL Gelman 

membrane filter. One mL of stock sample was pipetted into a 50 mL borosilicate glass serum bottle and 

dried in a freeze-drier. One mL of sodium diluent buffer (pH 2.2) was added to the freeze-dried residue 

and transferred to a 1.5 mL micro-centrifuge tube for HPLC analysis. The prepared samples were injected 

as 2.5 µL volumes and run on a Waters HPLC (Waters Corporation, Milford, MA, USA) at a flow rate of 

0.4 mL/min with a Pickering sodium ion-exchange column of 4 × 150 mm (Pickering Laboratories, Inc., 

Mountain View, CA, USA) and sodium eluent (pH 3.15 and 7.40). TRIONE® ninhydrin reagent was 
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added with post column instrument (TRIONE® ninhydrin derivatization instrument, Pickering 

Laboratories, Inc.). The light absorbance of amino acids was detected with an UV Visible detector 

(Pickering Laboratories Inc.) at 570 nm wavelength and the amino acids were quantified by comparing 

with standard amino acid profiles. Methionine and cysteine were determined separately by oxidation 

products according to the performic acid procedure of Moore [34] before hydrolysis in 6 M HCl. 

Tryptophan was determined after alkaline hydrolysis by isocratic ion-exchange chromatography with  

O-phthalaldehyde derivatization followed by fluorescence detection by Ravindran and Bryden [35]. 

Amino acid composition was reported as g/100 g of protein.  

3.5. Determination of Molecular Weight  

The samples were determined using a Waters™ 600 E Advanced Protein Purification System (Waters 

Corporation, Milford, MA, USA). A TSK gel, 2000SWXL (7.8 × 300 mm) column was used with 10% 

acetonitrile + 0.1% TFA in HPLC grade water as the mobile phase. The calibration curve was obtained by 

running bovine carbonic anhydrase (29,000 Da), horse heart cytochrome C (12,400 Da), bovine insulin 

(5800 kDa), bacitracin (1450 Da), Gly-Gly-Tyr-Arg (451 kDa) and Gly-Gly-Gly (189 Da). The total 

surface area of the chromatograms was integrated and separated into eight ranges (>8,000, 3,000-8,000, 

2,000-3,000, 1,000-2,000, 600-1,000, 300-600, 200-300, <200 Da), expressed as a percentage of the total 

area, Table 2. The results were obtained and processed with the aid of Millennium 32 Version 3.05 

software (Vaters Corporation, Milford, MA 01757, USA). 

3.6. DPPH Radical Scavenging Activity Assay 

The method described by Wu et al. [14] was used to measure the DPPH radical scavenging activity 

with a slight modification. FPH samples (FMMH and HWDH) were dissolved in distilled water to obtain 

a concentration of 40 mg protein/mL. Then 2.0 mL of sample was mixed with 2.0 mL of 0.15 mM DPPH 

that was dissolved in 95% ethanol. The mixture was then shaken vigorously using a mixer (QT-1 Mixer, 

Tianchen Technological Co. Ltd. Shanghai, China) and kept in the dark for 25-30 min. The absorbance of 

the resultant solution was recorded at 517 nm. The scavenging activity was calculated using the following 

equation: 

DPPH (%) = 100






 
blankDPPHofabsorbance

sampleofabsorbanceDPPHofabsorbance
   (3) 

where the DPPH blank is the value of 2 mL of 95% ethanol mixed with DPPH solution, the DPPH sample 

is the value of 2 mL of sample solution mixed with DPPH solution, and the control sample is the value of 

2 mL of sample solution mixed with 2 mL of 95% ethanol. 
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3.7. ABTS Radical Scavenging Activity Assay 

ABTS radical scavenging activities of FPH samples were determined by the method described Re et al. 

[36], with slight modifications. A stock solution of ABTS radicals was prepared by mixing 5.0 mL of  

7 mM ABTS solution with 88 µL of 140 mM potassium persulfate, and keeping in the dark at room 

temperature for 12-16 h. An aliquot of stock solution was diluted with phosphate buffer (PB, 5 mM,  

pH 7.4) containing 0.15 M NaCl in order to prepare the working solution of ABTS radicals to an 

absorbance of 0.70 ± 0.02 at 734 nm. A 65 µL aliquot of tilapia FPH dissolved in the same phosphate 

buffer (66.67 µg/mL final assay concentration) or only buffer (for the control) was mixed with 910 µL of 

ABTS radical working solution, incubated for 10 min at room temperature in the dark, and then 

absorbance was measured at 734 nm. The percent reduction of ABTS+ to ABTS was calculated according 

to the following equation:  

ABTS (%) =  1001 









controlofabsorbance

sampleofabsorbance
       (4) 

3.8. Metal-Chelating Activity 

The metal-chelating activity of FPH was assessed using the method of Decker and Welch [37]. One mL 

of peptide solution (5 mg/mL) was first mixed with 3.7 mL of distilled water. Then it was reacted with a 

solution containing 0.1 mL 2 mM FeCl2 and 0.2 mL of 5 mM ferrozine. After 10 min, the absorbance of 

the reaction mixture was measured at 562 nm. The metal-chelating ability of FPH was calculated as a 

percentage applying the equation:  

Metal-chelating ability (%) =  1001 









controlofabsorbance

sampleofabsorbance
     (5) 

3.9. Nitrogen Solubility (NS) 

Nitrogen solubility was determined according to the procedure of Diniz and Martin [9], with slight 

modifications. Samples were dispersed in distilled water (10 g/L) and pH of the mixture was adjusted to 

2,3,4,5,6,7,8,9,10,11,12 with either 0.5 N HCL or 0.5 N NaOH while continually shaking (Lab-Line 

