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Abstract: The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids 

from the inverse gas chromatography measurements of the activity coefficients at infinite 

dilution. Retention data were used for the calculation. The solubility parameters are helpful 

for the prediction of the solubility in the binary solvent mixtures. From the solubility 

parameters, the standard enthalpies of vaporization of ionic liquids were estimated.  
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1. Introduction 

Ionic liquids (ILs) have become the subject of an increasing number of investigations due to their 

unique properties such as wide liquid range, stability at high temperatures, no flammability and 

negligible vapor pressure. Ionic liquids as green solvents can be used in separation processes, 

synthesis, catalysis and electrochemistry, successfully replacing the conventional volatile, flammable 

and toxic organic solvents. Since the ILs have a negligible vapor pressure, the inverse gas 

chromatography (IGC) is a suitable method for measuring thermodynamic properties of pure 

substances and their mixtures [1]. From the retention data, the activity coefficients at infinite dilution, 

Flory-Huggins interaction parameters as well as the Hildebrand’s solubility parameters can be 

determined. Activity coefficients at infinite dilution are very important for calculations of selectivity 

and capacity of entrainers for the different separation problems, characterizing the behavior of liquid 

mixtures, estimation of mutual solubilities, fitting the excess molar energy (GE) model parameters 

(e.g., Wilson, NRTL, UNIQUAC), predicting the existence of an azeotrope, analytical 
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chromatography, calculation of Henry constant and partition coefficients, development of 

thermodynamic models based on the group contribution methods such as mod. UNIFAC [2]. The 

values of the activity coefficients at infinite dilution for the investigated ionic liquids were published 

earlier [3-18]. 

The Hildebrand’s solubility parameters have numerous applications including gas-liquid solubility, 

solvent extraction and many others as described in detail in the literature [19,20].Solubility parameters 

are available for only some of the ionic liquids determined by IGC [21-24], intrinsic viscosity method 

[25] or estimated from Kamlet-Taft equation [26]. This paper provides information on the 

Hildebrand’s solubility parameters determined for 18 ionic liquids as a function of temperature and the 

standard enthalpies of vaporization calculated from the values of the solubility parameters. 

2. Results and Discussion 

The Hildebrand’s solubility parameters (δ2) were calculated for the ionic liquids presented (with 

abbreviations and structures) in Table 1. The solubility parameters show a slight dependence on the 

temperature, which was also observed by Mutelet et al. [21-23]. The results are presented in Table 2 

and are compared to results taken from the literature [21-26].  

Table 1. Abbreviations, names and structures of investigated ionic liquids. 

Abbreviation Name Structure Reference 

[emim][TFA] 1-Ethyl-3-methyl-
imidazolium trifluoroacetate

 
O

O

F

F

F

 

[3] 

[emim][SCN] 1-Ethyl-3-methyl-
imidazolium thiocyanate 

 
SCN

[4] 

[bmim][SCN] 1-Butyl-3-methyl-
imidazolium thiocyanate 

 
SCN

[5] 

[hmim][SCN] 1-Hexyl-3-methyl-
imidazolium thiocyanate 

 
SCN

[6] 

[1,4bmPY][SCN] 1-Butyl-4-methyl-
pyridinium thiocyanate 

 
SCN

[7] 

[bmPYR][SCN] 1-Butyl-1-methyl-
pyrrolidinium thiocyanate 

 
SCN

[7] 
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Table 1. Cont. 

Abbreviation Name Structure Reference 

[bmim][CF3SO3] 1-Butyl-3-methyl-
imidazolium 
trifluoromethanesulfonate 

 

S

O

O

O

F

F

F

 

[8] 

[1,3bmPY][CF3SO3] 1-Butyl-3-methyl-
pyridinium 
trifluoromethanesulfonate  

 

[9] 

[bmPYR][CF3SO3] 1-Butyl-1-methyl-
pyrrolidinium 
trifluoromethanesulfonate 

N

C4H9

 

S

O

O

O

F

F

F

 

[10] 

[bmim][MDEGSO4] 1-Butyl-3-methyl-
imidazolium 
2-(2-methoxyethoxy)ethyl 
sulfate 

 

 

[11] 

[bmim][OcSO4] 1-Butyl-3-methyl-
imidazolium octyl sulfate 

 

 

[12] 

[P1,i4,i4,i4][TOS] Triisobutyl-methyl-
phosphonium tosylate 

P+

 

 

[13] 

[1,4bmPY][TOS] 1-Butyl-4-methyl-
pyridinium tosylate 

 

 

[14] 
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Table 1. Cont. 

