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Abstract: P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an 
efflux transporter and plays an important role in pharmacokinetics. In this study, we 
demonstrated that the pokemon promoter activity, the pokemon mRNA and protein 
expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay 
showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. 
Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as 
seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. 
Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. 
Taken together, we conclude that Pgp can regulate the expression of pokemon through the 
presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel 
target for cancer therapy. 
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1. Introduction  

Multidrug resistance (MDR) plays an important role in chemotherapy treatment, but it is still under 
investigation whether it is the main one. Over-expression of ATP-binding cassette transporter 
superfamily members, which function as pumps to extrude anticancer drugs from cancer cells, closely 
relate to drug resistance phenotype [1]. P-glycoprotein (Pgp) is a member of ATP-binding cassette 
transporters that is often over-expressed in drug-resistant cancer cells. It is a 170 kD protein and is 
encoded by the human MDR1 (ABCB1) gene [2]. Pgp is expressed in only a limited number of human 
tissues with barrier function, including epithelia of the liver, kidney, small and large intestine and 
capillary endothelial cells in brain, ovary, and testis [3]. In addition, MDR1 expression has also been 
found in many, but not all, tumors from the adenal gland, liver, colon, kidney [3,4], and in one-third of 
patients with acute myelogenous leukemia at the time of first diagnosis, and in more than 50% of 
patients at first relapse [3]. The function of Pgp as a pump to extrude anticancer drugs from cancer 
cells has proven the significant role of Pgp in drug pharmacokinetics, and data from mdr knockout 
transgenic mice also strongly support the role of MDR1 in drug absorption, disposition, elimination, 
and detoxification pathways [5,6] 

Pokemon (encoded by the Zbtb7A gene) is a member of the POK (POZ and Krüppel) family, which 
consists of an NH2-terminal POZ/BTB domain and COOH-terminal Krüppel-type zinc fingers [7]. 
Pokemon is identified as a critical factor in oncogenesis. Mouse embryonic fibroblasts lacking Zbtb7 
are completely refractory to oncogene-mediated cellular transformation. Conversely, Pokemon 
overexpression leads to overt oncogenic transformation both in vitro and in vivo in transgenic mice [8]. 
It was shown that the survival rate of patients with negative pokemon expression was significantly 
higher than that of those with positive pokemon expression [9]. Further data shows that siRNA 
targeting-silencing of pokemon inhibited the growth of human Hela cells in vivo [10]. Pokemon also 
functionally acts as a transcription factor, which represses the tumor suppressor ARF gene by binding 
to its promoter region, potentially leading indirectly to p53 inactivation [8]. In addition, pokemon can 
also regulate the Rb gene, another tumor suppressor gene important in cell cycle arrest, by binding to 
the FREs(four GC-rich promoter elements) and competing with SP1 [11]. Besides, pokemon can 
enhances NF-κB-mediated transcription through an interaction between the POZ-domain of FBI-1 and 
the RHD of NF-κB [12]. It was also shown to regulate transcription of other genes including cyclin A 
and E2F4 [13]. Recently, it has been proved that pokemon represses transcription of p21 via 
competition with p53 and SP1 [14]. 

The p53 tumor suppressor gene has been often found mutated; in more than 50% human cancers 
[15]. p53 is a transcription factor that can be activated by several different types of DNA damage, 
including double-strand breaks in DNA produced by γ-irradiation and the presence of DNA repair 
intermediates after ultraviolet irradiation or chemical damage to DNA [15]. The p53 pathway plays 
multiple roles in cells, including tumor suppression, cell cycle arrest, and is involved in the control of 
cell proliferation, apoptosis, and DNA repair [16,17]. While dispensable for viability, in response to 
genotoxic stress, p53 acts as an "emergency brake" inducing either arrest or apoptosis, protecting the 
genome from accumulating excess mutations. Consistent with this notion, cells lacking p53 showed to 
be more genetically unstable and thus more prone to tumors [18]. It has been well established that p53 
can regulate the expression of genes involved in control of the cell cycle and cell death on activation 
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by genotoxic or oncogenic stress [19]. p53 can activate the transcription of the proapoptotic genes 
PUMA, PMAIP, Bax, Fas, and others, with repression of the transcription of the survival genes Bcl-2, 
MAP4, BIRC5 (survivin), Mcl-1, IGF-1R, MYC, EIF4E, and PIK3CA [20]. It is also reported that p53 
inactivation can up-regulate Pgp expression [21]. 

