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Abstract: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular 

disorder caused by homozygous mutations of the SMN1 gene. Based on clinical severity, 

three forms of SMA are recognized (type I–III). All patients have at least one (usually 2–4) 

copies of a highly homologous gene (SMN2) which produces insufficient levels of 

functional SMN protein, due to alternative splicing of exon7. Recently, evidence has been 

provided that SMN2 expression can be enhanced by different strategies. The availability of 

potential candidates to treat SMA has raised a number of issues, including the availability 

of data on the natural history of the disease, the reliability and sensitivity of outcome 

measures, the duration of the studies, and the number and clinical homogeneity of 

participating patients. Equally critical is the availability of reliable biomarkers. So far, 

different tools have been proposed as biomarkers in SMA, classifiable into two groups: 

instrumental (the Compound Motor Action Potential, the Motor Unit Number Estimation, 

and the Dual-energy X-ray absorptiometry) and molecular (SMN gene products dosage, 

either transcripts or protein). However, none of the biomarkers available so far can be 

considered the gold standard. Preclinical studies on SMA animal models and double-blind, 

placebo-controlled studies are crucial to evaluate the appropriateness of biomarkers, on the 

basis of correlations with clinical outcome.  
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1. Introduction  

Proximal spinal muscular atrophies (SMA) are a group of clinically variable motor neuron disorders 

characterized by the degeneration of the anterior horn cells of the spinal cord. On the basis of age of 

onset and of the maximum motor achievement, childhood-onset SMA is generally classified into three 

forms (type I to III). Type I is the most severe and common form of SMA and the most frequent cause 

of infantile mortality due to genetic cause. The onset of symptoms is generally between birth and six 

months of age, although in rare cases the first manifestations of the disease may occur during fetal life; 

patients show marked hypotonia, affecting mainly axial and proximal muscles, and do not achieve the 

seated position. Life expectancy is markedly reduced, generally less than two years of age, the main 

cause of death being respiratory insufficiency. Type II is an intermediate form, generally characterized 

by onset before 18 months of age. Affected children do not achieve autonomous ambulation. Type III 

is clinically the most variable form: the onset of symptoms is over 18 months of age, the motor 

milestones achievement is normal; patients may lose the walking ability at various ages. Type II and 

III patients generally experience long–term complications due to muscle weakness, inactivity and 

atrophy: 100% of type II and most type III patients present variable degrees of scoliosis, generally 

severe, and the majority have tendon retractions and joint contractures [1]. The classification into three 

forms does not fully reflect the clinical variability of these conditions, which is better depicted as a 

continuum, with many patients showing borderline phenotypes between two different forms. Indeed, 

alternative classifications have been proposed, including that of Dubowitz, who in 1995 suggested a 

decimalized classification for SMA patients which may more accurately describe the phenotypic 

complexity of the disease [2].  

SMA type I-III are autosomal recessive conditions, caused by loss of function of the survival motor 

neuron (SMN1) gene [3]. Independent of the phenotypic severity, most patients (about 95%) have the 

homozygous deletion of the SMN1 gene, whereas about 2–3% of individuals are compound 

heterozygotes for the deletion of one allele and point mutations of the other (see Wirth for a review) [4]. 

SMN1 and a nearly identical copy, SMN2, are located in a duplicated inverted region at 5q13. Both 

genes encode the SMN protein, but due to alternative splicing, the majority of SMN2 transcripts lack 

exon7 (SMN-delta7), and are unable to produce a sufficient amount of protein to prevent the onset of 

the disease. The SMN protein is expressed ubiquitously and is localized in the cytoplasm and in  

the nucleus. It has been shown that the levels of SMN protein are markedly reduced in SMA patients, 

both in the spinal cord in vivo and in cell cultures, and inversely correlates with the phenotypic 

severity [5–7]. The SMN protein has different functions, including SNRNPs biogenesis and axonal 

transport, but it is not established yet which of the SMN functions is responsible for the pathogenesis 

of SMA [8]. Patients can carry variable copy number of the SMN2 gene, higher copy numbers being 

generally associated with milder phenotypes [9–11].  

At present, no cure for SMA is available. One possible therapeutic approach is based on attempts at 

increasing the amount of SMN protein produced by SMN2 genes, through promoter activation, or 

reduction of exon7 alternative splicing, or both. Recently, evidence has been provided that SMN2 gene 

expression can be modulated in vivo and/or in vitro, using different strategies [12–28]. One possible 

alternative approach exploits the neuroprotective action of some compounds [29–31], aimed  

at preventing or delaying motor neuron loss. These compounds do not target the correction  
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of the molecular defect of SMA since their mode of action is independent from the  

modulation of SMN2 gene expression. The efficacy of some compounds has been tested in clinical 

trials [21–23,32,33]. So far, none of the molecules evaluated has led to clinically meaningful 

improvements of motor function of patients. 