Abbreviation Name Structure Reference 

[1,4bmPY][NTf2] 1-Butyl-4-methyl-

pyridinium 

bis(trifluoromethylsulfonyl)

-amide 

 

 

[15] 

[C6OCmim][NTf2] 1-Hexyloxymethyl-3-

methyl-imidazolium 

bis(trifluoromethylsulfonyl)

-amide 

 

 

[16] 

[(C6OC)2im][NTf2] 1,3-Dihexyloxymethyl-

imidazolium 

bis(trifluoromethylsulfonyl)

-amide 

 

 

[16] 

[Et3S][NTf2] Triethyl-sulfonium 

bis(trifluoromethylsulfonyl)

-amide 
 

 

[17] 

[hmim][NTf2] 1-Hexyl-3-methyl-

imidazolium 

bis(trifluoromethylsulfonyl)

-amide 

 

 

[18] 
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Table 2. Hildebrand’s solubility parameters δ2 for the different ionic liquids. 

Ionic liquid T/K δ2/MPa0.5 

[emim][TFA] 298.15 25.561 
 328.15 25.58 
 338.15 25.59 
 348.15 25.60 
 358.15 25.60 

[emim][SCN] 298.15 25.191 
 308.15 25.24 
 318.15 25.33 
 328.15 25.41 
 338.15 25.46 
 348.15 25.55 
 358.15 25.57 

[bmim][SCN] 298.15 24.641 
 318.15 24.70 
 328.15 24.72 
 338.15 24.75 
 348.15 24.77 
 358.15 24.80 

[hmim][SCN] 298.15 23.651 
 318.15 23.74 
 328.15 23.79 
 338.15 23.84 
 348.15 23.90 
 358.15 23.93 
 368.15 23.98 

[1,4bmPY][SCN] 298.15 24.53 
 308.15 24.57 
 318.15 24.62 
 328.15 24.67 
 338.15 24.71 
 348.15 24.74 
 358.15 24.77 

[bmPYR][SCN] 298.15 24.96 
 308.15 24.98 
 318.15 25.00 
 328.15 25.01 
 338.15 25.02 
 348.15 25.04 
 358.15 25.05 
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Table 2. Cont. 

Ionic liquid T/K δ2/MPa0.5 
[bmPYR][SCN] 298.15 24.96 
 308.15 24.98 
 318.15 25.00 
 328.15 25.01 
 338.15 25.02 
 348.15 25.04 
 358.15 25.05 

[bmim][CF3SO3] 298.15 22.671 
 308.15 22.74 
 318.15 22.81 
 328.15 22.87 
 338.15 22.97 
 348.15 23.03 
 358.15 23.09 

[1,3bmPY][CF3SO3] 298.15 22.471 
 318.15 22.61 
 328.15 22.68 
 338.15 22.75 
 348.15 22.84 
 358.15 22.89 

[bmPYR][CF3SO3] 298.15 22.831 
 318.15 22.94 
 328.15 23.01 
 338.15 23.06 
 348.15 23.13 
 358.15 23.17 
 368.15 23.24 

[bmim][MDEGSO4] 298.15 24.80 
 303.15 24.80 
 308.15 24.81 

[bmim][OcSO4] 298.15 22.83 
 313.15 23.00 
 328.15 23.25 

[P1,i4,i4,i4][TOS] 298.15 24.331 
 318.15 24.20 
 328.15 24.13 
 338.15 24.05 
 348.15 23.99 
 358.15 23.93 
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Table 2. Cont. 

Ionic liquid T/K δ2/MPa0.5 
[1,4bmPY][TOS] 298.15 23.061 
 328.15 23.24 
 333.15 23.27 
 338.15 23.29 
 343.15 23.33 
[1,4bmPY][NTf2] 298.15 20.611 
 318.15 20.82 
 328.15 20.92 
 338.15 21.05 
 348.15 21.15 
 358.15 21.25 
 368.15 21.35 
[C6OCmim][NTf2] 298.15 20.261 
 318.15 20.48 
 328.15 20.59 
 338.15 20.71 
 348.15 20.82 
 358.15 20.93 
 368.15 21.05 
[(C6OC)2im][NTf2] 298.15 19.601 
 318.15 19.81 
 328.15 19.92 
 338.15 20.03 
 348.15 20.14 
 358.15 20.25 
 368.15 20.35 
[Et3S][NTf2] 298.15 21.051 
 308.15 21.13 
 318.15 21.25 
 328.15 21.35 
 338.15 21.47 
 348.15 21.55 
 358.15 21.66 
 368.15 21.72 
[hmim][NTf2] 298.15 20.25 
 308.15 20.36 
 313.15 20.44 
 328.15 20.58 
 333.15 20.64 
 338.15 20.70 
 348.15 20.83 
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Table 2. Cont. 

