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Abstract: We develop the stochastic, chemical master equation as a unifying approach
to the dynamics of biochemical reaction systems in a mesoscopic volume under a
living environment. A living environment provides a continuous chemical energy input
that sustains the reaction system in a nonequilibrium steady state with concentration
fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics,
phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting
oscillations. Emphasis is paid to the comparison between the stochastic dynamics and
the prediction based on the traditional approach based on the Law of Mass Action. We
introduce the difference between nonlinear bistability and stochastic bistability, the latter
has no deterministic counterpart. For systems with nonlinear bistability, there are three
different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics
approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size
of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly
deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network;
We suggest that the (c) is most relevant to major cellular biochemical processes such
as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution
proceeds with transitions among the attractors of (b) in a “punctuated equilibrium” manner.

Keywords: chemical kinetics; chemical master equation; stochastic dynamics; biochemical
reaction; systems biology
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1. Introduction

Quantitative modelling in terms of mathematical equations is the foundation of modern physical
sciences. If one deals with mechanical motions or electromagentic issues of daily lives, he/she starts with
Newton’s Second Law or Maxwell’s equations, respectively. For work on the subatomic and molecular
level, we have the quantum mechanics of Heisenberg and Schrödinger for the small things, and Gibbs’
statistical mechanics for large collections of particles. The last theory on the list, Gibbs’ statistical
thermodynamics, has been the foundation of molecular science [1]. Its applications to biological
macromolecules have laid the groundwork for molecular biology [2,3].

However, it has long been recognized that Gibbs’ theory can not be applied to a system outside
chemical equilibrium. In this case, and when the deviations from an equilibrium are linear, Onsager’s
theory provides the unifying approach known as linear irreversible thermodynamics. However, cellular
biologists have long been aware of that most living processes are not near an equilibrium, but far from
it. This begs an answer to the question: What is the theory one should use in modelling a biochemical
reaction system in its living environment?

1.1. The Chemical Master Equation (CME)

Both Gibbs’ and Onsager’s work have pointed to a new type of mathematics: random variables
and stochastic processes. Gibbs’ thermodynamic quantities with thermal fluctuations are random
variables, and Onsager has used extensively Gaussian-Markov processes to describe the dynamics near
an equilibrium [4,5]. This approach can be traced back to the earlier work of Einstein on Brownian
motion and Smoluchowski on diffusion.

Quantitative modelling in chemical engineering has been based on the Law of Mass Action [6]. The
applications of this theory to enzyme kinetics gives rise to the entire kinetic modelling of biochemical
reactions for individual enzymes [7] and for enzymatic reaction systems [8]. However, the theory based
on the Law of Mass Action considers no fluctuations so it sits in an odd position with respect to the more
general theories of Gibbs and Onsager. It does have its strength though, it is a fully dynamic theory,
while the Gibbs’ is not, and it can be applied to system beyond Onsager’s linear irreversibility.

Is there a theory which can embody all the above mentioned theories? It is clear that such a theory,
even very imperfect, can provide great insights into the working of biochemical reaction systems in their
living environment. While a consensus has not been reached, the recent rapid rise of applications of the
Gillespie algorithm seems to suggest an interesting possibility.

It might be a surprise to some, but the Gillespie algorithm (GA) is really an equation that perscribes
the dynamic trajectory of a stochastic process. Mathematical equations can come in many different
forms: differential equations for continuous variables changing with time, stochastic differential
equations (SDE) for the trajectories of continuous random variables changing with time, and the GA
is simply the equation for the trajectory of discrete random variables changing with time. For a random
variable changing with time one can either characterize it by its stochastic trajectories, as by the SDE
and the GA, or one can characterize its probability distribution as a function of time. The corresponding
equation for the SDE is the well-known Fokker-Planck equation, and the corresponding equation for the
GA is called the chemical master equation (CME).
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It has been mathematically shown that the CME approach is the mesoscopic version of the Law of
Mass Action [8]. It is not a competing theory to the Law of Mass Action, rather, it extends the latter to
the mesoscopic chemistry and biochemistry.

We do not expect our readers to have a background in the CME. For a quick introduction see
Appendix. In particular, one should learn to draw the chemical master equation graph. See Chapter
11 of [8] and a more recent [9] for more on the CME. Discussions on the GA can be found in [10].

In this article, we shall follow the CME approach to study biochemical reaction networks. We are
particularly interested in such systems situated in a “living envirnment”. It turns out, one of the precise
defining characteristics of the environment is the amount of chemical energy pumped into the system –
similar to the battery in a radio.

1.2. Nonequilibrium Steady State (NESS)

While the CME approach is a new methodological advance in modelling open (driven) biochemical
systems, a new concept also arises from recent studies on open (driven) biochemical systems: the
nonequilibrium steady state (NESS) as a mathematical abstraction of biochemical homeostasis. In terms
of the CME approach to mesoscopic chemical and biochemical reaction systems there are three, and
only three, types of dynamics [11]:

(1) Equilibrium state with fluctuations which is well-understood according to Boltzmann’s law, and
the theories of Gibbs, Einstein, and Onsager.

(2) Time-dependent, transient processes in which systems are changing with time. In the past,
this type of problems is often called “nonequilibrium problems”. As all experimentalists and
computational modellers know, time-dependent kinetic experiments are very difficult to perform,
and time-dependent equations are very difficult to analyze.

(3) Nonequilibrium steady state: The system is no longer changing with time in a statistical sense,
i.e., all the probability distributions are stationary; nevertheless, the system is not at equilibrium.
The systems fluctuate, but the fluctuations do not obey Boltzmann’s law. Such a system only eixsts
when it is driven by a sustained chemical energy input. Complex deterministic dynamics discussed
in the past, such as chemical bistability and oscillations, are all macroscopic limit of such systems.

To a first-order approximation, one can represent a biochemical cell or a subcellular network in
homeostasis as a NESS. This is the theory being put forward by I. Prigogine, G. Nicolis and their
Brussels group [12]. The NESS theory has recently gone through major development in terms of the
fluctuation theorem in statistical physics, especially the stochastic version of J. Kurchan, J.L. Lebowitz
and H. Spohn [13,14], and irreversible Markov processes in mathematics [15](A deep mathematical
result shows that the arrow of time is a sufficient and necessary condition for the positiveness of an
appropriately defined entropy production rate.). The theory of NESS also has enjoyed great appreciation
through works on molecular motors [16,17].

To have a better understanding of the nature of a NESS, we list three key characteristics of a system
in equilibrium steady state: First, there is no flux in each and every reaction. This is known as the
principle of detailed balance [18]. Second, the system is time-reversible. One can play a “recording
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tape” of the system backward and will find it is statistically equivalent; There is no arrow of time [15].
The logical conseqeunce of the above statements is that any process occurred in an equilibrium system
will have equal probability to run backward. Hence nothing can be accomplished. There is no energy
transduction, and there is no signal processing.

For more discussions on NESS and its applications to biochemical systems and modelling, the readers
are referred to [19,20].