The availability of various potential approaches for the treatment of SMA has raised a number of 

issues, including the choice of the most appropriate outcome measures, the duration of trials,  

the clinical characteristics of patients recruited, the study design (open label versus double-blind,  

placebo-controlled trials). These aspects have been reviewed by Kaufmann and Muntoni [34] and  

were the subject of a workshop which was held in London in 2008, with the participation of 

representatives of the European Medicines Agency (EMEA) and of TREAT-NMD, a network of 

excellence of researchers in the field of neuromuscular disorders, funded by the European Union.  

The final document of the workshop is available on the TREAT-NMD website (http://www.treat-

nmd.eu/userfiles/file/general/EMEA_press_release.pdf).  

Some issues are particularly relevant in the design of clinical trials for chronic disorders like  

SMA: the availability of data on the natural history of the disease, the reliability and sensitivity of 

outcome measures, the duration of the studies, and the number and clinical homogeneity of 

participating patients. Given the rarity of SMA, it is reasonable to anticipate that forthcoming  

double-blind clinical trials should involve patients and neuromuscular centers from different countries 

and should be internationally coordinated, in order to recruit a sufficient number of patients to gain 

clinically meaningful and statistically significant results. 

Equally critical is the availability of reliable biomarkers whose relevance in the field of SMA is 

related to different aspects. An objective measurement: (1) can overcome the risk of placebo  

effect, which has already been evidenced in our previous study of phenylbutyrate [22]; (2) allows  

comparison of clinically heterogeneous individuals, unlike most clinical-functional outcome measures; 

(3) can help to distinguish responder and non-responder individuals to a given treatment, as a wide 

variability in the response to some compounds has been reported [16,17], and (4) may shorten the 

duration of the trials. Two classes of putative biomarkers can be identified in SMA (see Scheme 1 and 

Table 1): instrumental and molecular. The Compound Motor Action Potential (CMAP), the Motor Unit 

Number Estimation (MUNE), and the Dual-energy X-ray absorptiometry (DXA) are included in the 

first group. Among molecular biomarkers, only dosage of SMN gene products, either transcripts (both 

full length and del7 isoforms) or protein, is currently available.  

Table 1. Potential biomarkers in spinal muscular atrophy. 

Potential Biomarker Pros Cons 

Instrumental   

CMAP and MUNE   

  Both measures are related to phenotypic 

severity 

 MUNE does not appear related to 

motor function in a group of type II 

patients 

  Progressively decrease over time 

(MUNE is more stable in type III) 

 There is no evidence yet of 

correlations between motor function and 

CMAP variations 
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Table 1. Cont. 

  Are related to SMN2 copy number  

  Have been evaluated in an open phase II 

trial of valproic acid 

 

  CMAP, but not MUNE, increases with 

VPA 

 

DXA   

  Bone density increased after VPA 

treatment 

 The biological significance of BMD 

reduction in SMA patients is not 

established 

   It is not known whether BMD 

variations are related to the clinical 

outcome of treatment 

Molecular   

SMN protein quantification   

  SMN protein levels, as determined by 

cell immunoassay, are related to SMN2 

copy number  

 SMN protein levels are not related to 

clinical severity  

  For cell immunoassay, small amount of 

PBMC are sufficient for SMN 

quantification  

 No stabilization buffers are 

commercially available for total proteins  

  ELISA assay is sensitive down to 

magnitude of pg/mL of SMN protein  

 PBMC should be manipulated within 2 

hours from sampling  

   The minimum amount of peripheral 

blood necessary for SMN quantification is 

not known  

   It is not indicated for evaluation of 

candidate compounds which do not 

modify SMN levels 

SMN transcript quantification   

  Small amounts of blood (2.5 mL or less) 

are sufficient for mRNA quantification 

 It is not known if protein and transcript 

levels are related  

  Several stabilization buffers are 

available for multicenter clinical trials 

 It is unknown if transcript level 

variations are related to the clinical 

outcome of treatment 

  SMN transcripts are stable over time  

 

 It is unknown if transcript levels in 

blood and target tissues are related  

   It is not indicated for the evaluation of 

candidate compounds which do not 

modify SMN levels  
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Scheme 1. Schematization of biomarkers available in spinal muscular atrophy. 

