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Abstract: Retinal ischemia and oxidative stress lead to neuronal death in many ocular 

pathologies. Recently, we found that lutein, an oxy-carotenoid, protected the inner retina 

from ischemia/reperfusion injury. However, it is uncertain whether lutein directly protects 

retinal ganglion cells (RGCs). Here, an in vitro model of hypoxia and oxidative stress was 

used to further investigate the neuroprotective role of lutein in RGCs. Cobalt chloride 

(CoCl2) and hydrogen peroxide (H2O2) were added to a transformed RGC cell line, RGC-5, 

to induce chemical hypoxia and oxidative stress, respectively. Either lutein or vehicle was 

added to cultured cells. A higher cell count was observed in the lutein-treated cells 

compared with the vehicle-treated cells. Our data from this in vitro model revealed that 

lutein might protect RGC-5 cells from damage when exposed to either CoCl2-induced 

chemical hypoxia or H2O2-induced oxidative stress. These results suggest that lutein may 

play a role as a neuroprotectant. 
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1. Introduction 

Retinal ischemia leads to irreversible neuronal injury and visual impairment in many ocular 

pathologies such as glaucoma, diabetic retinopathy (DR) and retinal vessel occlusion [1]. Retinal 

ganglion cell (RGC) death is common in these ocular pathologies. During ischemia, depletion of ATP 

stores, ions imbalance, glutamate excitotoxicity, apoptosis and free radical production eventually lead 

to RGC death [1-3]. Reperfusion following ischemia results in oxidative stress, which also plays a role 

in RGC damage [4,5]. Investigations have been carried out to study the neuroprotection of RGCs using 

carotenoids [6]. 

Lutein ((3R,39R,69R)-b,e-carotene-3,39-diol) is a member of xanthophyll dietary carotenoids and 

structurally similar to zeaxanthin [7,8]. These xanthophylls have a chemical formula of C40H56O2 with 

a hydroxyl group attached to each end of the molecule. The difference between lutein and zeaxanthin 

is the position of a double bond in one of the hydroxyl groups [8]. The unique structure enables lutein 

to react more strongly with singlet oxygen than other carotenoids [9]. Like zeaxanthin, lutein is 

predominately present in the macular region and acts as an efficient pigment for absorbing high energy 

blue light and a direct free radical scavenger to prevent macular damage [8,10]. However, lutein 

cannot be synthesized in the body and need to be obtained in the diet. It is richly found in dark green 

leafy vegetables and eggs [11].  

Recently, our group demonstrated that lutein protected the inner retina from damage after 

ischemia/reperfusion in vivo [12]. We showed that lutein was anti-apoptotic and prevented cell damage 

by decreasing oxidative stress. However, the effect of lutein on specific cell populations is unknown. 

In this study, a transformed cell line of RGC, RGC-5, was used. This cell line was originally derived 

by transforming postnatal day one rat retinal cells with 2 E1A virus [13]. RGC-5 cells express  

RGC-specific markers such as Brn-3c and Thy-1 although they are mitotically active which is different 

from RGCs. Here, we sought to investigate whether lutein could reverse the cytotoxic effect of 

hypoxia or oxidative stress, key events during ischemic injury, specifically on RGC-5 in vitro. 

2. Results and Discussion 

2.1. Results 

Chemical hypoxia was induced in RGC-5 cells using cobalt (II) chloride (CoCl2). After hypoxia, 

profound cell loss was observed in the vehicle-treated hypoxic group (Figure 1b,e; p < 0.05 versus 

normal control). Cells appeared to be more round, with loss of processes (Figure 1b) when compared 

with the normal control (Figure 1a). However, lutein treatment reversed the cytotoxic effect of CoCl2 

and led to less damage to RGC-5 cells (Figure 1c,d). Cells treated with 20 µM lutein (Figure 1d) 

showed morphology similar to that of the normal control (Figure 1a). Quantitative analysis by cell 

counting showed that more RGC-5 cells were observed in the lutein-treated group (Figure 1e; p < 0.05 

at 20 µM versus vehicle-treated group). 

Hydrogen peroxide (H2O2) was used to induce oxidative stress. Exposure to H2O2 led to cell death 

in the vehicle-treated group (Figure 2b,e; p < 0.01 versus normal control). Upon lutein treatment at 

both at 10 µM and 20 µM, the number of RGC-5 cells was increased (Figure 2c,d,e; p < 0.05 versus 

vehicle-treated group) to a number similar to that of the normal control (Figure 2e; p > 0.05). 
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Figure 1. Light micrographs and cell count of RGC-5 cells treated with cobalt (II) chloride 

(CoCl2; 300 M). (a) Normal control. (b) Vehicle treatment. (c) Lutein treatment at  

10 M. (d) Lutein treatment at 20 M. CoCl2-induced hypoxia led to cell death in the 

vehicle-treated group (b) compared with control (a). However, 20 M lutein treatment 

reversed the cytotoxic effect of CoCl2 (d). (e) Count of RGC-5 cells treated with CoCl2 

referenced to the normal control. A decreased cell number was observed for the vehicle-

treated group (*p < 0.05 versus control). However, an increased RGC-5 cell number was 

observed after 20M lutein treatment (#p < 0.05 versus vehicle-treated). Scale bar, 25 m. 