Pgp locates at the end of some pathways, and it seems unlikely that Pgp plays an important role in 
regulating transcriptors in cancer cells. However, our previous article reported that Pgp can influence 
the expression level of survivin [22], and that survivin expression is regulated by coexpression of 
pokemon [23]. However, the correlation between Pgp and pokemon is unclear. In the present study, we 
show that Pgp can down-regulate pokemon expression level through the presence of p53, indicating a 
function of Pgp in tumor therapy. 

2. Results and Discussion  

2.1. Results 

2.1.1. Pgp Modulates Pokemon Expression  

We initially found that in the MCF-7/ADR cell line, pokemon mRNA expression level was lower 
than that in MCF-7 cell line (Figure 1a, top and bottom). The most obvious difference between these 
two cell lines is the Pgp expression level, which is high in MCF-7/ADR cells (Figure 1a, bottom) while 
is not expressed in MCF-7 cells (Figure 1a, unit 1). Accordingly, we suspected that the inhibition of 
pokemon may be due to high Pgp expression levels. To test with, we performed a transfected assay. 
MCF-7 cells were transfected with a Pgp expression plasmid or the corresponding pcDNA3.1-Basic 
vector-alone as a control. We found that Pgp-positive breast cancer cells exhibited substantially lower 
pokemon transcript levels (Figure 1a, lane 3 and lane 4). RT-PCR showed the same result (Figure 1b). 
Next we detected whether the pokemon protein expression level was affected by Pgp. A time course of 
Pgp accumulation is shown in Figure 1c: a clear increase of Pgp protein levels in MCF-7 cells was 
observed within 48 h after Pgp transfection, and pokemon was down-regulated at the same time. No 
pokemon signal was detected in the Doxrubicin-resistant MCF-7/ADR cells (Figure 1c, lane 6), which 
would be consistent with the notion that pokemon expression is blocked by Pgp. 

Next we tested whether the promoter activity of pokemon is restricted to Pgp. We previously 
demonstrated that the region -1000 bp immediately upstream of the transcription initiation site was the 
most active part on the pokemon promoter [24], so we used two promoter-luciferase plasmids 
containing -500 bp and -1000 bp fragments to examine whether the expression of Pgp could modify 
promoter activity of pokemon. Luciferase assays revealed that the region within -500 bp from the 
transcription site of pokemon is responsible for the induction by Pgp. As shown in Figure 1d, both of 
the promoter constructs cotransfected with Pgp significantly depressed luciferase expression compared 
with pcDNA3.1-Basic. The activity in the presence of these two fragments of pokemon promoter 
decreased by 65.2% and 55.2%, respectively. These results demonstrate that pokemon expression is 
regulated by Pgp. 
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Figure 1. Transcriptional repression of pokemon by Pgp. (a) Modulation of pokemon 
mRNA expression by Pgp. (b) Comparison of pokemon and Pgp expression levels among 
MCF-7, MCF-7/ADR and MCF-7 cells transfected with pcDNA3.1and Pgp expression 
plasmid by RT-PCR analysis. (c) Expression of pokemon and Pgp was evaluated at the 
indicated times by Western blot. Similar results were obtained in three independent 
experiments (data not shown). (d) MCF-7 cells were cotransfected with Pgp expression 
vector and promoter-luciferase plasmids containing -1000 bp or -500 bp of pokemon 
promoter for 48 h. Results are presented as the stimulation of luciferase activity in the 
transfected cells relative to the luciferase activity in the cells transfected with the parental 
vector pcDNA3.1-Basic. Experiments were carried out in triplicate and a representative 
experiment is shown. Error bars represent the standard deviation of triplicate samples. 

