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Abstract: Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore 

important to be able to accurately assess Cu deficiency or overload. Cu chaperone for 

Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient 

animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu 

status. Given the lack of a non-invasive, sensitive and specific biomarker for the 

assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects 

Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. 

Diets contained 6.3  0.6 (Cu-N), 985  14 (Cu-1000) or 1944  19 (Cu-2000) mg Cu/kg 

diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu 

toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, 

some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within 

the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats 

compared to Cu-N rats (P < 0.05). Notably, only rats that accumulated high levels of Cu in 

liver had lower erythrocyte CCS (47% reduction, P < 0.05) compared to rats fed normal 

levels of Cu. Together, these data indicate that decreased erythrocyte CCS content is 

associated with Cu overload in rats and should be evaluated further as a potential 

biomarker for assessing Cu excess in humans. 
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1. Introduction  

Copper (Cu) is an essential trace metal that can cycle between reduced (Cu+) and oxidized (Cu2+) 

forms. This property allows Cu to act as a catalytic co-factor for several metalloenzymes involved in a 

number of biochemical processes including cellular respiration, connective tissue formation, 

neurotransmitter production, pigment synthesis, antioxidant defense and iron homeostasis [1]. The ease 

in which Cu can cycle between oxidation states makes Cu a potentially toxic metal if allowed to 

accumulate to high levels. “Free” Cu not tightly bound to proteins or other molecules can participate in 

Fenton-type reactions generating the toxic hydroxyl radical that can damage cellular components. 

Because Cu is both an essential and potentially toxic metal, cells have evolved transporters that 

regulate the uptake or elimination of Cu [2,3]. Also, Cu chaperones bind Cu in cells and deliver the 

metal to specific enzymes or subcellular compartments preventing the accumulation of “free” Cu [4].  

Disruption of Cu-trafficking systems can lead to Cu deficiency or toxicity. Examples are the genetic 

disorders Menkes’ and Wilson’s disease. Menkes’ disease is caused by impaired activity of the Cu 

efflux transporter ATP7A which leads to a systemic Cu deficiency due to defective intestinal Cu 

uptake [5]. Wilson’s disease is the result of impaired activity of the Cu efflux transporter ATP7B [6,7]. 

Wilson’s disease results in Cu overload in liver and other tissues due to impaired biliary Cu excretion.   

A nutritional Cu deficiency results in decreased activity of Cu-dependent enzymes and 

consequently decreased efficiency of a number of biochemical processes. A decrease in Cu status 

produces a number of biological changes and many of these changes have been proposed as 

biomarkers of Cu deficiency. These have been recently reviewed [8]. Importantly, fewer changes have 

been described in response to Cu overload. At present, an ideal biomarker for assessing Cu overload is 

lacking. Elevated Cu content in liver is currently regarded as the most reliable measure of Cu overload. 

However, this test requires a liver biopsy which is an invasive procedure. Thus, liver Cu measurement 

is unsuitable for routine screening and is only justified when Cu overload is suspected such as in 

patients with assumed Wilson’s disease. Furthermore, the uneven Cu distribution in liver may result in 

misdiagnosis of Cu overload with a single biopsy specimen [9-11].  

Liver damage is a symptom of Cu toxicity. Alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) are elevated in serum when liver damage occurs and therefore can be used to 

assess Cu toxicity. However, increased ALT and AST levels are not specific for Cu toxicity and are 

only increased once tissue damage has occurred. Elevated 24 hour urine Cu content is also used to 

assess Cu overload, particularly in patients with Wilson’s disease [12]. Drawbacks of this test are that 

multiple urine samples must be collected and possible contamination of samples at collection. Urinary 

Cu may also be unsuitable for detection of more subtle increases in Cu load. Further, high urinary Cu 

may be unrelated to Cu excess [13]. Plasma or serum non-ceruloplasmin (Cp)-bound Cu is a promising 

biomarker for assessing Cu overload, although a convenient method for direct and accurate 

measurement of this Cu fraction is needed. Direct measurement of “free” Cu in serum or plasma 

ultrafiltrate (molecular weight cut-off of 30 kDa) by inductively coupled mass spectrometry revealed 

elevated levels in untreated patients with Wilson’s disease [14]. These data warrant further research on 

the specificity and sensitivity of this marker.  