 

2. Instrumental Biomarkers 

2.1. CMAP and MUNE 

CMAP and MUNE are electrophysiological tools which allow the evaluation of skeletal muscle 

innervation status [35]. While CMAP size variations may not be specifically related to neurogenic 

conditions, MUNE helps to distinguish loss of motor neurons and reinnervations [35,36]. These two 

measures have been evaluated in patients affected with different neurodegenerative conditions, 

including SMA [37–39]. Available data suggest that these electrophysiological tools are potentially 

useful as biomarkers in SMA for several reasons. Swoboda et al. have performed a longitudinal natural 

history study on 89 SMA patients affected with forms of various severity and found that both measures 

had significantly lower values compared to controls and that they were related to the phenotypic 

severity [39]. However, while a clear difference was evident for different groups of patients, CMAP 

and MUNE were not predictive of the phenotypic severity of individual patients, since a certain degree 

of overlapping was observed among groups. Similar findings were reported by another study [37] that 

evaluated the strength of elbow flexion through a functional score (measured by the modified Medical 

Research Council scale) in 13 type-II/III patients. The data obtained, when related to MUNE values, 

indicated that the latter are not predictive of the functional outcome. However, in this study, the age 

range of patients and the number of years of disease elapsed from diagnosis was very wide, which may 

have impaired the functional evaluation of patients.  
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It has also been shown that CMAP and MUNE progressively decrease over time: Swoboda et al. 

found a progressive reduction of both parameters, more marked during the first years of postnatal  

life [39]. In type III patients, MUNE appeared to be more stable.  

In our opinion, the results of electrophysiological evaluations should be integrated with the natural 

history data of the disease: in the case of SMA type I, it has been shown that the survival of patients 

has markedly increased over the last years, likely due to the more frequent application of proactive 

clinical interventions [40]; however, no data are available on the impact of longer survival on CMAP 

and MUNE variations. Regarding SMA type II, to our knowledge, some studies on the natural history 

were performed several years ago, without the confirmation of the molecular defect of the SMN1  

gene [41,42] and, thus, these data should be interpreted cautiously. Deymeer et al. [43] performed the 

longitudinal evaluation of muscle strength of 10 type IIIb subjects, over a period of more than  

10 years, and reported a slow progressive decline in muscle function of these patients, more evident in 

some muscle groups. The Authors related the functional decline to the progressive loss of motor 

neurons, rather than to the onset of complications of the disease, like joint contractures or scoliosis.  

The discrepancy between the results of Deymeer et al. and the stability of MUNE values reported by 

Swoboda et al. [39] in type III individuals, may be related to the different duration of the studies: A 

longer follow-up of patients through MUNE may disclose that, albeit slow, the loss of motor units is 

continuous. In our opinion, data on the natural history of the disease, both at clinical and instrumental 

levels, are critical for the identification of the endpoint and the duration assessment of clinical trials: 

while the stabilization or, hopefully, an increase in CMAP/MUNE could be considered as a marker  

of efficacy of a given compound in type I or type II patients, in the case of type III individual, this  

may be not sufficient.  

It has been also shown that both CMAP and MUNE are related to SMN2 copy number [39]: 

Although the gene copy number is not predictive of the phenotypic severity of SMA of individual 

patients, the modifying effect of SMN2 genes has been demonstrated in several clinical studies,  

and also in murine models as SMA-like mice with higher hSMN2 copy number display milder 

phenotypes [44]. In our recent study on the effect of salbutamol treatment, we demonstrated for the 

first time that patients with higher SMN2 copy numbers have a better chance to respond to treatment at 

the molecular level (see below).  

The use of CMAP and MUNE assessment in clinical trials as surrogate outcome measures has been 

evaluated in a recent open pilot trial of valproic acid in SMA patients [32], where Swoboda et al. 

found a statistically significant increase in CMAP (but not in MUNE) during treatment. However, it is 

not definitively established whether CMAP and MUNE are suitable as biomarkers and/or surrogate 

outcome measures in SMA since in addition to several pros, there are cons which undermine their 

applicability in clinical trials. In particular, there are still some crucial aspects that have not been 

defined: (1) CMAP has been evaluated in a double-blind study of valproic acid but the results of the 

study were not positive [33]; (2) CMAP and MUNE do not have prognostic value in individual 

patients, as discussed above, and (3) there is no evidence yet of possible correlations between 

variations of motor function and electrophysiological parameters.  
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2.2. DXA 

DXA is the most generally accepted tool to measure bone mineral density (BMD) and it is based on 

X-ray absorption, generally evaluated at the level of lumbar vertebrae [45]. In most patients with 

limited motility, a reduction in BMD is often observed and it is a very common event in patients 

affected with neuromuscular disorders, like Duchenne muscular dystrophy (DMD) [46]. However, 

some studies have suggested that a primary bone remodeling defect may be present in SMA. In 

particular, Kathry et al. reported that young SMA patients show, as expected, a reduction of BMD 

compared to age-matched controls, but BMD reduction was significantly higher than that observed in 

age-matched DMD patients [46]. BMD loss was higher in non-ambulant SMA patients and in type II 

compared to type III. In another study, Kinali et al. found that in younger SMA patients (below 

10 years of age) BMD was not reduced, but they did not observe the physiologic increase in BMD 

which normally occurs above this age, resulting in a relative reduction in BMD in SMA patients [47]. 