Ionic liquid T/K δ2/MPa0.5 
Solubility parameters taken from the literature 

[mmim][(CH3)2PO4] [21] 312.55 26.54 
 332.65 25.96 
 352.75 25.16 
[emim][(C2H5)2PO4] [21] 312.65 25.81 
 332.55 25.44 
 352.65 25.32 
[emim][NTf2] [23] 313.15 22.31 
[emim][NTf2] [25] 298.15 27.6 
[emim][BF4] [24] 298.15 24.4 
[bmim][BF4] [24] 298.15 24.3 
[bmim][BF4] [25] 298.15 31.6 
[bmim][NTf2] [25] 298.15 26.7 
[bmim][NTf2] [26] 298.15 25.5 
[bmim][CF3SO3] [25] 298.15 24.9 
[bmim][CF3SO3] [26] 298.15 25.4 
[bmim][PF6] [23] 313.15 23.2 
 323.15 22.62 
 333.15 22.05 
[bmim][PF6] [25] 298.15 29.8 
[bmim][PF6] [26] 298.15 30.2 
[bmim][SbF6] [26] 298.15 31.5 
[bmmim][NTf2] [26] 298.15 24.2 
[hmim][BF4] [24] 298.15 23.3 
[hmim][NTf2] [25] 298.15 25.6 
[hmim][PF6] [25] 298.15 28.6 
[omim][BF4] [24] 298.15 22.5 
[omim][NTf2] [25] 298.15 25.0 
[omim][PF6] [25] 298.15 27.8 
[omim][Cl] [23] 313.15 17.91 
[C16mim][BF4] [22] 323.15 19.52 
 333.15 19.61 
 343.15 19.60 
[OH-C2mim][BF4] [21] 302.55 22.77 
 312.65 22.87 
 332.65 22.88 
[OH-C2mim][PF6] [21] 302.65 21.84 
 312.55 21.93 
 332.45 22.45 

1 extrapolated values. 



Int. J. Mol. Sci. 2010, 11 

 

 

1981

The values of δ2 calculated using the IGC method are not consistent with those obtained by the 

intrinsic viscosity method or estimated from the Kamlet-Taft equation. For ionic liquid 

[bmim][CF3SO3] the values of δ2 are 22.67, 24.9 [25] and 25.4 [26] obtained by IGC, intrinsic 

viscosity method or estimated from Kamlet-Taft equation, respectively. For ionic liquid [hmim][NTf2] 

the difference is much greater, values of δ2 are 20.25 and 25.6 [25] for the IGC and intrinsic viscosity 

methods, respectively. It was found that values of δ2 determined using the IGC method by Mutelet et 

al. [21-23] and Foco et al. [24] are also not consistent with those determined by the two methods 

mentioned above (Table 2). On the other hand, values obtained by different research groups by IGC 

are coherent as is shown in Figure 1. From Figure 1, it is obvious that for an ionic liquid of general 

cation formula [Rmim]+, the solubility parameter decreases with an increasing of the alkyl chain R. In 

the other words, the more aliphatic the cation character, the lower the solubility parameter. The slope 

of all three lines is similar – it confirms that the data are consistent (except for [emim][BF4]  

ionic liquid). 

Figure 1. The solubility parameter versus the number of carbon atoms n in the alkyl chain 

R for the ionic liquids based on 1-alkyl-3-methyl-imidazolium cation [Rmim]+ obtained by 

IGC method. (■) [SCN]–; (●) [BF4]
–; (▲) [NTf2]

–. The lines are drawn to guide the eye. 
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Figure 2 shows the anion influence on the solubility parameter for ionic liquids based on  

1-alkyl-3-methyl-imidazolium cations [Rmim]+, 1-butyl-(3 or 4)-methyl-pyridinium [bmPY]+ and  

1-butyl-1-methyl-pyrrolidinium [bmPYR]+ cations. The solubility parameter increases in the following 

order: [Cl]– < [NTf2]
– < [CF3SO3]

– < [OcSO4]
– < [PF6]

– < [BF4]
– < [TOS]– < [SCN]– < [MDEGSO4]

– < 

[TFA]–. The highest values of δ2 are for [BF4]
–, [TOS]–, [SCN]–, [MDEGSO4]