Given the lack of a sensitive and specific biomarker that can be measured with a simple,  

non-invasive test, research characterizing potentially better biomarkers of Cu overload is needed. Cu 
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chaperone for Cu/Zn superoxide dismutase (CCS) is a homodimeric protein of 33 kDa subunits and 

functions to deliver Cu to the antioxidant enzyme Cu/Zn superoxide dismutase (SOD1) [15]. We have 

previously reported that CCS protein is increased in liver and erythrocytes of Cu-deficient rats [16]. 

Others have shown similar increases in CCS protein in tissues using different animal models of Cu 

deficiency [17-19]. Up-regulation of CCS under conditions of Cu deficiency was determined to result 

from decreased degradation of CCS protein by the 26S proteasome [20]. Further work showed that Cu 

binding to the CXC (C, cysteine; X, any amino acid) Cu-binding motif in the C-terminus of CCS 

decreases CCS stability and promotes proteasomal degradation [21].  

CCS expression in erythrocytes is particularly sensitive to Cu deficiency. We have shown that 

erythrocyte CCS protein is a sensitive biomarker of mild Cu deficiency induced by moderately high 

intakes of zinc in rats [22]. Increased erythrocyte CCS expression was determined to be more sensitive 

to mild reductions in Cu status compared to plasma Cu concentration or Cp activity [22], the two most 

widely used markers for assessing Cu deficiency. A recent study has indicated that erythrocyte and 

liver CCS protein is increased in Cu-deficient calves and CCS may serve as a good biomarker of Cu 

deficiency in cattle [19]. Also, liver and erythrocyte CCS did not change in response to a vaccine-

induced inflammatory response in beef heifers indicating that CCS expression was not affected by an 

inflammatory response unlike plasma Cu and Cp which are elevated under such conditions [19].  

CCS is currently regarded as a promising biomarker for assessing Cu deficiency [8]. However, to 

our knowledge there are no reports describing regulation of CCS protein expression in response to Cu 

overload in animals. A human study showed that CCS and SOD1 mRNA were reduced in peripheral 

mononuclear cells of healthy adults with high serum Cp concentrations following supplementation 

with 10 mg Cu per day for 60 days [23]. Notably, however, similar reductions in CCS and SOD1 

mRNA were not detected in subjects with low Cp concentrations. These data warrant further 

characterization of these markers. In this study, we measured CCS protein expression in erythrocytes 

of rats fed high Cu diets as a first step in determining the potential of erythrocyte CCS to serve as a 

biomarker for assessing Cu overload. 

2. Results and Discussion  

Rats were used to investigate whether erythrocyte CCS protein expression is altered in response to 

Cu overload. Although rats are tolerant to dietary Cu levels much greater than amounts needed to 

maintain adequate Cu status, dietary levels needed to induce increases in body Cu levels and toxicity 

have been established [24-27]. Rats were fed a diet containing normal amounts of Cu (Cu-N diet) or 

one of two diets containing high levels of Cu (diets Cu-1000 and Cu-2000) for 13 weeks. Diets 

contained 6.3  0.6, 985  14 or 1944  19 mg Cu/kg diet by analysis (Table 1). For the entire duration 

of the study, all rats fed the Cu-1000 diet grew normally and did not show any visible signs of Cu 

toxicity. In contrast, 1 of the 12 rats fed the Cu-2000 diet was found dead after 6 weeks on the diet. An 

additional 4 rats in this diet group were euthanized due to weight loss, diarrhoea and dehydration after 

7 (3 rats) and 10 (1 rat) weeks on the diet. Internal examination indicated damage to several tissues. 

Rats had a distended stomach and cecum, enlarged kidneys with a pale brown discolouration and 

rough surface and a moderately enlarged spleen. The liver had a pale brown discolouration.  
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Table 1. Cu content in test diets and body weight of rats 1. 

Diet Group 
Test Diets  

(mg Cu/kg diet) 2 
Initial Body Weight 

(g) 3 
Final Body weight 

(g) 3 

Cu-N 6.3  0.6 a 112  2.9 a 554  6.5 a 
Cu-1000 985  14 b 109  2.7 a 571  16 a 
Cu-2000 1944  19 c 114  1.0 a 603  15 a,4 

1 Values are means  SEM. Values in a column without a common letter differ,  
P  0.05. 2 n = 3. 3 n = 12. 4 n = 7. 

 

Elevated levels of serum ALT and AST are indicative of damage to the liver or other tissues. 