Environ-Shaker; Lab-Line Instrument, Inc., Melrose Park, IL, USA) at room temperature for 35 min. a 

25 mL aliquot was then centrifuged at 2,800 g for 35 min. A 15 mL aliquot of the supernatant was 

analyzed for nitrogen (N) content by the Kjeldahl method and the NS was calculated according  

to Equation: 

Nitrogen solubility (%) = 100
)(

)(tansup








ionconcentratNsample

ionconcentratNterna
   (6) 
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3.10. Oil-Holding Capacity (OHC) 

Oil-holding capacity (OHC) of tilapia FPH was determined as the volume of edible oil held by 0.5 g of 

material according to the method of Shahidi et al. [6]. A 0.5 g sample of each FPH was added to 10 mL 

soybean oil (Gold Ingots Brand, QS310002012787, Suzhou, P.R. China) in a 50 mL centrifuge tube, and 

vortexed for 30 s in triplicate. The oil dispersion was centrifuged at 2,800  g for 25 min. The free oil was 

decanted and the OHC was determined by weight difference.  

3.11. Water-Holding Capacity (WHC) 

To determine the Water Holding Capacity (WHC) of tilapia FPH, the method outlined by Diniz and 

Martin [9], was followed with slight modifications. Triplicate samples (0.5 g) of hydrolysates were 

dissolved with 10 mL of distilled water in centrifuge tubes and vortexed for 30 s. The dispersions were 

allowed to stand at room temperature for 30 min, centrifuged at 2,800  g for 25 min. The supernatant was 

filtered with Whatman No.1 filter paper and the volume retrieved was accurately measured. The 

difference between initial volumes of distilled water added to the protein sample and the volume retrieved. 

The results were reported as mL of water absorbed per gram of protein sample. 

3.12. Emulsifying Capacity (EC) 

Emulsifying capacity was measured using the procedure described by Rakesh and Metz [38], with 

modification. A 0.5 g of each freeze-dried sample was transferred into a 250 mL beaker and dissolved in 

50 mL of 0.5 N NaCl, and then 50 mL of soybean oil (Gold Ingots Brand, QS310002012787, Suzhou, P.R. 

China) was added. The homogenizer equipped with a motorized stirrer driven by a rheostat Ultra-T18 

homogenizer (Shanghai, China) was immersed in the mixture, and operated for 120 s at 10,000 rpm to 

make an emulsion. The mixture was transferred to centrifuge tubes, maintained in water-bath at 90 °C for 

10 min and then centrifuged at 2800  g for 20 min. Emulsifying capacity was calculated as in equation: 

S

RA

W

VV
EC




        
(7) 

where VA is the volume of oil added to form an emulsion, VR is the volume of oil released after 

centrifugation, and WS is the weight of the sample.  

3.13. Foaming Capacity (FC) and Foam Stability (FS) 

Estimation of foaming capacity was done following the method of Bernardi Don et al. [39], with minor 

modifications. Thirty mL of 30 g/L aqueous dispersion was mixed thoroughly using an Ultra-Turrax 25 

homogenizer at 9,500 rpm for 3 min in a 250 mL graduated cylinder. The total volume of the protein 

dispersion was measured immediately after 30 s. The difference in volume was expressed as the volume 

of the foam. Foam stability was determined by measuring the fall in volume of the foam after 60 min. 
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3.14. Bulk Density (BD) 

Bulk density of freeze-dried tilapia FPH was estimated with approximately 3 g of each sample packed 

into 25 mL graduated cylinders by gently tapping on the lab bench 10 times. The volume was recorded 

and bulk density was reported as g/mL of the sample. 

3.15. In Vitro Protein Digestibility (IVPD) 

In vitro protein digestibility (IVPD) was carried out according to the method described by Elkhalil et 

al. [40], with slight modifications. Twenty mg of tilapia FPH (FMMH and HWDH) samples were digested 

in triplicate in 10 mL of trypsin (0.2 mg/mL in 100 mM Tris-HCl buffer, pH 7.6). The suspension was 

incubated at 37 °C for two hours. Hydrolysis was stopped by adding 5 mL 50% trichloroacetic acid 

(TCA). The mixture was allowed to stand for 30-35 min at 4 °C and was then centrifuged at 10,000 × g 

for 25 min using a D-3756 Osterode AM Harz Model 4515 Centrifuge (Sigma, Hamburg, Germany). The 

resultant precipitate was dissolved in 5 mL of NaOH and protein concentrate was measured using the 

Kjeldahl method. Digestibility was calculated as follows:  

Protein digestibility (%) =  100
)(



A

BA
         (8) 

where A: total protein content (mg) in the sample and B: total protein content (mg) in the TCA precipitate.  

3.16. Statistical Analysis 

The results obtained were subjected to one-way analysis of variance (ANOVA) using SPSS 18.0 

statistical software package (SPSS Inc, Chicago, IL, USA). Each value was determined by at least three 

replicates. Results were given as mean ± standard deviation. 

4. Conclusions  

The study demonstrated that Alcalase 2.4 L is a suitable protease for use in the production of tilapia 

(Oreochromis niloticus) muscle hydrolysates that exhibit a significant antioxidant activity and due to its 

its functionality, it can serve as a good source of quality food ingredients and also provide desirable 

characteristics to food products. Antioxidants block the process of oxidation by neutralizing free radicals. 

The hydrolysates from FMM and HWD revealed a wide range of molecular weights polypeptides with an 

appreciable level of solubility, high digestibility, fat absorption, foaming capacity, emulsifying capacity 

and valuable antioxidant properties that can compete with hydrolysates and protein powders currently 

available in the market. On the whole, endogenous enzyme inactivation in HWD did not manifest 

significant differences in antioxidant properties and functionalities.  
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