 
 

2.1.2. Mutation of p53 Affects the Repression of Pokemon by Pgp 

We used another breast cancer cell line MDA-MB-231 (p53 negative) to see whether the same 
phenomenon could be observed as in MCF-7. The luciferase assay was performed to identify whether 
the two promoters used above would be affected by Pgp in this cell line. After transfection of Pgp, we 
found that the activity from the pokemon promoter was induced instead of reduced (Figure 2a), most 
likely because of the loss of p53 activity. Next, we ectopically expressed MDR1 genes in MDA-MB-
231 and investigated the influence on endogenous pokemon expression. We suggested that the 
transrepression of pokemon was dependent on p53, because we did not detect any changes in the 
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expression of this gene after transfected with Pgp in the p53 negative cell line (Figure 2b). In addition, 
the pokemon expression level increased after transfection with Pgp (Figure 2c) in MDA-MB-231cells, 
as detected by real-time PCR, showing that down-regulation of pokemon is p53 dependent. Western 
blot analysis confirmed that the transcriptional repression of pokemon was mostly unleashed in p53 
mutated MDA-MB-231cells (Figure 2d).  

In general, we already demonstrated that Pgp could strongly reduce endogenous pokemon transcript 
levels (Figure 1). In contrast, pokemon expression was not affected by expression of Pgp in p53 
negative MDA-MB-231 cell line. These findings indicate that suppression of pokemon by Pgp is 
mainly dependent on the tumor suppressor gene p53. 

Figure 2. Mutation of p53 eliminates Pgp –mediated repression of pokemon. MDA-MB-
231 cells (p53 mutated) were used to investigate whether mutation of p53 affects the 
regulation of pokemon by Pgp. (a) Luciferase analysis of pokemon promotor activity in 
MDA-MB-231 cells transfected with pcDNA3.1 and Pgp expression vector. (b and c) 
Modulation of pokemon mRNA expression by Pgp in the presence of mutated p53. MDA-
MB-231 cells were transfected with Pgp expression vectors. Pgp and pokemon mRNA 
levels were determined by RT-PCR (b) and real-time PCR analysis (c). (d) Immunoblot of 
pokemon, p53 and Pgp in MDA-MB-231 cells after transfection with pcDNA 3.1 or Pgp. 
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2.1.3. The Degragation of Pokemon by Pgp Is p53-dependent 

To further demonstrate that p53 is important for pokemon repression, MCF-7 cells were transfected 
with siRNAs, which partially blocked endogenous p53 expression level (Figure 3a,b). Therefore, we 
could assess possible alterations of pokemon expression at the mRNA level (Figure 3a,b). As shown in 
Figure 3a, treatment of MCF-7 cells with p53-targeting siRNAs led to a clear increase of pokemon 
transcription in the presence of Pgp. In contrast, pokemon expression was not upregulated by scramble 
siRNA, corroborating that the effect is p53-dependent. Next, a time course of MCF-7 cells after 
transfection with Pgp resulted in ~50% decrease of pokemon protein levels after 48 h and ~80% 
decrease 72 h after transfection (Figure 3c). To limit endogenous p53 expression, p53 siRNA was 
transfected and in this case repression of pokemon was rescued (Figure 3c, lane 5), whereas scramble 
siRNA had no such function (Figure 3c, lane 6). In summary, all the evidence above suggests that p53 
could affect the repression of Pgp on pokemon expression to some extent. Thus, we come to the 
conclusion that p53 is required for the degradation of pokemon by Pgp. 

Figure 3. p53-dependent downregulation of the oncoprotein pokemon by Pgp. (a) RT-PCR 
analysis of MCF-7 cells transfected with Pgp or pcDNA3.1 and treated with siRNAs 
targeting p53 (Si) or scramble (Sc) gene expression for 48 h. GAPDH: internal standard. (b) 
mRNA levels of pokemon, p53 and Pgp in MCF-7 cells co-transfected with Pgp or vector 
and p53 siRNA or scramble RNA were detected by RT-PCR. (c) Levels of pokemon and 
p53 in MCF-7 cell extracts transfected with Pgp or vector in combination with p53 siRNA 
or scramble RNA were assessed by Western blot. 
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2.1.4. Pgp Combines with p53 and Interacts with the Pokemon Promoter in Vivo 

To address the possibility that Pgp utilizes p53 to repress pokemon transcription, 
immunocomplexes from MCF-7/ADR and MCF-7 cells transfected with Pgp were tested for the 
presence of a complex containing Pgp and p53. Immunoprecipitation (IP) of MCF-7/ADR extract with 
antisera specific to Pgp (C219, Calbiochem) consistently revealed the presence of p53 in the 
immunocomplex, whether endogenous (Figure 4a, lane 8) or exogenous (Figure 4a, lane 4), as 
ascertained by Western blot. The complexes persisted under stringent washing conditions (IP buffer 
washes, see Experimental section) and were not present when control antisera was used (rabbit IgG, 
lane 1 and lane 5). 