Interestingly, in a mouse model of SMA, Shanmugarajan et al. reported an osteoporotic phenotype in 

affected mice, suggesting a role of SMN protein in bone remodeling [48]. For these reasons, DXA is a 

candidate biomarker in SMA. To our knowledge, BMD has been evaluated only in one clinical trial of 

SMA patients, the open label of valproic acid cited above [32], where it increased during treatment 

compared to baseline. However, the biological and clinical significance of this finding is still unclear 

and it is not known whether it is related to the clinical outcome. Also in the case of this tool,  

double-blind, placebo-controlled studies are necessary to confirm the putative usefulness of DXA as a 

surrogate outcome measure in SMA clinical trials. 

3. Molecular Biomarkers 

At present, the dosage of SMN transcripts or protein in peripheral blood is the only potential 

molecular biomarker available. However, possible variations of SMN transcripts/protein levels as 

evaluated in leukocytes may not reflect the real effect of pharmacological treatment in target tissues, 

like the spinal cord and, possibly, skeletal muscle. Tissues other than blood, like skin or muscle 

biopsies, have been not considered so far for molecular biomarker analysis in SMA patients, due to the 

more invasive sampling procedures. This approach has been recently followed in a phase II clinical 

trial of the efficacy of PTC124 in patients affected by DMD who have undergone muscle biopsy 

before starting and after 24 weeks of treatment to evaluate the re-expression of dystrophin (see 

www.clinicaltrials.gov website). Further studies are necessary to evaluate the feasibility of a similar 

approach in SMA patients. 

3.1. SMN Protein Quantification 

SMN protein quantification is considered by most researchers as the most suitable and sensitive 

molecular biomarker for SMA. It has been shown that SMN protein levels are reduced in the spinal 

cord of SMA patients [4]. However, this is not demonstration for other tissues, like blood, which is the 

ideal target for biomarker analysis in vivo. Several techniques have been used for SMN protein 

quantification. Western blot was used in several in vitro and in vivo studies, mainly aimed at 

evaluating possible variations of SMN protein levels related to pharmacological treatment [17–18,24]. 
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However, this assay has several limitations, essentially related to its semiquantitative nature, requiring 

normalization versus housekeeping proteins, whose levels are subjected to wide interindividual 

variations. An alternative approach has been proposed by Kolb et al., who developed an immunoassay 

suitable for SMN protein quantification in peripheral blood mononuclear cells (PBMC), through which 

they could demonstrate a correlation with SMN2 copy number [49]. However, these authors found a 

reduction of SMN levels only in PBMC of type I patients, and did not find any correlation between 

protein levels and phenotypic severity. These findings clearly question the usefulness of quantifying 

SMN protein during clinical trials. ELISA assay is considered more sensitive and adequate for protein 

quantification since it does not require normalization to other proteins, given that SMN levels are 

quantified with respect to a standard curve constructed with serial dilutions of purified protein. To 

date, three different assays have been developed and validated. The first one, described by  

Thi Man et al., is suitable only for in vitro applications [50]. More recently, Assay Design Inc. has 

developed a commercial assay, in collaboration with SMA Foundation, which has a very high 

sensitivity for SMN protein detection (Assay Designs® SMN (human) Enzyme Immunometric Assay 

kit). The third assay was recently published by Piepers et al., who used it to quantify SMN protein 

variations during valproic acid treatment of six type II/III patients [51]. These authors showed that 

their assay is sufficiently sensitive to measure SMN variations related to treatment, and also found that 

SMN protein levels in PBMC of patients are reduced compared to healthy controls. Although these 

results are promising, the small number of samples analyzed (only four healthy controls), the absence 

of age-matched controls, of a placebo arm and of clinical-molecular correlation, do not allow firm 

conclusions to be drawn on the validity of SMN protein dosage in clinical trials. 