Increased serum blood urea nitrogen (BUN) and creatinine levels are commonly used to diagnose 

impaired kidney function. Serum ALT levels were above the reference interval in 2 of the 4 euthanized 

rats, while serum AST, BUN and creatinine levels were elevated in all 4 of these rats (data not shown). 

Results of these biochemical tests are consistent with the morphological alterations indicative of  

Cu-induced damage to the liver, kidneys and other tissues. Haematological measurements indicated 

that these rats were also anaemic. They had low erythrocyte counts and Hb values (data not shown).  

Rats have the ability to adapt to high dietary levels of Cu. Rats fed high levels of Cu  

(3,000-6,000 mg Cu/kg diet) showed an initial rapid rise in liver Cu concentration followed by a decline in 

liver Cu over several weeks [27]. Despite the severe Cu-induced toxicity observed in 5 rats fed the Cu-

2000 diet, the remaining 7 rats in this diet group grew normally and did not show any adverse effects from 

the high Cu diet. Body weights of rats fed the Cu-N, Cu-1000 or Cu-2000 diets were similar after 13 

weeks on the diets (Table 1). The resistance of some rats to severe Cu toxicity indicates that these rats 

adapted to the high Cu diet. The variable response of the rats may be explained, in part, by genetic 

heterogeneity of the Wistar rat strain which allowed some rats to better adapt to the high Cu diet.  

Internal examination of rats fed the Cu-1000 or Cu-2000 diets that completed the study revealed no 

significant morphological changes to tissues. Most haematological parameters were similar for Cu-N, 

Cu-1000 or Cu-2000 rats (Table 2). However, MCHC values were lower and RDW values were higher 

for Cu-2000 rats compared to Cu-N rats indicating that the Cu-2000 diet induced a decrease in 

haemoglobin concentration in a packed volume of erythrocytes and larger variation in the size of 

erythrocytes.  

Table 2. Erythrocytes (ERCS), haemoglobin (Hb), haematocrit (HCT), mean corpuscular 

volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin 

concentration (MCHC), red cell distribution width (RDW), platelet count (PLT), mean 

platelet volume (MPV) and white blood cells (WBC) of rats fed diets normal or high in Cu 

for 13 weeks 1. 

1 Values are means  SEM. Values in a column without a common letter differ, P  0.05.  

Diet Group 

 (n) 

ERCS  

(1012/L) 

Hb 

(g/L) 

HCT 

 

MCV 

(fL) 

MCH 

(pg) 

MCHC 

(g/L) 

RDW 

(%) 

PLT 

(109/L 

MPV 

(fL) 

WBC  

(109/L) 

Cu-N (12) 7.8  0.1 a 138  2a 0.40  0.01a 51.5  0.2a 17.8  0.1a 344  1a 12.2  0.2a 714  29a 6.6  0.08a 3.9  0.3a 

Cu-1000 (12) 8.1  0.1a 138  1a 0.40  0.00a 50.3  0.4a 17.1  0.2a 341  1a,b 13.1  0.2a,b 723  36a 6.6  0.08a 4.5  0.4a 

Cu-2000 (7) 8.0  0.1a 134  4a 0.40  0.01a 49.3  1.2a 16.7  0.5a 338  2b 13.7  0.5b 777  29a 6.6  0.16a 4.9  0.3a 
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Cp is a Cu-containing enzyme released into the circulation from the liver. Depressed Cp activity is a 

widely used marker for assessing Cu deficiency. Plasma Cp activity did not differ between rats fed 

normal or high Cu (Table 3). Serum ALT also did not differ in rats fed the different diets (Table 3). 

However, 1 rat fed the Cu-2000 diet had an ALT level above the reference interval. Serum AST was 

higher in Cu-2000 rats compared to Cu-N rats (Table 3) and 6 of 12 rats fed the Cu-1000 diet and 4 of 

7 rats fed the Cu-2000 diet had AST levels above the reference interval. Since an elevation in AST is 

not specific for liver damage, we cannot say whether the increases in AST reflect liver damage or 

damage to other tissues. Notably, ALT which is considered a more specific enzyme for liver damage 

was within the reference interval for 18 of 19 rats fed the high Cu diets that completed the study. 