It is known that Pgp is a protein which is expressed mostly on the membrane of cells. To investigate 
how it can influence the transcription factor in cell nucleus, we performed chromatin 
immunoprecipitation (ChIP) of the pokemon promoter using antisera specific for Pgp. In these 
experiments, Pgp showed a strong interaction with the pokemon promoter (Figure 4b, lane 2), whereas 
incubation with lysate without the Pgp antibody had no such strong binding. Therefore, we suggest that 
Pgp can affect pokemon through the recruitment to its promoter, and such recruitment may enhance 
binding p53 to the pokemon promoter to repress the transcription of pokemon. 

Figure 4. Pgp combine with p53 and interacts with the pokemon promoter in vivo in  
MCF-7 and MCF-7/ADR cells. (a) P53 protein is present in Pgp immunocomplexes in 
both MCF-7 transfected Pgp cells (lane 4) and MCF-7/ADR cells (lane 8). No p53 was 
immunoprecipitated with irrelevant antisera (rabbit IgG, lane1 5). Western blot was 
performed with a monoclonal antibody against p53 (DO-1, Sigma). (b) ChIP assay of the 
pokemon promoter in MCF-7/ADR cells. IP of formaldehyde-cross-linked lysate was 
performed using 0.3 µg anti-Pgp (Calbiochem), followed by PCR using oligocleotides 
specific for the pokemon promoter. As a positive control, lysate was incubated without 
antibody. 

 
 

2.2. Discussion 

MDR is still an obstacle in the clinical management of breast cancer. Most of our knowledge on 
ABC transporters and their involvement in MDR is based on studies of Pgp, an organic cation pump 
that is the product of the ABCB1 (MDR1) gene. It is a full transporter comprised of 12 
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transmembreane segments divided into two transmembrane domains, each linked with an ATP-binding 
domain [25]. In cancer cells, Pgp is associated with the MDR phenotype, mediating resistance to 
anthracyclines, vinca alkaloids, colchicines, epipodophyllotoxins, and paclitaxel [26]. 

Previous reports have revealed that survivin expression is influenced by Pgp levels [22], suggesting 
that Pgp, the terminator of a pathway, affects factors upstream of it. Accordingly, our data 
demonstrated that Pgp could affect the oncogene pokemon through p53. This observation shows a 
possible link between Pgp and other transfactors. It provides strong evidence that there is a “feedback” 
relationship between effector and oncogene. 

It is well-known that Pgp is a membrane protein that is mostly expressed at the cell membrane and 
several subcellular sites, including the nucleus [27], mitochondria [28,29], and Golgi apparatus [30]. 
However, we found that Pgp can act as a transcription factor to repress another gene in our 
experiments, and even get into the nucleus. We detected Pgp binding to the pokemon promoter in the 
MCF-7/ADR cell line, and interacting with the transcriptor p53 both endogenous and exogenous 
(Figure 4). 

It is demonstrated that p53 is a tumor suppressor that is mutated in about 50% of human tumors 
[15]. Based on this, we speculated that p53 might play an important role in the regulation of pokemon. 
Indeed, from our experiments, the repression of pokemon by Pgp was found to mainly depend on p53 
(Figures 2 and 3). It is possible that p53 was induced by Pgp and therefore it repressed the expression 
of pokemon. Here we propose two models for the mechanism of how Pgp affect p53: one is that Pgp 
has cleaved forms which can get into the nucleus, and the cleaved form could interact with p53; the 
second model is that a part of Pgp expressed on the inside of the nuclear membrane is responsible for 
the interaction with p53. In Western blot experiments detecting the expression levels of proteins, Pgp 
was observed as doublets, not as a single band, on nitrocellulose membranes (data not shown), 
suggesting Pgp has different forms in vivo. This supports the possibility mentioned above that Pgp may 
have cleaved forms, and some of them could act as transcription factors in the nucleus.  