SMN protein dosage as a biomarker or surrogate outcome measure has some further technical 

drawbacks which impair the application of this assay in the context of multicenter double-blind clinical 

trials: PBMC should be processed within two hours from sampling to reduce possible biases due to cell 

death or to variations in protein levels; there are no commercially available stabilization buffers 

suitable to “snapshot” SMN expression at the moment of blood samplings; protein extraction requires 

larger peripheral blood draws often hard to obtain from very hypotonic or very young patients. Finally, 

SMN protein quantification is not indicated in the evaluation of those compounds whose mode of 

action is independent from SMN modulation, such as neuroprotective agents. 

3.2. SMN Transcript Quantification 

Several assays have been developed and validated for SMN transcript analysis, aimed  

at determining either full length (SMN-fl) or del7 (SMN-del7) isoforms, or the SMN-fl/del7  

ratio [16,46–49]. These assays were developed for at least two purposes: (a) establishing whether 

SMN-fl transcripts are reduced in patients compared to controls, also in non-target tissues, like 

peripheral blood; and (b) evaluating the molecular effect of therapies aimed at modifying SMN levels 

in vivo. These therapies may be based on the activation of the SMN2 gene promoter, on the reduction 

of the alternative splicing of exon7, or both. To differentiate the effect of different therapeutic agents, 

it is essential to evaluate both SMN-fl and del7 isoforms, since promoter activation only would lead to 

an increase in both isoforms. On the other hand, if a therapeutic agent acts mainly by reducing the 

alternative splicing, an increase in SMN-fl levels and a concomitant reduction in the SMN-del7 
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isoform should be observed. Some researchers propose to evaluate possible variations of SMN-fl/del7 

ratio only, but in this case, putative effects on promoter activation cannot be measured [18].  

The results of different studies on SMN transcript levels have been discordant. In particular, a 

correlation between SMN2 copy number and transcript levels has been found by Sumner et al. [52] 

and by Vezain et al. [54], but not by Simard et al. [53] or by ourselves [55]. Vezain et al. and Tiziano 

et al. found a correlation between SMA phenotype and transcript levels, whereas Brichta et al. [17], 

Sumner et al. and Simard et al. did not. Significant differences between SMN-fl transcript levels of 

type I patients and controls were found by Brichta et al. and Sumner et al. but not by Simard et al. For 

the first time, we have recently shown that SMN-fl transcript levels are significantly lower in type II 

and III patients compared to controls, although not predictive of the phenotypic severity in individual 

patients [55]. The differences observed in different studies may be related to the methods used for 

SMN-fl level assessment. The majority of SMN mRNA assays are based on relative semiquantitative 

PCR in which transcript levels are determined by normalization with respect to housekeeping gene 

transcript levels, used as internal controls [52–54]. However, we and others have demonstrated that the 

expression levels of these genes vary widely in the general population and, or, can be probably 

affected by pharmacological treatments or metabolic status, thus reducing the sensitivity of the 

previously published assays [55,56]. The assay described by Brichta et al. is based on real time PCR 

and relative standard curves and SMN levels are measured as folds of variation compared to serial 

dilution of a control sample [17]. In our opinion, this approach may be considered unbiased only if the 

same sample is always used as control, otherwise it should be assumed that SMN levels in different 

control individuals are similar. We recently demonstrated that SMN-fl levels vary widely in control 

individuals, although they do not show a Gaussian distribution [55]. Our assay is based on absolute 

real time PCR. SMN-fl transcript levels are extrapolated from standard curves, constructed by serial 

dilutions of an external standard and are measured as number of mRNA molecules/ng of total RNA. 

The main advantage of this approach is that it allows quantification of SMN-fl levels independently  

from housekeeping control transcripts. On the basis of our results, the International Coordination 

Committee, a U.S. based organization of SMA researchers and clinicians aimed at harmonizing the 

outcome measures in clinical trials, has indicated our assay as the most appropriate to be used for SMN 

transcript analysis during clinical studies in SMA. Very recently, we applied this assay to evaluate the 

effect of salbutamol, a candidate compound for the treatment of SMA, on SMN expression [25]. 

Twelve patients were included in this study, who took oral salbutamol for six months: in all patients 

we found an increase in SMN-fl levels in PBMC, and all individuals at six months reached the median 

transcript levels of controls. However, at present it is not possible to establish whether the restoration 

of SMN levels in blood is predictive of the increase in spinal cord, which may be critical for the 

recovery of SMA phenotype. For the first time, we found also that the molecular response to 

salbutamol was higher in individuals with a larger number of copies of SMN2 genes, suggesting that 

these individuals are better responders to the compound and that SMN2 copy number can be included 

as a randomization parameter during the design of double-blind, placebo-controlled trials. The efficacy 

of other compounds modulating SMN expression has been evaluated in vivo by means of different 

mRNA quantification assays. In our previous study on the effect of phenylbutyrate, we found 

considerable variations both among different subjects and among different blood samples from the 

same subject [16]. In another open-label trial with valproic acid, SMN2 mRNA levels were found 
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elevated in seven patients and unchanged or decreased in 13 patients [17]. Similarly, in the most recent 

open label study of the effect of valproic acid, fluctuation of SMN mRNA levels throughout drug 

treatment was reported in patients showing increased, decreased or unaltered levels [32]. In our 

opinion, the variability observed in the molecular response to treatment may be related to the different 

assays used for transcript analysis, to the different molecular efficacy of the compounds, or to the 

individual response of each patient (responder versus non-responder individuals).  