2. The Chemical Master Equation and Its Applications to Kinetics of Isolated Enzyme

Since enzyme kinetics is the workhorse of biochemical reaction networks, let us start with the CME
approach to the standard Michaelis-Menten (MM) enzyme reaction scheme:

E + S
k1


k−1

ES
k2−→ E + P (1)

In the CME approach to chemical and biochemical kinetics, one no longer asks what are the
concentrations of E, S, ES and P , but instead, what is the probability of the system having m number
of S and n number of ES: p(m,n, t) = Pr{NS(t) = m,NES(t) = n} where NS(t) and NES are the
non-negative integer valued random variables, the number of S and ES. As functions of time, both are
stochastic processes.

Assuming that the total number of substrate and product molecules ism0 = NS(t)+NP (t)+NES(t),
and total number of enzyme molecules is n0 = NE(t) + NES(t), we have the CME (See Section 4 for
the details to obtain the equation.)

dp(m,n, t)

dt
= −

(
k̂1m(n0 − n) + k̂−1n+ k̂2n

)
p(m,n, t)

+k̂1(m+ 1)(n0 − n+ 1)p(m+ 1, n− 1, t) (2)

+k̂−1(n+ 1)p(m− 1, n+ 1, t) (0 ≤ m ≤ m0, 0 ≤ n ≤ n0)

+k̂2(n+ 1)p(m,n+ 1, t)

There are three reactions in the kinetic scheme (1), hence there are six terms, three positive and three
negative, in the CME (2). Note that the k̂’s in the above equation are related, but not the same as the rate
constants k’s in Equation (1). The latter is concentration based, and the former is number based:

k̂1 =
k1

V
, k̂−1 = k−1, k̂2 = k2 (3)

2.1. Quasi-stationary approximation of the Michaelis-Menten enzyme kinetics

One of the most important results in deterministic enzyme kinetic theory is the quasi-steady state
approximation leading to the well-known Michaelis-Menten equation for the production of the product
in Equation (1):

d[S]

dt
= −d[P ]

dt
= − k1k2[S]Et

k−1 + k2 + k1[S]
(4)

where Et is the total enzyme concentration. We shall now carry out a parallel analysis for the CME (2).
As pointed out by Kepler and Elston [21], Rao and Arkin [22], and by Qian [16], the quasi-stationary

approximation is best cast in terms of the conditional probability. If the dynamics in Equation (2) is such
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that the changes in n can reach stationarity first, due to n0 � m0, then one can first solve the problem of
steady state conditional distribution p(n|m), then using this to solve the p(m, t). This is done as follows.

In the first step, on a fast time scale for fixed m, the Equation (2) can be written as

dp(n, t|m)

dt
= −

(
k̂1m(n0 − n) + k̂−1n+ k̂2n

)
p(n, t|m)

+k̂1(m+ 1)(n0 − n+ 1)p(n− 1, t|m) (5)

+(k̂−1 + k̂2)(n+ 1)p(n+ 1, t|m) (0 ≤ m ≤ m0, 0 ≤ n ≤ n0)

Here we assumed m− 1 ≈ m. This immdiate gives us the conditional stationary state distribution for n:

pss(n|m) =
n0!

n!(n0 − n)!

(k̂−1 + k̂2)n0−n(k̂1m)n

(k̂−1 + k̂2 + k̂1m)n0

(0 ≤ n ≤ n0) (6)

which yields a mean value for n, with given m:

〈n〉(m) =

n0∑
n=0

npss(n|m) =
k̂1mn0

k̂−1 + k̂2 + k̂1m
(7)

This result agrees exactly with the deterministic model.
Now the second step, let us sum over all the n for the Equation (2). With∑

n

p(m,n, t) = p(m, t) and p(m,n, t) ≈ p(m, t)pss(n|m)

we have
dp(m, t)

dt
= −

(
k̂1m(n0 − 〈n〉(m)) + k̂−1〈n〉(m)

)
p(m, t)

+k̂1(m+ 1)(n0 − 〈n〉(m+ 1))p(m+ 1, t) (8)

+k̂−1〈n〉(m− 1)p(m− 1, t) (0 ≤ m ≤ m0, 0 ≤ n ≤ n0)

Equation (8) is the result of a quasi-statioanry approximation. It should be compared with the
deterministic equation (4). It can be graphically represented as in Figure 1.

Figure 1. Through quasi-statioanry approximation, the CME in Equation (2), represented
by the two-dimensional graph in Figure 6, is reduced to the one-dimensional system shown
here. The corresponding master equation is shown in Equation (8).

m− 1 m m + 1-�-�

k̂−1k̂1mn0

k̂−1+k̂2+k̂1m

k̂1(k̂−1+k̂2)(m+1)n0

k̂−1+k̂2+k̂1(m+1)

k̂−1k̂1(m−1)n0

k̂−1+k̂2+k̂1(m−1)

k̂1(k̂−1+k̂2)mn0

k̂−1+k̂2+k̂1m

We see that at any given time, S can increase or decrease by one. The decrease of one S is from either
ES → E + P or ES → E + S, with probability k̂2

k̂−1+k̂2
and k̂−1

k̂−1+k̂2
, respectively. Hence, the number of

P will increase, at any given time, with the rate of

k̂1k̂2mn0

k̂−1 + k̂2 + k̂1m
(9)
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This is exactly the CME version of Equation (4) [22]. The result shows that the waiting time between
consecutive arrivial of P is exponentially distributed. This surprising result can be best understood from
a mathematical theorem on the superposition of N identical, independent renewal processes [23]. For a
more mathematical discussion on the subject, see [24].

Even when the number of enzymes is not large, the product arrival time distribution contains no
information more than the traditional Michaelis-Menten rate constant. However, this is not the case if
there is truly only a single enzyme. This will be discussed below.

2.2. Single-Molecule Michaelis-Menten Enzyme Kinetics

Now in Equation (2), let us consider n0 = 1. Then the equation is reduced to

dp(m, 0, t)

dt
= −k̂1mp(m, 0) + k̂−1p(m− 1, 1) + k̂2p(m, 1) (10a)

dp(m, 1, t)

dt
= −

(
k̂−1 + k̂2

)
p(m, 1) + k̂1(m+ 1)p(m+ 1, 0) (10b)

This is the CME for a single molecule enzyme kinetics according to the MM in Equation (1). Often,
one is only interested in the conformational states of the enzyme:

pE(t) =

m0∑
m=0

p(m, 0, t), pES(t) =

m0∑
m=0

p(m, 1, t)

Carry out the summation on the both sides of Equation (10), we have

dpE(t)

dt
= −k̂1〈NS〉pE(t) +

(
k̂−1 + k̂2

)
pES(t) (11a)

dpES(t)

dt
= −

(
k̂−1 + k̂2

)
pES(t) + k̂1〈NS〉pE(t) (11b)

where

〈NS〉 =

∑m0

m=0mp(m, 0, t)∑m0

m=0 p(m, 0, t)
, k̂1〈NS〉 = k1cS (12)

cS is the concentration of S. Equation (11) is the stochastic model for a single enzyme molecule
dynamics.