– and [TFA]– anions, 

whilst the lowest value is for the [Cl]– anion. 
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Figure 2. Anion influence on the solubility parameter for ionic liquids based on 1-alkyl-3-

methyl imidazolium cations [Rmim]+, [bmPY]+ and [bmPYR]+ cations. (■) [emim]+; (●) 

[bmim]+; (▲) [hmim]+; (♦) [omim]+; (●) [1,4bmPY]+; (○) [1,3bmPY]+; (●) [bmPYR]+. 
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Figure 3. Influence of cation structure on the solubility parameter for ionic liquids based 

on (■) [SCN]– and (●) [CF3SO3]
– anions. The lines are drawn to guide the eye. 
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Figure 3 shows influence of the cation structure on the solubility parameter for ionic liquids based 

on [SCN]– and [CF3SO3]
– anions. The lowest values of δ2 are for butyl-methyl-pyridinium [bmPY]+ 

cations ([1,3bmPY][CF3SO3] and [1,4bmPY][SCN]). 

The influence of the cation on the solubility parameter for the bis(trifluoromethylsulfonyl)-amide 

based ionic liquids ([NTf2]
–) is shown in Figure 4. The solubility parameter increases in the following 

order: [(C6OC)2im]+ < [hmim]+ < [C6OCmim]+ < [1,4bmPY]+ < [Et3S]+ < [emim]+. The difference in 

solubility parameters between [hmim]+ and [C6OCmim]+ cations are very small. It is caused by the 

similar structure of these two cations. The [C6OCmim]+ cation has an additional methoxy group (–O–

CH2–) in the structure, which causes a little augmentation of δ2 value. From this figure, it can be 

concluded again that the solubility parameter is higher for the ionic liquids with less aliphatic 

character. It is also presented in Figure 1 and was mentioned previously.  

Figure 4. Cation influence on the solubility parameter for ionic liquids based on [NTf2]
– 

anion. The line is drawn to guide the eye. 
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Standard enthalpies of vaporization ΔvapH298.15 calculated according to equation 8 and molar 

volumes of ionic liquids necessary in enthalpy calculations are presented in Table 3, and are contrasted 

the results taken from the literature [25-29]. The larger differences in values of enthalpies of 

vaporization are for ionic liquids based on the [SCN]– anion. For ionic [bmim][CF3SO3] the difference 

is not so high: 22 and 13 kJ·mol–1 according to references [27] and [28], respectively. Due to the 

difference in solubility parameters, values of the enthalpies of vaporization calculated from data from 

references [25,26] are of course different and larger. For ionic liquid [1,4bmPY][NTf2] value of the 

enthalpy of vaporization is lower by 20 kJ·mol–1 than for that obtained by Deyko et al. [27]. A very 

good consistency in results of enthalpies of vaporization is found for [hmim][NTf2] ionic liquid. Result 

obtained from IGC measurements is only of about 2 and 4 kJ·mol–1 lower than for that obtained by 
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Deyko et al. [27] and Zaitsau et al. [29], whilst the enthalpy of vaporization obtained from the 

solubility parameter determined by intrinsic viscosity method is much higher at of 216.4 kJ·mol–1 [25]. 

Table 3. Molar volumes Vm at T = 298.15 K and standard enthalpies of vaporization 

ΔvapH298.15 for investigated ionic liquids. 

Ionic liquid Vm/cm3·mol–1 ΔvapH298.15/kJ·mol–1 

[emim][TFA] 173.71 115.97     
[emim][SCN] 151.62 98.67 1518    
[bmim][SCN] 184.43 114.57 1488    
[hmim][SCN] 200.04 114.37     
[1,4bmPY][SCN] 196.25 120.5     
[bmPYR][SCN] 188.85 120.1     
[bmim][CF3SO3] 222.05 116.67 1398 130.29 140.110 145.711 
[1,3bmPY][CF3SO3] 234.75 121.07     
[bmPYR][CF3SO3] 232.65 123.77     
[bmim][MDEGSO4] 284.25 177.6     
[bmim][OcSO4] 327.75 173.0     
[P1,i4,i4,i4][TOS] 363.46 217.67     
[1,4bmPY][NTf2] 304.85 132.07 1528    
[C6OCmim][NTf2] 349.95 146.07     
[(C6OC)2im][NTf2] 460.25 179.27     
[Et3S][NTf2] 273.75 123.77     
[hmim][NTf2] 326.45 136.7 1398 141.612 216.410  