Error bars, SEM. 

 
 

2.2. Discussion 

Ischemia and oxidative stress are common causes of many ocular diseases, which lead to 

irreversible RGC damage. In the present study, we examined the neuroprotective effect of lutein on 

RGC-5 cells against CoCl2-induced chemical hypoxia and H2O2-induced oxidative stress in vitro. Our 

data demonstrated that lutein exerted neuroprotection on RGC-5 cells against hypoxia and  

oxidative stress. 

Retinal ischemia is a feature of many ocular pathologies such as glaucoma, DR and retinal vessel 

occlusion [1]. In experimental studies, CoCl2
 is one of the common agents to induce hypoxia [14-18]. 

CoCl2 treatment simulates hypoxia, a key event during ischemic injury, by altering gene and protein 

expression similarly to ischemia [19]. It induces hypoxia by blocking the degradation of hypoxia-

inducible factor-1 (HIF-1) and subsequent HIF-1 accumulation [20]. Moreover, CoCl2 also 

induced apoptosis through activation of caspase-3/8, cleavage of anti-apoptotic protein Mcl-1 and 

generation of reactive oxygen species (ROS) in a variety of in vitro studies [17,21]. In animal studies, 

CoCl2 has been shown to induce apoptosis and retinal photoreceptor degeneration [22]. In addition, 
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CoCl2-induced hypoxia has been adopted in RGC in vitro [16,23] and in vivo [16]. Accumulation of 

HIF-1 protein increased expression of heat shock protein-27, and generation of -amyloid peptide 

[23] was shown in CoCl2-treated RGC-5 cells. In our results, we demonstrated that CoCl2 attributed to 

hypoxia-induced injury in RGC-5 cells. 

Figure 2. Light micrographs and cell count of RGC-5 cells treated with hydrogen peroxide 

(H2O2; 300 M). (a) Normal control. (b) Vehicle treatment. (c) Lutein treatment at  

10 M. (d) Lutein treatment at 20 M. H2O2-induced oxidative stress led to cell death in 

the vehicle-treated group (b). Lutein treatment reversed the cytotoxic effect (c and d). (e) 

Cell count in RGC-5 cells treated with H2O2. Cell count referenced to the normal control. 

H2O2 exposure led to a decrease in cell number in the vehicle-treated group (**p < 0.01 

versus control). However, both 10 µM and 20 µM lutein treatment protected RGC-5 cells 

from damage (#p < 0.05 versus vehicle-treated control). Scale bar, 25 µM. Error bars, SEM. 

 
 

Oxidative stress is one of the key factors leading to neuronal injury. The retina is highly susceptible 

to oxidative stress because of the high content of polyunsaturated fatty acids and high oxygen 

consumption [24]. Under normal situations, cells possess several intrinsic antioxidant enzymes such as 

superoxide dismutase, catalase and glutathione peroxidase to cope with oxidative stress resulted from 

normal metabolism in our body [3]. However, during injuries such as in ischemia/reperfusion, 

glaucoma and DR, overproduction of ROS and free radicals overwhelms the intrinsic antioxidant 

mechanisms [1,3]. RGC is sensitive to oxidative stress in pathological situations in vivo [3] and in vitro 

[25]. In experimental studies, H2O2 is widely used to induce oxidative stress [25]. Exogenous H2O2 

increases intracellular accumulation of ROS [26], apoptosis and leads to loss of cell viability [25] in 

RGC-5. H2O2-induced apoptosis in RGCs has been shown to be caspase-independent and yet involves 

the activation of poly(ADP-ribose) polymerase and apoptosis-inducing factor [25]. In the present 
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study, H2O2 also induced significant cell damage to RGC-5 cells, which was comparable to previously  

found [25]. 

In the macula, lutein absorbs high energy blue light and protects the retina from oxidative injury 

[10]. Low levels of lutein intake have been shown to associate with the prevalence of AMD [27]. 

Lutein supplementation has been shown to improve vision and retard progression of AMD in clinical 

trial studies [28,29]. To our knowledge, there is no reported toxic effect of lutein even at a high dose of 

intake [30]. No significant clinical, hematological, biochemical or histopathological side effects were 

noted in rats fed with 733 mg/kg per day of purified crystalline lutein [10,30]. More importantly, lutein 

has been regarded and approved safe to be used as a daily supplement and to be included into certain 

food and beverage application in USA [10]. However, the use of lutein is still limited in treating AMD, 

which is an outer retinal disease. 