Some technical advantages support SMN transcript analysis as a biomarker/surrogate measure for 

SMA, compared to protein analysis, including the availability of several stabilization buffers which 

allow the samples to be preserved from RNA degradation and gene expression variations for up to five 

days, and the small amount of blood (down to 0.5 mL) necessary for the assay. These aspects are very 

relevant in the context of multicenter trials, especially when dealing with severely hypotonic patients.  

SMN transcript analysis is not free from some drawbacks which need to be considered if this tool is 

to be accepted as standard biomarker in SMA. First, it should be established whether SMN protein and 

transcripts levels are related. This is a critical issue, since to be therapeutically effective, the increase in 

SMN-fl levels should result in a comparable increase in SMN protein. The presence of such correlation 

is not obvious, since the dynamics and the half-life of mRNAs and proteins are not necessarily 

comparable. However, in our opinion, this aspect is more relevant in studies aimed at defining the 

intracellular mechanisms leading to SMN increase, rather than in the context of a clinical trial. Indeed, 

independently from transcript/protein level correlations, transcript variations may be suitable to 

identify responders and non-responders to a given treatment or may be predictive of the clinical 

outcome. The latter is another critical issue: the demonstration of correlations between clinical and 

molecular response to a given treatment are still missing. These data can be provided only by  

double-blind, placebo-controlled studies, due to the placebo effect which is very common in open label 

studies. Other aspects should be clarified before stating that SMN transcript analysis is a biomarker for 

SMA: (1) like in many other conditions, PBMCs are not target cells in SMA and it should be 

demonstrated that SMN levels in blood reflect those found in target tissues, i.e., the spinal cord but 

also skeletal muscle (to our knowledge, a single study on animal models is currently available [57]); 

(2) like SMN protein dosage, transcript analysis is not indicated for the evaluation of potential 

therapeutic compounds that do not modify SMN levels.  

4. Conclusions 

The recent move of SMA research from basic to clinical has raised the necessity to develop reliable 

clinical and biological markers to monitor the response of SMA patients to therapeutic interventions. 

While validated clinical tools have been developed, and a general consensus has been reached on the 

most suitable and reliable outcome measures, none of the biomarkers described above can be 

considered the gold standard. Indeed, while each of them presents certain positive aspects, there are 

still several crucial issues (summarized in Table 1) which should be resolved before stating that a 

biomarker for SMA is available. In our opinion, the most promising biomarkers are MUNE and SMN 

transcript quantification, in terms of feasibility, costs and availability of preliminary data. Two 

complementary approaches may provide the proof of concept needed for biomarker validation: 

preclinical studies and double-blind, placebo-controlled studies. Preclinical studies on SMA animal 
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models can provide information on some issues like correlations between transcript and protein levels 

and between target and non-target tissues, being the phenotype of murine models the most extensively 

characterized. Double-blind, placebo- controlled studies are crucial to evaluate the appropriateness of 

biomarkers, on the basis of correlations with the clinical outcome.  

References 

1. Lunn, M.R.; Wang, C.H. Spinal muscular atrophy. Lancet 2008, 371, 2120–2033. 

2. Dubowitz, V. Chaos in the classification of SMA: a possible resolution. Neuromuscul. Disord.  

1995, 5, 3–5. 

3. Lefebvre, S.; Burglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; 

Cruaud, C.; Millasseau, P.; Zeviani, M.; et al. Identification and characterization of a spinal 

muscular atrophy-determining gene. Cell 1995, 80, 155–165. 

4. Wirth, B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in 

autosomal recessive spinal muscular atrophy (SMA). Hum. Mut. 2000, 15, 228–237. 

5. Lefebvre, S.; Burlet, P.; Liu, Q.; Bertrandy, S.; Clermont, O.; Munnich, A.; Dreyfuss, G.; Melki, 

J. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 

1997, 16, 265–269. 