The steady state probability for the single enzyme can be easily obtained from Equation (11):

pssE =
k−1 + k2

k1cS + k−1 + k2

, pssES =
k1cS

k1cS + k−1 + k2

(13)

Then the steady state single enzyme turnover flux is

Jss = k2p
ss
ES =

k1k2cS
k1cS + k−1 + k2

=
VmaxcS
KM + cS

(14)

with kM = K−1+k2
k1

and Vmax = k2. The last expression is precisely the Michaelis-Menten formula.
The single enzyme steady-state flux Jss is exactly the inverse of the mean time duration between two

product arrivials. The time perspective is natural for single-molecule measurements on enzyme turnover
[23]. Not only one can obtain the mean time duration, one can also, according to the stochastic model in
Equation (11), compute the probability density function (pdf) of the time duration between two product
arrivals. The pdf is exponentially distributed if there is a single rate-limiting step with in the enzyme
cycle. In general, however, it is not exponentially distributed.
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2.3. Driven Enzyme Kinetics

We now consider an enzyme kinetic scheme that is a little more complex than that in Equation (1):

E + S
k1


k−1

ES
k2


k−2

EP
k3


k−3

E + P (15)

With concentrations cS and cP for S and P being constant, as many cases in a living cell under
homeostasis, we have the steady state single enzyme turnover flux

Jss =
k1k2k3cS − k−1k−2k−3cP

k2k3 + k−2k−1 + k3k−1 + (k1k2 + k1k−2 + k3k1) cS + (k−1k−3 + k2k−3 + k−3k−2) cP
(16)

The origin of this flux is the non-equilibrium between the chemical potentials of S and P :

∆µ = µS − µP = µoS + kBT ln cS − µoP − kBT ln cP = kBT ln
k1k2k3cS

k−1k−2k−3cP
(17)

We see that when ∆µ > 0, Jss > 0, when ∆µ < 0, Jss < 0, and when ∆µ = 0, Jss = 0. In fact, the
product ∆µ× Jss is the amount of chemical energy input to the single enzyme. If the enzyme does not
do any mechanical work such as a motor protein, then all this energy becomes heat and dissipated into
the aqueous solution in which the enzymatic reaction occurs.

Let us see an example of Jss as function of ∆µ, for ki = λ, k−i = 1, i = 1, 2, 3, and cP = 1 while
changing the cS:

Jss =
λ3cS − 1

(3 + 2λ+ λ2) + (1 + 2λ)λcS
=

λ2
(
e∆µ/kBT − 1

)
(3 + 2λ+ λ2)λ2 + (1 + 2λ)e∆µ/kBT

(18)

Figure 2A shows several curves. We see that their relationship is not linear over the entire range of
∆µ. Only when the ∆µ is very small, there is a linear region Jss = ∆µ/kBT (λ4 + 2λ3 + 3λ2 + 2λ+ 1).
This is the region where Onsager’s theory applies. In fact, the linear coefficient between ∆µ and Jss is
precisely the one-way flux in the equilibrium. To show this, we note from Equations (16) and (17) that
Jss = J+ − J− and ∆µ = kBT ln(J+/J−). Then, when Jss � J−, we have

Jss = J+ − J− = J−
(
e∆µ/kBT − 1

)
=

J−

kBT
∆µ (19)

Note that in equilibrium, J+ = J−. The last equation is known as detailed balance, which plays a
central role in Onsager’s theory.

Therefore, the simple enzyme kinetics is not in the region with linear irreversibility. Onsager’s theory
does not apply. Interestingly, we also note that the nonlinear curves in Figure 2A very much resemble
the curret-voltage characteristics of a semiconductant diode. It will be interesting to further explore the
similarities between driven biochemical and electronic systems [25].
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Figure 2. Simple enzyme kinetic system in Equation (15) exhibits nonlinear flux
(Jss)-potential (∆µ) realtion and oscillatory behavior. The parameters used: k1 = k2 = k3 =

λ, k−1 = k−2 = k−3 = 1, and cP = 1. (A) The steady state flux Jss is given in Equation
(18), and the chemical potential ∆µ is given by Equation (17): ∆µ/kBT = ln(λ3cS). Each
curve is obtained by fixed λ, as indicated, with varying cS . (B) The region of parameter
values for λ and cS in which there are complex eigenvalues is given in Equation (20). The
dashed line represents the equilibrium ceqS , which is outside the oscillatory region.

2.4. Far from Equilibrium and Enzyme Oscillations

In fact, one of the most important results in Onsager’s linear theory is the reciprocal relations [26,27]
which, based on the principle of detailed balance, dictates certain symmetry in the kinetics. One of the
consequences of this symmetry is that chemical kinetics near equilibrium can not oscillate. Oscillatory
kinetics are associated with the complex eigenvalues of the kinetics system. For the scheme in Equation
(15), the imaginary component of its eigenvalues is

√
4∆− Λ2, where

Λ = k1cS + k2 + k3 + k−1 + k−2 + k−3cP

∆ = k2k3 + k−2k−1 + k3k−1 + (k1k2 + k1k−2 + k3k1) cS + (k−1k−3 + k2k−3 + k−3k−2) cP

To see an example, let us again consider k1 = k2 = k3 = λ, and k−1 = k−2 = k−3 = 1, and cP = 1.
Then √

4∆− Λ2 =
√

(3− 4λ) + 2λ(2λ− 1)cS − λ2c2
S

The oscillations exist for

1

λ
< cS <

4λ− 3

λ
, when λ > 1 and

4λ− 3

λ
< cS <

1

λ
when λ < 1 (20)

We see from Figure 2B that in general the cS has to be sufficiently far away from its equilibrium
value in order to have the oscillation. Chemical and biochemical oscillation is a far-from-equilibrium
phenomenon [28,29].
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3. The CME Approach to Nonlinear Biochemical Networks in Living Environment

In a living cell, one of the most important, small biochemical regulatory networks is the
phosphorylation-dephosphorylation cycle (PdPC) of an enzyme, first discovered by E.H. Fischer and
E.G. Krebs in 1950s. It consists of only three players: a substrate enzyme, a kinase and a phosphatase.
The phosphorylation of the substrate protein E, ATP + E

k1−→ ADP + E∗, is catalyzed by the kinase
K, and its dephosphorylation E∗ k2−→ E + Pi is catalyzed by the phosphatase P . Even though it is
traditionally called reversible chemical modification, one should note that these two steps are different
chemical reactions. In fact, a kinase should also catalyze the reaction ADP + E∗

k−1−→ ATP + E, as
should the phosphatase for E + Pi

k−2−→ E∗. These latter two reactions are simply too slow, even in
the presense of the respective enzymes, to be noticed, but they definitely can not be zero. The proof
is that the complete of a PdPC is the hydrolysis of a single ATP to ADP + Pi. This reaction has an
equilibrium constant of 4.9× 105 M [30], which means

k1k2

k−1k−2

= KATP = 4.9× 105 (21)

3.1. Phosphorylation-Dephosphorylation Cycle with Autocatalysis: A Positive Feedback Loop

Many kinase itself can exist in two different forms: an inactive state and an active state. Furthermore,
the conversion from the former to the latter involves the binding of the E∗, sometime one, sometime two.
Hence, we have [31–33]:

K + χE∗
Ka


 K‡ (22)

where χ = 1, 2. We shall call χ = 1 first-order autocatalysis and χ = 2 second-order autocatalysis.
Therefore, if the conversion is rapid, then the active kinase concentration is [K‡] = Ka[K][E∗]χ. Now
combining the reaction in Equation (22) with the PdPC, such a mechanism is called autocatalysis: more
E∗ is made, more K‡, which in turn to make more E∗. Quantitatively, the rate of phosphorylation
reaction catalyzed by the active kinase is:

d[E∗]

dt
= k1[ATP ][K‡][E] = k1[ATP ]Ka[K][E∗]χ[E] (23)

where [X] denotes the concentration of biochemical species X . Note, however, that the same kinase K‡

also catalyzed the reverse reaction of the phosphorylation. Hence, to be more realistic, we have

d[E∗]

dt
= Ka[K][E∗]χ (k1[ATP ][E]− k−1[ADP ][E∗])