Serum BUN and creatinine levels were similar in Cu-N, Cu-1000 or Cu-2000 rats (Table 3) and levels 

were not elevated for any of the rats suggesting the absence of significantly impaired renal function in 

rats fed high Cu that completed the study.  

Table 3. Plasma Cp activity and serum ALT, AST, BUN and creatinine of rats fed diets 

normal or high in Cu for 13 weeks 1,2,3.  

1  Values are means  SEM. Values in a column without a common letter differ, P  0.05. 
2  The data range is indicated in parenthesis below each value.  
3 Reference intervals: ALT (0-186 U/L); AST (0-156 U/L); BUN (12.62-26.09 mg/dL); creatinine  
 (31.6-65.6 mol/L). 
 

Liver Cu concentration for most rats fed high Cu were not markedly elevated (16-69 g/g dry 

weight) (Figure 1A). In 4 rats, 1 rat fed the Cu-1000 diet and 3 rats fed the Cu-2000 diet, liver Cu 

concentration was markedly elevated (564-1058 g/g dry weight) (Figure 1A). These levels are 

comparable to liver Cu concentrations seen in Wilson’s patients [11,28]. Despite high liver Cu, these 

rats did not show any visual signs of Cu toxicity. Only 1 rat (fed the Cu-2000 diet) had considerably 

elevated Cu in kidney (Figure 1B). This rat also had high liver Cu. Plasma Cu levels were not 

significantly different between Cu-N, Cu-1000 or Cu-2000 rats (P  0.05) (Figure 1C). Notably, 

however, the highest plasma Cu concentrations were detected in the 4 rats that also had the highest 

liver Cu concentrations.  

The variable response of rats to high dietary Cu was striking. Some rats showed normal Cu levels in 

tissues, while others accumulated high amounts of Cu. Furthermore, some rats showed severe Cu 

toxicity warranting euthanasia, whereas others accumulated high levels of Cu in tissues with little or 

no pathology. Although humans and rats differ in their sensitivity to Cu, these data merit research 

examining the interindividual variability of humans to Cu accumulation and toxicity in response to 

Diet Group 
(n) 

Cp 
(U/L) 

ALT 
(U/L) 

AST 
(U/L) 

BUN 
(mg/dL) 

Creatinine 
(mol/L) 

Cu-N 
(12) 

168  7.0 a 
(140 - 208) 

36  5.1a 
(23 - 87) 

89  5.1a 
(62 - 113) 

17  0.8a 
(13 - 23) 

39  1.7a 
(30 - 50) 

Cu-1000 
(12) 

163  7.7a 
(127 - 230) 

50  5.7a 
(29 - 102) 

156  19a,b 
(67 - 302) 

17  1.3a 
(12 - 26) 

37  2.3a 
(25 - 52) 

Cu-2000 
(7) 

180  10a 
(141 - 222) 

80  25a 
(25 - 202) 

253  68b 
(87 - 532) 

15  1.1a 
(12 - 20) 

39  2.4a 
(29 - 48) 
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high Cu intakes. These data also stress the importance of assessing Cu status with a biomarker that 

reflects tissue Cu load rather than by Cu intake estimates.  

Figure 1. Cu concentrations in liver (A), kidney (B) and plasma (C) of rats fed diets with 

normal or high amounts of Cu. Each solid circle corresponds to 1 rat, n = 12, 12 and 7 for 

Cu-N, Cu-1000 and Cu-2000, respectively.  

 
 

CCS protein content in erythrocytes was measured by Western blot using a CCS-specific antibody. 

CCS expression was expressed relative to GAPDH content since erythrocyte GAPDH protein has been 

shown to be unaffected by changes in Cu status [17]. Erythrocyte CCS was reduced by 30% in  

Cu-2000 rats compared to Cu-N rats (Figure 2). CCS was not lower in Cu-1000 rats compared to Cu-N 

rats (Figure 2). Given that only some rats fed the high Cu diets accumulated high levels of Cu in liver, 
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we chose to compare CCS expression in these rats with rats fed normal Cu or rats fed high Cu without 

marked accumulation of Cu in liver. Rats that accumulated high Cu in liver had lower CCS (47% 

decrease) compared to rats fed a normal Cu diet (Figure 3). Furthermore, rats with high liver Cu also 

had lower CCS compared to rats fed high Cu but did not show marked accumulation of Cu in liver 

(Figure 3A). Taken together, these results indicate that reduced CCS protein in erythrocytes is 

associated with increased body Cu load and not high dietary Cu intake per se.  