6. Coovert, D.D.; Le, T.T.; McAndrew, P.E. Strasswimmer, J.; Crawford, T.O.; Mendell, J.R.; 

Coulson, S.E.; Androphy, E.J.; Prior, T.W.; Burghes, A.H.M. The survival motor neuron protein 

in spinal muscular atrophy. Hum. Mol. Genet. 1997, 6, 1205–1214. 

7. Patrizi, A.L.; Tiziano, F.; Zappata, S.; Donati, A.; Neri, G.; Brahe, C. SMN protein analysis in 

fibroblast, amniocyte, and CVS cultures from spinal muscular atrophy patients and its relevance 

for diagnosis. Eur. J. Hum. Genet. 1999, 7, 301–309. 

8. Rossoll, W.; Bassell, G.J. Spinal muscular atrophy and a model for survival of motor neuron 

protein function in axonal ribonucleoprotein complexes. Results Probl. Cell Differ. 2009,  

48, 289–326. 

9. Feldkötter, M.; Schwarzer, V.; Wirth, R.; Wienker, T.I.; Wirth, B. Quantitative analysis of SMN1 

and SMN2 based on real-time LightCycler PCR: Fast and highly reliable carrier testing and 

prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet. 2002, 70, 358–368. 

10. Tiziano, F.D.; Bertini, E.; Messina, S.; Angelozzia, C.; Panec, M.; D’Amicob, A.; Alfieric, P.; 

Fioria, S.; Battinie, R.; Berardinellif, A.; et al. The Hammersmith functional score correlates with  

the SMN2 copy number: a multicentric study. Neuromuscul. Disord. 2007, 17, 400–403.  

11. Wirth, B.; Brichta, L.; Schrank, B.; Lochmüller, H.; Blick, S.; Baasner, A.; Heller, R.  

Mildly affected patients with spinal muscular atrophy are partially protected by an increased 

SMN2 copy number. Hum. Genet. 2006, 119, 422–428.  

12. Chang, J.G.; Hsieh-Li, H.M.; Jong, Y.J.; Wang, N.M.; Tsai, C.H.; Li, H. Treatment of spinal 

muscular atrophy by sodium butyrate. Proc. Natl. Acad. Sci. USA 2001, 98, 9808–9813. 

13. Brichta, L.; Hofmann, Y.; Hahnen, E.; Siebzehnrubl, F.A.; Raschke, H.; Blumcke, I.; Eyupoglu, 

I.Y.; Wirth, B. Valproic acid increases the SMN2 protein level: A well-known drug as a potential 

therapy for spinal muscular atrophy. Hum. Mol. Genet. 2003, 12, 2481–2489. 



Int. J. Mol. Sci. 2011, 12             

 

 

35

14. Sumner, C.J.; Huynh, T.N.; Markowitz, J.A.; Perhac, J.S.; Hill, B.; Coovert, D.D.; Schussler, K.; 

Chen, X.C.; Jarecki, J.; Burghes, A.H.M.; et al. Valproic acid increases SMN levels in spinal 

muscular atrophy patient cells. Ann. Neurol. 2003, 54, 647–654. 

15. Andreassi, C.; Angelozzi, C.; Tiziano, F.D.; Vitali, T.; de Vincenzi, E.; Boninsegna, A.; 

Villanova, M.; Bertini, E.; Pini, A.; Neri, G.; et al. Phenylbutyrate increases SMN expression  

in vitro: relevance for treatment of spinal muscular atrophy. Eur. J. Hum. Genet. 2004, 12, 59–65. 

16. Brahe, C.; Vitali, T.; Tiziano, F.D.; Angelozzi, C.; Pinto, A.M.; Borgo, F.; Moscato, U.; Bertini, E.; 

Mercuri, E.; Neri, G. Phenylbutyrate increases SMN gene expression in spinal muscular atrophy 

patients. Eur. J. Hum. Genet. 2005, 13, 256–259.  

17. Brichta, L.; Holker, I.; Haug, K.; Klockgether, T.; Wirth, B. In vivo activation of SMN in spinal 

muscular atrophy carriers and patients treated with valproate. Ann. Neurol. 2006, 59, 970–975. 

18. Grzeschik, S.M.; Ganta, M.; Prior, T.W.; Heavlin, W.D.; Wang, C.H. Hydroxyurea enhances 

SMN2 gene expression in spinal muscular atrophy cells. Ann. Neurol. 2005, 58, 194–202. 

19. Jarecki, J.; Chen, X.; Bernardino, A.; Coovert, D.D.; Whitney, M.; Burghes, A.; Stack, J.; Pollok, B.A. 

Diverse small-molecule modulators of SMN expression found by high-throughput compound 

screening: early leads towards a therapeutic for spinal muscular atrophy. Hum. Mol. Genet. 2005, 

14, 2003–2018. 