= α[E∗]χ[E]− β[E∗]χ+1 (24)

in which
α = k1Ka[ATP ][K] and β = k−1Ka[ADP ][K]

contains the concentration of ATP and ADP respectively. Equation (24) is the kinetic equation for the
phosphorylation reaction catalyzed by a kinase which is activated by binding χ number of E∗.
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Figure 3 shows four, with subtle differences, PdPC with such a positive feedback loop. Biochemical
examples of this type of regulation are MPAK pathway [31], Src Family kinase pathway [32], and
Rabaptin-5 mediated Rab5 activation in endocytosis [33]. We shall now establish the appropriate kinetic
equations for each of these nonlinear biochemical networks.

Figure 3. An assorted variations of the PdPC with autocatalytic feedback. The
phosphorylation of the substrate E to E∗ is catalyzed by an active form of the kinase K‡,
and the dephosphorylation is catalyzed by a phosphatase (P ). The activation of the kinase
involves the binding ofK toE∗. In (A) and (B) the autocatalysis is first order: K+E∗ 
 K‡;
In (C) and (D), it is second order: K + 2E∗ 
 K‡. The nonlinear feedback in the latter is
stronger; thus they exhibit more pronounced nonlinear behavior: bistability and limit cycle
oscillation.

3.2. Stochastic Bistability in PdPC with First-Order Autocatalysis

For the kinetic scheme in Figure 3A, we have χ = 1 and

dx

dt
= αx(xt − x)− βx2 − εx+ δ(xt − x) (25)

here we use x to denote the [E∗], xt = [E] + [E∗]. In the equation

ε = k2[P ] and δ = k−2[P ][Pi]

represent the rates for the dephosphorylation and the rate for its reverse reaction, respectively. Both are
catalyzed by the enzyme phosphatase P . For simplicity, we assume both kinase and phosphatase are
operating in their linear region.

Bishop and Qian [34] have carefully studied Equation (25). While this model is very simple, the
issues arise from the model are important, and have not been widely discussed. It is well-known, and as
we shall discuss in Section 3.4, nonlinear open chemical and biochemical reaction systems can exhibit
bistability, which plays a crucial role in cellular genetic [35] and signal regulations [20,36]. In fact, it



Int. J. Mol. Sci. 2010, 11 3482

has been argued that bistability is one of the key origins that generate complex dynamic behavior [37].
Bistable chemical reaction systems have been extensively studied in the past [38]. In fact, it is relatively
easy to theoretically construct reaction schemes that show bistability and bifurcation. Since bistability
mathematically means two stable and one unstable fixed points in the positive quardrant, it is easy to
show, according to the Law of Mass Action, that a tri-molecular reaction (as a reduced mechanism for
multisteps of bimolecular reactions) is necessay.

In [34], however, we discovered a simpler bi-molecular chemical reaction system that possibly
exhibits “bistability”. The bistability is in quotation marks since the mechanism is very different from
that in traditional nonlinear reactions. The system is modelled in terms of a CME, and the bistability and
(saddle-node) bifurcation are purely stochastic phenomenon. They only occur in reaction systems with
small volume and small number of molecules.

3.2.1. Deterministic Kinetics of PdPC with First-Order Autocatalysis and Delayed Onset

Let y be the concentration ratio of x/xt, the fraction of the substrate enzyme in the phosphorylated
state. Also introduce nondimensional variables and parameters

τ = (α + β)xtt, a1 =
αxt − ε− δ
(α + β)xt

, a0 =
δ

(α + β)xt

then Equation (25) can be simplified as

dy

dτ
= −y2 + a1y + a0 (26)

Let

λ1,2 =
a1 ±

√
a2

1 + 4a0

2
(27)

and λ1 be the one of the two roots ∈ (0, 1). Since λ1λ2 = −a0 < 0, λ2 < 0

The solution to Equation (26) is

x(τ) =
λ1(xo − λ2)− λ2(xo − λ1)e(−λ1+λ2)τ

(xo − λ2)− (xo − λ1)e(−λ1+λ2)τ
(28)

in which xo = x(0), x(∞) = λ1

If both phosphorylation and dephosphorylation reactions are irreversible, as usually assumed in
cell biology (When considering kinetics, but not thermodynamics, this is indeed valid for large ATP
hydrolysis free energy in a living cell), then the reaction is simplified to

E∗ + E
α−→ E∗ + E∗, E∗

ε−→ E (29)

where α and ε are proportional the the kinase and phosphatase activity, respectively. The differential
equation in Equation (25) is simplified to

dy

dt
= αxty(1− y)− εy (30)

Its steady state exhibits a transcritical bifurcation as a function of the activation signal, θ = αxt/ε:

y =

 0 0 ≤ θ ≤ 1

1− 1
θ

θ ≥ 1
(31)
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Compared with the hypobolic activation curve θ
1+θ

, Equation (31) exhibits “delayed onset” of
activation [33,39]. See Figure 4. Note the curve (31) is an extreme version of a sigmoidal shape. It
has a response coefficient of 9, and a Hill’s coefficient of 2. Recall that the response coefficient is
defined as θ0.9/θ0.1, where y(θ0.9) = 0.9 and y(θ0.1) = 0.1.

Figure 4. Activation curves of PdPC with or without autocatalytic phosphorylation E +

χ E∗ → E∗ + χE∗ and dephosphorylation E∗ → E. Curve with χ = 0 is the standard
hyperbolic activation without feeback: y = θ

1+θ
. Curve with χ = 1 is for the PdPC with

first-order autocatalysis, following Equation (31). It exhibits an extreme version of sigmoldal
shape called delayed onset. Curve labelled χ = 2, following Equation (40), is for PdPC with
second-order autocatalysis. It shows bistability when θ > 4, with the dotted branch being
unstable.

It is interesting to point out that the curve in Equation (31), the delayed onset, can be obtained from a
completely different mechanism for PdPC with multiple phosphorylation sites [40]. Assuming that there
is a sequential phosphorylation of cites with rate α and dephosphorylation rate β, and there are totally n
sites. The active form of the substrate enzyme requires full n-sites phosphorylation. Then

y =
θ̂n

1 + θ̂ + θ̂2 + · · · θ̂n
=
θ̂n(1− θ̂)
1− θ̂n+1

(32)

where θ̂ = α/β. One can easily show that if n→∞, the y(θ̂) will be precisely the one in Equation (31).
Both mechanisms lead to the same mathematical expression of the activation curve.