1 from reference [30];  
2 from reference [31];  
3 from reference [32];  
4 from reference [33];  
5 from density measurements performed on Anton Paar Density Meter DMA 4500;  
6 from reference [34];  
7 calculated from extrapolated values of δ2;  
8 from reference [27];  
9 from reference [28];  
10 calculated from δ2 from reference [25];  
11 calculated from δ2 from reference [26];  
12 from reference [29] 

3. Calculation of Solubility Parameters 

3.1. Experimental Procedure 

The activity coefficients at infinite dilution for all investigated ionic liquids were measured using 

inverse gas chromatography. Detailed descriptions of materials, apparatus and methods used in each 

experiment are presented in the certain papers [3-18]. On the basis of the experimental data from the 
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activity coefficients at infinite dilution measurements, the Hildebrand’s solubility parameters have 

been calculated using equations presented below. 

3.2. Theoretical Basis 

Retention data were used for the calculation of Hildebrand’s solubility parameters, δ2. According to 

the Flory-Huggins theory the interaction parameter at infinite dilution can be determined using the 

following expression: 

 













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
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R

g 
  (1) 

where R denotes the gas constant, T the temperature, *
1P  the saturated vapor pressure of the solute at 

temperature T, B11 the second virial coefficient of pure solute, *
1V  and *

2V  the molar volume of the 

solute and solvent respectively, M1 the molar mass of solute, ρ1 and ρ2 density of solute and solvent 

respectively, Vg specific retention volume which is given by: 

2

N15.273

Tm

V
Vg   (2) 

where m2 denotes the mass of the solvent on the column packing and VN the net retention volume of 

the solute given by: 

 GRo
3
2N ttUJV   (3) 

where tR and tG are the retention times for the solute and an unretained gas, respectively, Uo is the 
column outlet flow rate, 3

2J  the pressure correction term given by: 

 
  1/
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3

2
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3
oi3

2 
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
PP
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J  (4) 

where Pi and Po denote the inlet and the outlet pressure, respectively. 

The column outlet flow rate corrected for the vapor pressure of water Uo is given by: 

fo

w
o T

T

P

P
UU 








 1  (5) 

where Tf is the temperature of the flow meter, Pw is the vapor pressure of water at Tf and U is the flow 

rate measured with the bubble flow meter. 
The interaction parameter 

12  may be expressed as a function of δ1 and δ2 which denote the 

solubility parameters of the solute and of the solvent, respectively by: 

 
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V 2
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Equation 6 can be rewritten as: 
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The solubility parameters δ1 of the solutes were calculated using following equation: 




RTH 
 vap2 Δ

 (8) 

where ΔvapH denotes enthalpy of vaporization and υ the molar volume. Enthalpies of vaporization of 

solutes were taken from literature [35] and molar volumes were calculated from densities taken from 

literature [36]. The values of B11 were calculated using the McGlashan and Potter [37] equation for 

alkanes and Tsonopolous [38] equation for the rest of solvents. The vapor pressure values were 

calculated using equation and constants taken from the literature [36,39,40]. Critical data used to 

calculate B11 were obtained from literature [41,42]. 

Figure 5. An example of the determination of solubility parameter δ2. Plot of 
*

1

12
2

1

VRT






 

versus δ1 according to the equation 7 for ionic liquid [(C6OC)2im][NTf2] at T = 368.15 K. 
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Values of 

12  were determined from equation 1. If the left side of equation 7 is plotted against δ1, a 

straight line having a slope of 2δ2/RT and an intercept of − 2
2 /RT is obtained. The solubility parameter 

of the solvent δ2 (ionic liquid) can be calculated from the slope and from the intercept of the straight 

line. The agreement of both δ2 values confirms the applicability of the method to the considered 

system. An example plot 
*

1

12
2

1

VRT




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 versus δ1 is given in Figure 5 for ionic liquid [(C6OC)2im][NTf2] 

at T = 368.15 K. From the slope and interception of straight line the solubility parameter was 
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determined, giving results of 20.30 and 20.40, respectively. Then the average of these values was taken 

as a final result. The correlation coefficient in this example is 0.996. Hildebrand’s solubility 

parameters of the investigated ionic liquids and the estimated standard enthalpy of vaporization 

calculated using equation 8 are listed in Tables 2 and 3, respectively. 

4. Conclusions 

Inverse gas chromatography is a reliable method to determine Hildebrand’s solubility parameters. 

Data obtained for 18 ionic liquids are coherent with those obtained by different research group by the 

same method. From the solubility parameters the standard enthalpies of vaporization can be calculated. 

Obtained values of enthalpies of vaporization are in acceptable consistency with the data available in 

literature except for ionic liquids based on thiocyanate anion. 
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