Recently, it has been reported that GATA-1 suppresses BIM-mediated apoptosis via pokemon, 
suggesting pokemon is a key downstream target of GATA1 [31]. Thus, we can conclude that pokemon 
is not only a transcription repressor that suppresses other genes’ expression, but is also controlled by 
some factors. Our data proved that it is indeed regulated by Pgp in the presence of p53. 

3. Experimental Section  

3.1. Cell Culture 

MCF-7 cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA, 
USA) and cultured in Dulbecco’s modified Eagle’s medium (DMEM). The MCF-7 ADR resistant cell 
line MCF-7/ADR (treated with Doxrubicin, which leads to Pgp overexpression in this cell line) was 
obtained from Nanjing Keygen Biotech. Co., Ltd. (China) and maintained in RPMI-1640 with  
0.2 µg/mL ADR. The p53 mutated cell line, MDA-MB-231, was obtained from Cell bank, Shanghai 
Institutes for Biological Sciences, and propagated in Leibovitz L-15. All media were supplemented with 
10% fetal bovine serum (FBS; Hyclone, Logan, UT, USA), and 100 units/ml of penicillin and 0.1 mg/ml 
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streptomycin (Beyotime). Cells were cultured at 37 °C in a humidified atmosphere of 5% CO2 and  
95% air. 

3.2. Luciferase Assay 

MCF-7 and MDA-MB-231 cells were plated at 20,000 cells per well in 24-well dishes and 
transfected 24 hours later with lipofectamine/DNA mixtures containing 1 µg total DNA which 
included 0.5 µg of luciferase reporter vector with promoter and 0.5 µg transcription factor. After  
48 hours transfection, cells were harvested with lysis buffer and 10 µL of cell extract was mixed with 
50 µL of luciferase assay buffer and another 10 µL was mixed with 50 µL of Renilla buffer [32].  
The emitted luminescence was measured by Multimode Detector within 30 s. 

3.3. RT-PCR 

MCF-7 cells were plated in 24-well plates and transfected for 48 h with pcDNA3.1 or Pgp. Total 
RNA was isolated using TRIzol Reagent (Invitrogen) according to instructions provided by the 
manufacturer. The concentration of RNA was determined by UV spectrophotometry using a DU-800 
Nucleic Acid/Protein Analyzer (Beckman Coulter). Reverse transcriptase (RT)-PCRs were performed 
using ReverTra Ace α (TOYOBO Life Science Department, Japan). Conditions for RT-PCRs were as 
recommended by the manufacturer. Glutaraldehyde-3-phosphate dehydrogenase (GAPDH) was used 
as an internal control. The corresponding 5’- and 3’-primers of pokemon, p53, MDR1 and GAPDH are 
in Table 1. The PCR cycling conditions are in Table 2. Five micro-liters of the RT-PCR mixture was 
used for agarose gel electrophoresis. 

Table 1. Oligonucleotide primers used in this study. 

Name            Sequence                                                          Name          Sequence 
Pgp1             AAAGCGACTGAATGTTCAGTGG               p531           TGCGTGTGGAGTATTTGGATG        
Pgp2             AATAGATGCCTTTCTGTGCCAG                p532           TGGTACAGTCAGAGCCAACCAG       
Pokemon1    GAAGCCCTACGAGTGCAACATC              GAPDH1    GGTGGTCTCCTCTGACTTCAACA 
Pokemon2    GTGGTTCTTCAGGTCGTAGTTGTG           GAPDH2    GTTGCTGTAGCCAAATTCGTTGT 
ChIP1           GCCTGGCCAACATGGTGATAG 
ChIP2           ACGTGAAGGCGGTCAGATGTCG 

 

Table 2. RT-PCR and ChIP PCR conditions. 

      Pokemon                 p53                       Pgp                    GAPDH              ChIP PCR 
Temp.  Time   Cycle     Temp.  Time   Cycle     Temp.  Time   Cycle       Temp.  Time   Cycle      Temp.  Time   Cycle 

(°C)  (min:sec)            (°C)  (min:sec)              (°C)   (min:sec)                 (°C)  (min:sec)               (°C)   (min:sec) 

98   02:40    1      98   02:40   1       98   02:40   1           98   02:40   1        98    02:20   1 
98   00:15            98   00:15            98   00:15                98   00:15             98    00:18 
60   01:00    26    60   01:00   26     60   01:00   26         60   01:00   26      60    00:30    27 
72   01:30            72   01:30            72   01:30                72   01:30             72    00:30 
72   06:00   1       72   06:00   1       72   06:00   1           72   06:00   1        72    10:00    1 
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3.4. Real-Time PCR  