3.2.2. Stochastic Bistability and Bifurcation without Deterministic Counterpart

Consider the first order autocatalytic system from Equation (29), adding the appropriate reverse
reactions such that the system can be considered in a thermodynamic framework, yields

E∗ + E
k′1


k′−1

E∗ + E∗, E∗
k2


k−2

E (33)
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The stochastic model of this system was studied in depth by Bishop and Qian, [34]. The appropriate
CME, where N(t) is the random variable measuring the number of phosphorylated E∗ molecules and
Nt is the total number of kinase molecules, is

dp(n, t)

dt
=− [k1n(Nt − n) + k−1n(n− 1) + k2n+ k−2(Nt − n)] p(n, t) (34)

+ [k1(n− 1)(Nt − n+ 1) + k−2(Nt − n+ 1)] p(n− 1, t)

+ [k−1(n+ 1)n+ k2(n+ 1)] p(n+ 1, t)

where k±1 = k′±1/V .
Solving dp(n,t)

dt
= 0 leads to the steady state distribution

pss(n) = C
n−1∏
j=0

(k1j + k−2)(Nt − j)
(k−1j + k2)(j + 1)

(35)

where C is a normalization constant. For certain parameter regimes this distribution is bimodal where
the bimodality appears as a sudden second peak at zero, Figure (5). This bimodal distribution is related
to traditional deterministic dynamics by considering the peaks of the probability to correspond to stable
steady states, and the troughs to correspond to unstable steady states. Figure (5B) shows how this unique
instance of bi-molecular bistability is related to zero being almost an absorbing state.

Figure 5. (A) The steady state distribution of the number of active kinase, N, from
Equation 35. For certain parameter values the distribution is bimodal with the second peak
appearing at zero. Parameter values are k1 = 5, k−1 = 10, k2 = 10, Nt = 30 and k−2 varied.
(B) Sample trajectory of the fluctuating E∗ in Equation 33 generated using the Gillespie
Algorithm with parameter values, k1 = 5, k−1 = 10, k2 = 10, k−2 = 0.001, Nt = 30. For
each segment of nonzero fluctuations the average was taken and plotted (dashed line). Data
taken from and figure redrawn based on [34].
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Note that this bistability is a purely stochastic phenomenon; it has no deterministic counterpart. The
deterministic model of the same bi-molecular system in Equation (30) and Figure (4) has only a weak
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(quadratic) nonlinearity and has no capacity bistability. Bishop and Qian showed that this stochastic
bistability explains the more complex instance of the noise induced bistability first discovered in [41].

The extrema of Equation (35) can be conditioned on both the volume, V , and the energy,
γ = (k1k2)/(k−1k−2), of the system. If we consider V to be the bifurcation parameter we can find that
for 0 < k′−1/(k

′
1Et − k2 − k−2) < V < k2/(k−2Et) the system is bistable. Letting γ be the bifurcation

parameter we find γ > k2(k−1 + k2 + k−2)/(Ntk−1k−2) with no upper bound, i.e., a minimal energy
input is necessary. These bounds with the parameters from Figure (5) clearly demonstrates that the
stochastic bistability is dependent on having a sufficiently small volume and the presence of sufficiently
large energy dissipation.

3.3. Keizer’s Paradox

For the kinetic scheme in Figure 3B, we again have χ = 1. However, we assume that there is
a continuous biosynthesis and degradation for the E such that its concentration is sustained in the
biochemical system, say at the value of a. Then, the kinetic equation for the dynamics of [E∗] becomes

dx

dt
= αax− βx2 − εx+ δa (36)

When δ = 0, Equation (36) is the same equation for the generic chemical reaction scheme

A+X
α


β

2X, X
ε→ B (37)

J. Keizer studied this model in [42] to illustrate a very interesting observation: While the deterministic
kinetics of the system has a positive steady state, the steady state of its stochastic kinetics is zero. Vellela
and Qian have studied this Keizer’s “paradox” [43]. It was shown that there are two very different time
scales in the stochastic model: In a rather short time scale corresponding to the eigenvalues |λ2| and
above, the system rapidly settles to a quasi-stationary distribution peaking at the deterministic positive
steady state. However, in a much slower time scale corresponding to the eigenvalue |λ1|, the above
probability distribution slowly decay to zero. For very large reaction system volume V , λ1 ∼ −e−cV

where c is a positive constant. Hence there is an exponentially slow decay process beyond the infinite
time of the deterministic dynamics [44,45].

Keizer’s paradox and its resolution is the origin of all the multi-scale dynamics in the CME system
with multi-stability. It is also clear it is intimately related to the stochastic bistability in Section 3.2.2
when the k−2, i.e., δ in Equation (36), is very small but nonzero. k−2 controls the lifetime, i.e., relative
probability of the the zero state in Figure 5.

3.4. Schlögl’s Nonlinear Bistability and PdPC with Second-Order Autocatalysis

For the kinetic scheme in Figure 3C with second-order autocatalysis, we have χ = 2. We again
assume that there is a continuous biosynthesis and degradation for the E such that its concentration is
sustained in the biochemical system at a constant value of a. Then, the kinetic equation for the dynamics
of x = [E∗] becomes

dx

dt
= αax2 − βx3 − εx+ δa (38)
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On the other hand, if we assume the rate of biosynthesis is negligible, and that both kinase and
phosphatase catalyzed reactions are irreversbile, then we have the kinetics

2E∗ + E
α−→ 3E∗, E∗

ε−→ E (39)

Comparing this system with that in Equation (29), the difference is in the 2E∗ on the left-hand-side.
The kinetic equation for the fraction of E∗, y = [E∗]

Et
where Et is the total amount of [E] + [E∗]. is

dy
dt

= αE2
t y

2(1− y)− εy. The steady state exhibits a saddle-node bifurcation at θ =
αE2

t

ε
= 4:

y =

 0 0 ≤ θ ≤ 4

0, θ±
√
θ2−4θ
2θ

θ ≥ 4
(40)

See the orange curve in Figure 4.
Equation (38) is precisely the same kinetic equation, according to the Law of Mass Action, for the

chemical reaction system
A+ 2X

α


β

3X, X
ε


δa/cB

B (41)

The system (41) is known as Schlögl’s model. It is the canonical example for nonlinear chemical
bistability and bifurcation which has been studied for more than 30 years [46].

Qian and Reluga [47] have studied a system very similar to Equation (41) in terms of deterministic,
nonlinear bifurcation theory. In particular, they established the important connection between
the nonlinear bistability with nonequilibrium thermodynamics [48]. They have shown that if the
concentrations of A and B are near equilibrium,(cB

a

)eq
=
cBαε

βδa
, i.e.,

βδ

αε
=
k−1k−2[ADP ][Pi]

k1k2[ATP ]
= 1 (42)

then there would be no bistability. The last equation in (42) is precisely equivalent to free energy change
of ATP hydrolysis being zero. It can be easily shown, see Section 4.1, with the equilibrium condition
in Equation (42), the system has only a single, unique deterministic steady state. And also, in terms
of its CME, a single peak in the equilibrium probability for the number of X . This result is much
more general for all nonlinear chemical and biochemical reaction systems, not just limited to the simple
reaction system in (41) [36,49,50].