Recently, intensive efforts have been made to explicate the neuroprotective effects of carotenoids in 

ocular diseases in vivo [12,31,32] and in vitro [5,33]. Lutein treatment in DR mice restored 

malondialdehyde and glutathione protein levels, glutathione peroxidase activity as well as 

electroretinogram response to control values [31]. Lutein also reversed the activation of factor-kappa B 

transcription, which is involved in oxidative stress and inflammation response [31]. In mice with 

retinal inflammation, lutein reduced inflammatory response and oxidative stress through reversal of 

STAT3 activation, downstream of inflammatory cytokine signals [32]. In addition, the activation of 

glial fibrillary acidic protein, an indicator of pathological change of Muller glial cells, was prevented 

in animal treated with lutein. In our recently reported study, we found that lutein was also protective to 

inner retinal neurons in ischemia/reperfusion injury in vivo [12]. Reduced immunoreactivity of 

nitrotyrosine and poly(ADP-ribose) in the inner retina, indicating a reduced oxidative stress, was 

observed in lutein-treated ischemic retina. Effects of carotenoids on a specific cell population were 

investigated using an in vitro approach. Zeaxanthin and astaxanthin have been shown to protect  

RGC-5 cells from oxidative injuries [5,33]. In the present study, our results suggested that lutein 

treatment protected RGC-5 from CoCl2-induced chemical hypoxia and H2O2-induced oxidative stress. 

Indeed, it has been proposed that lutein can effectively reduce the intracellular accumulation of H2O2 

by scavenging H2O2 and superoxide as well as inhibit NFB-regulated inflammatory gene expression 

in lipopolysaccharide-stimulated macrophages in vivo and in vitro [34]. This indicates that lutein is 

able to penetrate into cells and scavenge intracellular H2O2 to prevent cell damage. Furthermore, 

lutein-binding protein [35] and retinal tubulin [36] are found in the ganglion cell layer of primate retina 

and bovine retina. These proteins are suggested to be involved in lutein transport. However, further 

study is necessary to investigate the expression and localization of lutein-bind protein in rodents and 

the RGC-5 cell line. 

The RGC-5 cell line was previously used as a RGC-specific in vitro model [4,5,18,26,33]. However, 

several recent reports have questioned the validity of this cell line. It was demonstrated that RGC-5 

cells lack critical biochemical and physiological RGC properties [37-39]. In addition, RGC-5 cells do 

not express RGC-specific markers such as neurofilaments or Thy 1.2 [38]. Moreover, RGC-5 cells are 

unexcitable, with no voltage-dependent inward Na+ or Ca2+ currents or action potentials, which are 

critical properties of cultured postnatal and adult rat RGCs [37]. All these pieces of evidence imply the 

limitation of using the RGC-5 cell line as an in vitro model of RGCs. Primary RGC culture may be a 

more appropriate in vitro model of RGC study. 



Int. J. Mol. Sci. 2010, 11            
  

2114

3. Experimental Section 

RGC-5 cells (ATCC, VA, USA) were routinely maintained in Dulbecco’s modified Eagle’s 

medium (DMEM; Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS; 

Gibco), 100 U/mL penicillin and 100 g/ mL streptomycin (Gibco). Cells were grown in a humidified 

incubator of 95% air and 5% CO2 at 37 °C. Cells were passaged when 80% confluent. 

For cell counting studies, RGC-5 cells were seeded in 96-well plates at a density of 5,000 cells/well 

in DMEM with 10% FBS for 24 hours. Hypoxia and oxidative stress was induced by incubating the 

cells with CoCl2 (300 M; Sigma-Aldrich, St. Louis, MO, USA) and H2O2 (300 M; BDH Chemicals 

Ltd., Atherstone, UK) in DMEM with 1% FBS for 24 hours. Either Lutein (10 M and 20 M; Sigma) 

or vehicle (0.01% dimethyl sulfoxide (DMSO); Sigma) was added to the culture medium at the onset 

of injury. The concentrations of CoCl2, H2O2, and lutein used were adopted from previous studies 

[4,14,18,34,40]. Photographs from each well of the culture plates were captured under light 

microscope (Eclipse TE2000-5; Nikon, Tokyo, Japan) using a digital camera (Spot Flex; Diagnostic 

Instruments, Inc., Sterling Heights, MI, USA). Five fields (300 m  300 m) were selected from each 

photograph for cell counting. The experiments were performed in duplicate and repeated four times. 

Quantitative results were expressed as mean  SEM. One-way ANOVA tests, followed by 

Bonferroni’s multiple comparison tests, were used to test the statistical significance of differences 

among the groups. Significance was set at p < 0.05. 

4. Conclusions 

In the present study, we demonstrated that lutein can protect RGC-5 cells from injury induced by 

CoCl2-induced chemical hypoxia or H2O2-induced hypoxia or oxidative stress. These results suggest 

that lutein may play a role as a neuroprotectant. 
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