In this study, we investigated the change in erythrocyte CCS in response to Cu overload only in 

male rats. It will therefore be important to test whether CCS responds in a similar manner in females. It 

should be noted, however, that CCS content has been shown to be elevated in tissues and erythrocytes 

of both male and female Cu-deficient rats and mice [17,18].  

Figure 2. Relative CCS content in erythrocytes of rats fed the Cu-N, Cu-1000 or Cu-2000 

diets. The mean of Cu-N rats was arbitrarily set to 1. CCS expression is expressed relative 

to GAPDH expression. Values are means  SEM. Bars without a common letter differ,  

P < 0.05.  

 
 

In cells, Cu binding to CCS decreases CCS stability and promotes its degradation by the 26S 

proteasome [20,21]. Decreased CCS protein in erythrocytes of Cu-loaded rats is consistent with the 

mechanism of CCS regulation by Cu. Given that mature erythrocytes are anucleated, regulation of 

CCS content in response to Cu overload may occur during erythropoiesis in maturing erythrocytes that 

have a nucleus and can efficiently support protein turnover. Under conditions of Cu overload, maturing 

erythrocytes may be exposed to higher levels of Cu. Higher cellular Cu concentrations would be 

expected to increase CCS degradation and consequently result in lower levels of CCS in mature 

erythrocytes. Notably, if CCS regulation by Cu occurs in maturing erythrocytes, a measurable decrease 

in CCS content in mature circulating erythrocytes would not be detected immediately following acute 

Cu overload. A detectable decrease in CCS would depend on the synthesis of a significant amount of 

new erythrocytes exposed to high Cu during maturation. Therefore, lower erythrocyte CCS content 

would be indicative of chronic Cu overload.  
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Figure 3. Relative CCS expression in erythrocytes of rats fed diets with normal amounts of 

Cu (Cu-N) or high levels of Cu displaying high (High Liver Cu) or normal (Normal Liver 

Cu) liver Cu concentrations. CCS expression in erythrocytes was quantified and expressed 

relative to GAPDH expression (A). The mean for Cu-N rats was arbitrarily set to 1. Values 

are means  SEM, n = 7, 4 and 10 for Cu-N, High Liver Cu and Normal Liver Cu, 

respectively. Bars without a common letter differ, P  0.05. Representative Western blot 

showing erythrocyte CCS expression in rats fed normal Cu (Cu-N) or rats fed high Cu and 

having high liver Cu concentrations (High Liver Cu) (B). CCS expression was detected 

with a CCS-specific antibody (top panel). The membrane was stripped and probed with an 

antibody against GAPDH (bottom panel).  

 
 

3. Experimental Section  

3.1. Animals and Test Diets  

Male 31-day-old Wistar rats (Charles River Canada, St. Constant, Canada) had free access to 1 of 3 

test diets (n = 12/diet group) and demineralised drinking water. Diets were modified AIN-93G diets 

similar to diets described previously [16]. Cu was added to the diets as cupric carbonate. Diets differed 
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only in Cu content. Cu concentrations in samples of each diet were determined by flame atomic 

absorption spectrophotometry (AAS) (Perkin-Elmer 5100 PC; Perkin Elmer Cetus Instruments, 

Norwalk, CT). After 13 weeks of feeding the diets, rats were killed by exsanguination while 

anesthetised with 3% isoflurane. Blood was collected from the abdominal aorta for biochemical tests 

and determination of haematological parameters. Blood was also collected in K2EDTA Trace Element 

tubes (Fisher Scientific, Ottawa, Canada) for isolation of erythrocytes and plasma. The liver and right 

kidney were extracted and snap frozen in liquid nitrogen and then stored at -80 C until analysis. The 

Health Products and Food Branch Animal Care Committee of Health Canada approved the 

experimental protocol. Rats were treated in accordance with the guidelines of the Canadian Council on 

Animal Care.  

3.2. Blood Fractionation  

Blood samples were centrifuged at 1000  g for 10 min at 4 C. Plasma was collected and stored at 

-80C until analysis. Erythrocytes were washed 3 times with cold isotonic 0.9% NaCl prior to freezing 

the erythrocyte pellet.  