Vellela and Qian [36] have recently studied the Schlögl system in great detail, with a nonequilibrium
steady state perspective. In particular, it was shown that the nonlinear bistability is intimately related
to nonequilibrium phase transitions in statistical physics [36,51,52]. Ge and Qian [45,51] further
investigated the steady state distribution according to the CME and its relationship to the steady states
according to the deterministic Law of Mass Action. They have shown that in the limit of system’s
volume tends infinity, i.e., the so called thermodynamic limit, the CME steady state(s) differ from that
of deterministic model: A Maxwell construction like result is obtained: According to the CME, only
one of the two determinsitic stable fixed point is the true global minimum, the other stable fixed point
is only metastable. Hence in the thermodynamic limit, the global minimum has probability 1 while the
metastable minimum has probability 0. However, the lifetime of the metastable state is infinitely long.
Furthermore, using the mathematical tool of large deviation theory, [45] shows that the bistable CME
system exhibits several key characteristics of nonequilibrium phase transition well-known in condensed
matter physics.
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3.5. Schnakenberg’s Oscillation

For the kinetic scheme in Figure 3D, we again have χ = 2, and we again assume that there is a
continuous biosynthesis for the E. However, we now consider the dynamics of both [E∗] and [E],
denoted by x and y, respectively. Then, the kinetic equations becomes

dx

dt
= αyx2 − βx3 − εx+ δy − φx+ ψb (43a)

dy

dt
= −αyx2 + βx3 + εx− δy + νa (43b)

The system of Equations (43) is the same system for the kinetic scheme

A
ν→ Y, Y + 2X

α


β

3X, X
ε


δ
Y X

φ


ψ
B (44)

with [A] = 1 and [B] = 1. If the β = ε = δ = 0, then it becomes the celebrated Schnakenberg model
which is well-known to exhibit periodic chemical oscillation. Qian et al. [53] first studied its stochastic
dynamics in terms of the CME. Recently, Vellela and Qian [54] again have studied this system. In
particular, they have introduced a novel mathematical concept of Poincaré-Hill cycle map (PHCM) to
characterize the amplitude of rotational random walk. The PHCM combines the Poincaré map from
nonlinear dynamic analysis [55] with the cycle kinetic analysis developed by T.L. Hill [56,57].

3.5.1. Sel’kov-Goldbeter-Lefever’s Glycolytic Oscillator

So far, we have always assumed that the kinase catalysis is in its linear region, and avoided using
Michaelis-Menten kinetic model for the kinase catalyzed phosphorylation. If we take the nonlinear
Michaelis-Menten kinetics into account, interestingly, we discover that in this case, our model of PdPC
with feedback in Figure 3D is mathematically closely related to a well-known metabolic oscillator: The
Sel’kov-Goldbeter-Lefever model for glycolytic oscillation [58–60]:

A
ν→ Y, Y +K‡

α1



β1
Y K‡

α2→ X +K‡, K + 2X
α3



β3
K‡, X

φ→ B (45)

In the glucolytic model, X and Y are ADP and ATP, K and K‡ are the inactive and activated from
of phosphofructokinase-1. One can find a nice nonlinear analysis of the deterministic model based on
the Law of Mass Action in [60], which shows limit-cycle oscillation. As far as we know, a stochastic
analysis of this model has not been carried out.

4. Conclusions

Nonlinear chemical reactions are the molecular basis of cellular biological processes and functions.
Complex biochemical reactions in terms of enzymes and macromolecular complexes form “biochemical
networks” in cellular control, regulation, and signaling. One of the central tasks of cellular systems
biology is to quantify and integrate experimental observations into mathematical models that first
repreduce and ultimately predict laboratory measurements. This review provides an introduction of
the biochemical modeling paradigm in terms of the chemical master equation (CME) and explores
the dynamical possibilities of various biochemical networks by considering models of homogenous,
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i.e., well-mixed, reaction systems with one and two dynamic variables. From mathematical modeling
perspective, these are one- and two-dimensional system, the simplest to be fully explored with sufficient
depth.

The chemical master equation is a comprehensive mathematical theory that quantitatively characterize
chemical and biochemical reaction system dynamics [38,61]. Traditional chemical kinetics based on the
Law of Mass Action, in terms of the concentrations of species as functions of time and differential
equations, is appropriate for reaction systems in aqueous solutions [62,63]. Deterministic differential
equation models have given satisfactory predictions for well mixed macroscopic chemical reaction
systems. One of the most celebrated examples is the Oregonator: the mathematical theory for the
Belousov-Zhabotinsky reactions [64] which display sustained oscillations in a test tube. For a recent
study see [28,29].

In recent years, due to the technological advances in optical imaging, single cell analysis, and green
fluorescence proteins, experimental observations of biochemical dynamics inside single living cells have
become increasingly quantitative [65]. Mathematical modeling of biochemical reaction systems in a
living cell requires a different approach. Chemical systems inside a cell, especially those of signaling
networks involving transcription regulation, protein phosphorylation and GTPases, often involve a small
number of molecules of one or more of the reactants [9,21,66,67]. Such dynamics are usually nonlinear
and stochastic, exhibiting random fluctuations. Thus, the traditional method of ordinary differential
equations is inappropriate. The fluctuations in the number of molecules, often called “intrinsic noise”,
have been shown to have biological significance and contribute to the function of the system [41,68].

Reaction kinetics of this kind are more realistically described by stochastic models that emphasize
the discrete nature of molecular reactions and the randomness of their occurrences [61]. The chemical
master equation is a class of discrete-state, continuous-time Markov jump processes, known as
multi-dimensional birth-death processes in probability theory [69]. Master equation is the widely used
name in the physics literature [70]. In a jump process, the chemical reactions are characterized in
terms of the stochastic copy numbers of the various dynamic chemical species, which differs from
the traditional concetrations by a trivial volume V of the reaction system. Reactions occur at random
times with exponential distribution. The expected value for the waiting period between each reaction is
determined by the number of copies of each species. The differential equation models based on the Law
of Mass Action should be thought of as the infinite volume limit of the Markov jump process, known
as the thermodynamic limit in statistical physics. As we have seen, the volume V is critical to many
phenomena which appear only in small, mesoscopic biochemical reaction systems, and thus stochastic
kinetic models in theory.

The master equation approach to chemical reactions began in the 1930’s with the work of M.A.
Leontovich [71]. Independently, it carried out by A.J.F. Siegert, M. Kac, M. Delbrück, A. Renyi, M.
Lax and D.A. McQuarrie, among many others. Comprehensive reviews can be found in [42,61,72,73].
The chemical master equation (CME), first studied by Delbrück in 1940 [74], has become the leading
mathematical theory for modeling mesoscopic nonlinear chemical reaction systems with small volume
on the order of that of a living cell [8].

From a statistical mechanics point of view, each possible combination of the numbers of the chemical
species defines a state of the system. The CME provides the evolution equation of the joint probability
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distribution function over all system states. In open chemical systems, i.e., where energy is added from
an outside source, the number of system states is often infinite, leading to an infinite, coupled system of
differential equations for the CME. An analytic solution to the CME for stochastic, open unimolecular
reaction networks can be found in [75]. It is not possible, in general, to obtain an analytic solution
for an open, non-unimolecular reaction system. However, the “steady state” solution to the master
equation (also known as the stationary probability distribution) is generally unique [70] and may be
algorithmically computed [76].