The extraction of RNA and synthesis of cDNA are as described, and primers for p53, pokemon, 
MDR1, GAPDH are the same as used for RT-PCR. SYBR Green quantitative PCR amplifications 
were performed on the 7500 Real-Time PCR systems (Applied Biosystems). Reactions were carried 
out in a 20 µL volume containing 10 µL of 2 × SYBR Premix Ex Taq™ and 0.4 µL of 50 × ROX 
Reference Dye II. The thermal profile for the real-time PCR was 95 °C for 10 s followed by 40 cycles of 
95 °C for 5 s, 60 °C for 34 s, followed the dissociation stage. The DCt data were collected automatically.  

3.5. Western Blot Analysis  

To determine the protein levels of Pgp and pokemon expression in MCF-7 cells, proteins were 
extracted according to conventional methods and separated by Sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE). After electrophoresis, the proteins were electrotransferred to 
nitrocellulose membranes, blocked and probed with anti-flag (1:1000), anti-Pgp (C219, 1:500), 
pokemon monoclonal (Sigma, 1:1000), anti-p53 (Sigma, 1:1000) or anti-actin (Beyotime, 1:1000) 
antibodies. The membranes were then incubated with horseradish peroxidase-conjugated goat anti-
rabbit or anti-mouse secondary antibody, and detected with SuperSignal West Pico Chemiluminescent 
Substrate (Pierce, Thermo). The image was obtained using the Chemi Doc XRS imaging system  
(Bio-Rad). 

3.6. ChIPs Assay  

To analyze the physical interaction between Pgp and the pokemon promoter, MCF-7/ADR and 
MDA-MB-231 cells were used in ChIP assay. Cells were cross-linked by adding formaldehyde to a 
final concentration of 1%, and a final concentration of 125 mM glycine was used to stop the cross-
linking. Cells were scraped and diluted in ChIP dilution buffer (1% Triton X-100, 0.1% Deoxycholate, 
5 mM EDTA, 50 mM Tris at pH 8.1, and 150 mM NaCl) containing protease inhibitors. Chromatin 
was sonicated to an average length of about 500 bp while kept on ice. The sonicated supernatant was 
diluted with ChIP dilution buffer, and 20% of the total supernatant was saved as “input” at  
-20 °C while the rest was incubated with or without Pgp antibody (Calbiochem) on ice with rotation. 
The immune complexes were collected with Dynabeads protein G (Invitrogen). After washing with TE 
buffer pH 5.0 (10 mM Tris, 1 mM EDTA) three times, the pellet was dissolved in TE pH 3.0. DNA 
was purified using standard procedure with saturated NaCl, dimethyl carbinol and 70% ethanol. The 
primers for ChIP PCR are in Table 1. DNA was amplified as described in Table 2. 

3.7. Immunoprecipitation (IP) 

MCF-7 (transfected with Pgp), MCF-7/ADR and MDA-MB-231 cells were harvested and 
solubilized in 500 µL of IP buffer (20 mM Hepes, 0.2 mM EDTA, 5% glycerol, 150 mM NaCl, 1% 
Nonidet P-40) containing protease inhibitors (1 mM PMSF,0.1 mM DTT). Immunoprecipitation was 
performed using p53 antibody (Sigma, 1:1000), Pgp antibody (Calbiochem, 1:100) and IgG 
(Beyotime, 1:1000). Each IP was washed four times in IP buffer, then analyzed by Western blotting 
with p53 antibody (Sigma, 1:1000), followed by incubation with alkaline phosphatase-conjugated goat 
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anti-mouse IgG (Beyotime, 1:2000) and visualized with SuperSignal West Pico Chemiluminescent 
Substrate (Pierce, Thermo). 

4. Conclusions  

Our results demonstrate that Pgp can regulate the expression of pokemon, and such regulation is 
through the presence of p53. The mechanism of how Pgp regulates Pokemon involves the combination 
of Pgp with p53 and recruitment to the Pokemon promoter. These findings identify Pgp as a regulator, 
based on its role in repression of pokemon, and provide further data on the relationship between 
oncogenes and tumor suppressor genes. 
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