3.3. Biochemical and Haematological Measurements 

Biochemical measurements in serum were determined using the Horiba ABX Pentra 400 clinical 

chemistry analyzer with ALT (A11A01627), AST (A11A01629), BUN (A11A01641) and creatinine 

(A11A01868) kits. Reference intervals were previously calculated using healthy 4-6 month-old 

Sprague Dawley, Fischer and Wistar rats fed a nutritionally complete rodent chow diet. 

Haematological parameters were determined using the Beckman Coulter AcT 5 Diff CP haematology 

analyzer. Plasma Cp activity was measured from its oxidase activity using o-dianisidine 

dihydrochloride as described [29].  

3.4. Western Blotting  

Erythrocytes were hypotonically lysed by adding 4 volumes of cold 10 mmol/L Tris pH 7.2 

containing a protease inhibitor cocktail (Roche, Laval, Canada) and vortexing. Cellular debris was 

pelleted by centrifugation (1000  g, 5 min, 4 C) and the supernatant was retained for determination 

of Hb concentration using Drabkin’s reagent (Sigma, Oakville, Canada) and human haemoglobin as a 

reference standard (Sigma). Erythrocyte extracts (20 g Hb) were separated over 8-16% Tris-Glycine 

gradient gels (Invitrogen, Burlington, Canada) under denaturing and reducing conditions. Gels were 

simultaneously electroblotted onto a single PVDF Immobilon-P transfer membrane (Millipore, 

Etobicoke, Canada). The membrane was blocked for 1 h at room temperature (RT) in TBS-Tween  

(20 mmol/L Tris, 500 mmol/L NaCl, 0.1% Tween 20 (v/v), pH 7.5) supplemented with 5% (wt/v) 

nonfat dry milk (Bio-Rad, Mississauga, Canada). Membranes were probed with an antibody against 

CCS (H-7, Santa Cruz Biotechnology, Santa Cruz, CA) at a final concentration of 0.4 mg/L overnight 

at 4 C in TBS-Tween supplemented with 0.5% nonfat dry milk. After washing with TBS-Tween, 

membranes were incubated with an anti-mouse horseradish peroxidise-conjugated secondary antibody 

(Bio-Rad) at a 1:2500 dilution in TBS-Tween supplemented with 0.5% nonfat dry milk for 2 h at RT. 
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Antibody-bound proteins were detected by enhanced chemiluminescence using SuperSignal West 

Dura Extended Duration Substrate (Thermo Scientific, Rockford, IL). Membranes were stripped with 

stripping buffer (62.5 mmol/L Tris-HCl pH 6.8, 2% SDS (wt/v), 100 mmol/L 2-mercaptoethanol) for 

30 min at 55 °C and re-probed with an antibody against glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) (MCA-1D4, Encor Biotech, Alachua, FL) at a 1:1000 dilution. Images were captured with a 

Chemi Genius2 Bio Imaging System (PerkinElmer, Woodbridge, Canada) and the intensities of the 

bands were quantified using Scion Image software (Scion Corporation, Frederick, MD).  

3.5. Cu Determination in Tissues  

Cu content in liver and kidney was determined by flame AAS after ashing the tissues as described 

[30]. Cu concentrations were presented per gram of dry tissue weight. Plasma Cu concentration was 

measured using a SIMAA 6000 graphite furnace AAS with Zeeman background correction (Perkin-

Elmer Cetus Instruments, Shelton, CT). Plasma was diluted 1/20 in demineralised water prior to Cu 

determination. Cu concentrations in tissues and plasma were determined from a standard curve 

prepared using an NIST-certified reference standard.  

3.6. Statistical Analyses 

Data were analysed by one-way ANOVA and differences between means were determined by 

Tukey’s honestly significant difference (HSD) test or Unequal N HSD test. Data were reported as 

means  SEM. Statistical significance was set at P < 0.05. Data were analysed using Statistica 8 

software (StatSoft, Tulsa, OK).  

4. Conclusions  

This work is the first demonstration that CCS protein is down-regulated in response to Cu overload 

in animals. Since erythrocyte CCS content can be measured in a small blood sample, it is appealing as 

a potential biomarker for assessing Cu excess. Further research should examine CCS expression in 

erythrocytes of humans with Cu overload. Erythrocyte CCS content may prove useful as a biomarker 

for assessing Cu overload and as a diagnostic test for disorders of Cu overload such as  

Wilson’s disease.  
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