Continuous, diffusion approximations (also known as Fokker-Planck approximations) to the master
equation were first developed by Van Kampen [77] and shown by Kurtz [78,79] to match the solution to
the master equation in the thermodynamic limit for finite time. Because of the “finite time”, the stationary
solution at infinite time for the Fokker-Planck equation is often not an acceptable approximation for the
stationary solution of the CME. This gives rise to Keizer’s paradox. Fokker-Planck equations describe
the probability distribution functions of continuous random movements known as stochastic differential
equations (SDE). Approximating stochastic jump processes by diffusion processes with continuous
fluctuations, however, is a delicate problem [80,81]. The delicate issue in mathematical term has to
do with exchanging the limits for a large number of molecules and for a long time [82]. This limit
exchange can lead to disagreements between discrete and continuous stochastic models [36].

The same issue of exchanging limits is present also between a stochastic jump process and the
deterministic model. It is intimately related to the time scales for “down-hill dynamics” and “up-hill
dynamics” and how their dependence upon the system size V [43]. Note that for sufficiently large
V , the stochastic trajectory is close to the deterministic dynamics. However, there is no deterministic
counterpart for stochastic “barrier-crossing” trajectory that moves agains the deterministic vector field.
A transition between stable attractors is impossible in a deterministic system, but occurs with probability
1 in stochastic dynamics, albeit with exponentially long time ∼ ecV [44].

Kurtz carried out rigorous studies on the relation between the stochastic theory of chemical kinetics
and its deterministic counterpart [83,84]. It has been shown that in the thermodynamic limit of V →
∞, the CME becomes the expected deterministic ordinary differential equation (ODE) for finite time.
Furthermore, solutions with given initial values to the CME approach the respective solutions to the ODE
[83]. In light of this, there can still be disagreement in the steady state (i.e., infinite time limit) solutions,
an issue extensively revisited recently by Vellela and Qian [36,43].

Stochastic simulations of complex chemical reaction systems were carried out as early as the 1970’s
[85,86]. Current software packages used for the simulation of biochemical reactions commonly make use
of algorithms based on the influential work of Gillespie [8,10,87]. Microscopic particle simulations have
validated the master equation as the most accurate description of a reactive process in aqueous solution
[81,88]; see [89] for an up-to-date review. The CME provides the equation for the time-dependent joint
probabilities of the number of molecules while the Gillespie algorithm gives the stochastic trajectories.
They correspond to Fokker-Planck equation and stochastic differential equation (SDE) for diffusion
processes.

In the environment of a living cell, biochemical systems are operating under a driven condition, widely
called an “open system” [12,19,20,90]. There is a material and/or energy flux, from the outside, going
through the system [91,92]. Such molecular systems no long obey the traditional theory of equilibrium
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thermodynamics. A closed molecular system tends to a thermal, chemical equilibrium, which is unique
and in which each and every reaction has zero flux [93]. This is known as Lewis’ principle of detailed
balance [18]. Under equilibrium conditions, the ODE model based on the Law of Mass Action contains
a unique, globally attracting equilibrium (fixed point). Accordingly, the stationary solution to the CME
is a multi-Poisson distribution whose peak is located over the ODE fixed point [49].

The nonequilibrium theory for nonlinear biochemical reactions allows the possibility of multiple
steady states, and nonzero steady state flux and a nonzero entropy production rate [19,20]. Recent
developments in the area of fluctuation theorem [94,95] have illustrated the importance of entropy
production and its relationship to the irreversible nature of a system. How is the entropy production
rate related to functions of biochemical reaction networks? A correlation has been suggested between
entropy production (or “dissipation cost”) and the robustness of a network [96,97]. A more quantitative,
if any, relationship between the entropy production rate and the dynamics of a nonequilibrium steady
state is yet to be developed.

The essential difference between deterministic and stochastic models is the permanence of fixed
points. According to the theory of ordinary differential equation, once the system reaches a fixed point (or
an attractor), it must remain there for all time. Systems with stochasticity, however, can have trajectories
being pushed away from attracting fixed points by random fluctuations. Since the noise is ever-present, it
can eventually push the system out of the basin of attraction of one fixed point (attractor) and into that of
another. Fixed points are no longer stationary for all time; they are only temporary, or “quasistationary”
[98]. The amount of time the system spends at (or very near) a fixed point increases exponentially
with the system volume. This agrees with ODE dynamics in the thermodynamic limit. However, this
quasistationary behavior plays an important role at the cellular level in the “cellular evolutionary time
scale” [45].

In order to systematically understand the mesoscopic cellular biochemical dynamics, this review
discussed the simplest problem that is interesting: a one dimensional system with two fixed points. The
systems with only one fixed point are trivial since deterministic and stochastic models are in complete
agreement when there is a unique steady state [88]; the linear differential equation corresponds to a
Poisson distribution in the CME [75]. The case of two fixed points, one stable and one unstable, is studied
through an autocatalytic reaction first introduced by Keizer [42]. The ODE representation takes the form
of a classic example in population dynamics, the logistic equation. Through this simple system, one
understands the issues in the steady state predictions of the ODE and CME models [43]. This example
introduces the notion of a quasistationary fixed point and a spectral analysis reveals the multiple time
scales involved in the master equation formulation.

Logically, the next step is a one dimensional system with three fixed points, two stable with one
unstable point between them [36,47]. For this, we use a reversible, trimolecular reaction known as
Schlögl’s model. This is the first case in which bistable behavior is possible, occurring through a
saddle-node bifurcation. Again, the CME allows for new possibilities such as switching between the
stable fixed points and a nonequilibrium phase transition in the steady state distribution function [45,51].
Because this model is fully reversible, one is also able to study thermodynamic quantities such as the
chemical potential and entropy production rate and to illustrate the nonequilibrium physics [99]. The
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dynamics of this system serves as a representative example for all systems with multiple stable fixed
points.

Once the theory has been established for one dimensional systems with a single dynamic biochemical
species, we turn our attention to planar systems with two dynamical species [54]. Here, oscillations
become possible in the form of spiral nodes and limit cycles in ODE models. We explore the open
question of how to define and quantify stochastic oscillations. We suggest a new method for locating
oscillations in the presence of noise by extending the idea of the Poincaré return map to stochastic
systems. A reversible extension of Schankenberg’s model for chemical kinetic oscillation is used to
illustrate this new idea. The oscillation is represented by a rotational random walk.

In all these studies one encounters the presence of a time scale that grows exponentially with the
sysetm’s volume V . Dynamics operating on this “cellular evolution time scale” are lost in the infinite
volume limit of the ODE model. To study the stability of a stochastic attractor, one must consider the
chemical reactions systems in terms of the chemical master equation (CME). The ODE formulation,
however, is valuable as a way to estimate the presence and location of the critical points in the landscape
of the probability steady state distribution of the CME [100,101].

In summary, one of the most important insights from the CME study of biochemical reaction systems
in a small, cellular volume is the realization of the cellular evolution time scale and the associated
stochastic attractors which might indeed be the emergent cellular epigenetic states. The dynamics on
this time scale is stochastic; it is completely missing from the traditional ODE theory of biochemical
reaction networks. In the CME theory, deterministic fixed points become stochastic attractors [100,101].
They are the emergent properties of a complex, nonlinear biochemical network. The transitions among
the emegent stochastic attractors constitute the proper cellular dynamics [102,103].
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Appendix: The Chemical Master Equation for Systems of Biochemical Networks

A1. Michaelis-Menten model

The canonical MM kinetic scheme is

E + S
k1


k−1

ES
k2−→ E + P (46)

Let m and n be the numbers of S and ES respectively. Assume the total number of enzyme is n0. Then,
the corresponding chemical master equation graph, shown below, details the changes in the “state” of
the system, (m,n), due to the three reactions in the Equation (46). The graph in Figure 6 helps one to
write the chemical master equation in (2). The three “leaving” terms are negative in Equation (2), and the
three “into” terms are positive in Equation (2). The k̂’s in the graph is related to the k’s in the Equation
(46) according to Equation (3).
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Figure 6. The chemical master equation graph for the stochastic Michaelis-Menten enzyme
kinetics in (46). The graph only shows all the transitions associated with “leaving” the state
(m,n). What is not shown are the transitions: (m−1, n+1)→ (m,n) with rate k̂−1(n+1);
(m + 1, n− 1)→ (m,n) with rate k̂1(m + 1)(n0 − n + 1); and (m,n + 1)→ (m,n) with
rate k̂2(n+ 1). They are all associated with “into” the state (m,n).
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A2. Keizer’s Model

We are interested in the autocatalytic reaction system

A+X
k1


k−1

2X, X
k2→ B (47)

in which the concentrations of A and C are hold constant. This is a modified version of an example
originally discussed by J. Keizer in his book [42], where he assumed k−1 = 0. Let n(t) be the stochastic
number of X molecule at time t. It is then related to the concentration x by n = xV , where V is
the volume of the system. This volume parameter V appears implicitly in the CME. For example, in
the deterministic model, reaction rates k1 and k−1 have units of [volume][time]−1, and k2 has units of
[time]−1. The reaction rates in the stochastic model are related to these rates by

k̂1 = k1/V, k̂−1 = k−1/V, k̂2 = k2 (48)

These reaction rates are scaled such that the units agree in the master equation (see Equation 49
below).

Figure 7 shows how the probability of each state n is affected by the three reactions in Equation (47).
The change in the probability of each state, d

dt
pn(t) is the sum of the changes due to each of the reactions.

Thus, the CME is the system of equations:

dpo
dt

= k̂2p1 (49a)

dpn
dt

= k̂1na(n− 1)pn−1 + (k̂−1n(n+ 1) + k̂2(n+ 1))pn+1

− (k̂−1n(n− 1) + k̂1nan+ k̂2n)pn (49b)
...

where na represents the number of A molecules, which does not change in the model.
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Figure 7. The chemical master equation graph shows the probability change in state Pn,
where na is the number of A molecules.
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k̂2(n+ 1)
�

n+ 1
u

A3. Schlögl Model

The canonical Schlögl model for chemical bistability is [46]

A+ 2X
k1


k2

3X, X
k3


k4
B (50)

Following the chemical master equation graph in Figure 8, we have the CME for the probability of
having n number of X at time t, pn(t) = Pr{nX(t) = n}:

d

dt
pn(t) = λn−1pn−1 − (λn + µn)pn + µn+1pn+1 (n ≥ 0) (51)

where
λn = k̂1an(n− 1) + k̂4b, µn = k̂2n(n− 1)(n− 2) + k̂3n (52)

and
k̂1 =

k1

V
, k̂2 =

k2

V 2
, k̂3 = k3, k̂4 = k4V (53)

Figure 8. The chemical master equation graph for the Schlögl model in Equation (50) shows
the rates of probability changes into and leaving state n. a and b are concentrations of A and
B. The relations between the k̂’s and k’s in Equation (50) are given in Equation (53).
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A3.1. Stationary Distribution: Steady State and Equilibrium

By setting the right-hand-side of Equation (51) to zero, one solves the steady state distribution

pssn = C
n−1∏
i=0

λi
µi+1

= C
n−1∏
i=0

k̂1ai(i− 1) + k̂4b

k̂2(i+ 1)i(i− 1) + k̂3(i+ 1)
(54)

where C is a normalization factor.
We now show a very interesting and important property of the pssn , when the concetrations of A and

B are at equilibrium: b/a = k1k3/(k2k4) = k̂1k̂3/(k̂2k̂4). Substituting this relation into Equation (54),
we have the equilibrium distribution

peqn = C
n−1∏
i=0

k̂1a

k̂2(i+ 1)
=

1

n!

(
k̂1a

k̂2

)n

e−k̂1a/k̂2 (55)

This is a Poisson distribution with the mean number of X being k̂1a

k̂2
= k1aV

k2
. That is the equilibrium

concentration of X being k1
k2
a. The Poisson distribution has only a single peak.

A4. Schnakenberg Model

We are now interested in the nonlinear chemical reaction system, the reversible Schnakenberg model,
in a mesoscopic volume V :

X
k1


k−1

A, B
k2


k−2

Y, 2X + Y
k3


k−3

3X (56)

Consider the function pn,m(t), the probability that there are n X molecules and m Y molecules at
time t. The six reactions (three forward and three backward) in the reversible Schnakenberg model in
Equation (56) define six ways to move on the lattice of possible states, i.e., the (n,m) lattice, Z+ × Z+

(see Figure 9). The chemical master equation (CME) is a doubly infinite set of ODEs:

dpn,m(t)

dt
= λ1

n−1,mpn−1,m + λ2
n,m−1pn,m−1 + λ3

n−1,m+1pn−1,m+1

+ µ1
n+1,mpn+1,m + µ2

n,m+1pn,m+1 + µ3
n+1,m−1pn+1,m−1

− (λ1
n,m + λ2

n,m + λ3
n,m + µ1

n,m + µ2
n,m + µ3

n,m)pn,m (57)

for n = 0 . . .∞,m = 0 . . .∞. The birth and death rates, λin,m and µin,m respectively, for the three
equations are

λ1
n,m = k−1na, µ1

n,m = k1n (58)

λ2
n,m = k2nb, µ2

n,m = k−2m (59)

λ3
n,m =

k3

V 2
n(n− 1)m, µ3

n,m =
k−3

V 2
n(n− 1)(n− 2) (60)

The factor of 1/V 2 in λ3
n,m and µ3

n,m accounts for the fact that the third reaction is trimolecular, and
thus k3 and k−3 have units of V 2/t. Since the first and second reactions are unimolecular, the remaining
rates have units of 1/t and do not need scaling when used in the CME.
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Figure 9. The chemical master equation graph showing possible paths away from state
(n,m), with birth rates λin,m and death rates µin,m. Note that there will be a corresponding
reverse path into state (n,m) for each of these arrows.

u u u

u u u

u u u
n− 1,m+ 1 n,m+ 1 n+ 1,m+ 1

n− 1,m n,m n+ 1,m

n− 1,m− 1 n,m− 1 n+ 1,m− 1

-

6

�

?

@
@
@
@R

@
@
@

@I

λ1
n,m

λ2
n,m

λ3
n,m

µ1
n,m

µ2
n,m

µ3
n,m

Because the CME is a set of linear ODEs, there will be a unique steady state to which the system tends,
the probability steady state, pss(n,m). Once the system reaches its steady state, the total probability
flow into each point, (n,m), will equal the total probability flow out of that point. Solving for pss(n,m)

involves setting each of the equations in Equation 57 equal to zero and solving a very large linear system.
Cao and Liang have recently developed a method for computing the probability steady state for molecular
networks in general [76]. Their method is an algorithm which enumerates the state space and solves the
corresponding linear system and is optimal in both storage and time complexity.
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