20. Angelozzi, C.; Borgo, F.; Tiziano, F.D.; Martella, A.; Neri, G.; Brahe, C. Salbutamol increases 

SMN mRNA and protein levels in spinal muscular atrophy cells. J. Med. Genet. 2008, 45, 29–31. 

21. Pane, M.; Staccioli, S.; Messina, S.; D’Amicoc, A.; Pelliccioniad, M.; Mazzonea, E.S.; Cuttinie, 

M.; Alfieria, P.; Battinif, R.; Maing, M.; et al. Daily salbutamol in young patients with SMA type 

II. Neuromuscul. Disord. 2008, 18, 536–540.  

22. Mercuri, E.; Bertini, E.; Messina, S.; Solari, A.; D’Amico, A.; Angelozzi, C.; Battini, R.; 

Berardinelli, A.; Boffi, P.; Bruno, C.; et al. Randomized, double-blind, placebo-controlled trial of 

phenylbutyrate in spinal muscular atrophy. Neurology 2007, 68, 51–55.  

23. Weihl, C.C.; Connolly, A.M.; Pestronk, A. Valproate may improve strength and function in 

patients with type III/IV spinal muscle atrophy. Neurology 2006, 67, 500–501. 

24. Liang, W.C.; Yuo C.Y.; Chang, J.G.; Chen, Y.C.; Chang, Y.F.; Wang, H.Y.; Ju, Y.H.;  

Chiou, S.S.; Jong, Y.J. The effect of hydroxyurea in spinal muscular atrophy cells and patients.  

J. Neurol. Sci. 2008, 268, 87–94. 

25. Tiziano, F.D.; Lomastro, R.; Pinto, A.M.; Messina, S.; D’Amico, A.; Fiori, S.; Angelozzi, C.; 

Pane, M.; Mercuri, E.; Bertini, E.; et al. Salbutamol increases SMN transcript levels in leukocytes 

of spinal muscular atrophy patients: relevance for clinical trial design. J. Med. Genet. 2010, 47, 

856–858. 

26. Hua, Y.; Sahashi, K.; Hung, G.; Rigo, F.; Passini, M.A.; Bennett, C.F.; Krainer, A.R.  

Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse 

model. Genes Dev. 2010, 24, 1634–1644.  

27. Williams, J.H.; Schray, R.C.; Patterson, C.A.; Ayitey, S.O.; Tallent, M.K.; Lutz, G.J. 

Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves 

phenotype in a mouse model of spinal muscular atrophy. J. Neurosci. 2009, 29, 7633–7638.  



Int. J. Mol. Sci. 2011, 12             

 

 

36

28. Singh, N.N.; Shishimorova, M.; Cao, L.C.; Gangwani, L.; Singh, R.N. A short antisense 

oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal 

muscular atrophy. RNA Biol. 2009, 6, 341–350.  

29. Russman, B.S.; Iannaccone, S.T.; Samaha, F.J. A phase 1 trial of riluzole in spinal muscular 

atrophy. Arch. Neurol. 2003, 60, 1601–1603. 

30. Haddad, H.; Cifuentes-Diaz, C.; Miroglio, A.; Roblot, N.; Joshi, V.; Melki, J. Riluzole attenuates 

spinal muscular atrophy disease progression in a mouse model. Muscle Nerve 2003, 28, 432–437.  

31. Merlini, L.; Solari, A.; Vita, G.; Bertini, E.; Minetti, C.; Mongini, T.; Mazzoni, E.; Angelini, C.; 

Morandi, L. Role of gabapentin in spinal muscular atrophy: results of a multicenter, randomized 

Italian study. J. Child Neurol. 2003, 18, 537–541.  

32. Swboda, K.J.; Scott, C.B.; Reyna, S.P.; Prior, T.W.; LaSalle, B.; Sorenson, S.L.; Wood, J.;  

Acsadi, G.; Crawford, T.O.; Kissel, J.T.; et al. Phase II open label study of valproic acid in spinal 

muscular atrophy. PLoS One 2009, 4, e5268.  

33. Swoboda, K.J.; Scott, C.B.; Crawford, T.O.; Simard, L.R.; Reyna, S.P.; Krosschell, K.J. Acsadi, G.; 

Elsheik, B.; Schroth, M.K.; D’Anjou, G.; et al. Project Cure Spinal Muscular Atrophy 

Investigators Network. SMA CARNI-VAL trial part I: double-blind, randomized,  

placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. PLoS One 

2010, 5, e12140.  

34. Kaufmann, P.; Muntoni, F. Issues in SMA clinical trial design. The International Coordinating 

Committee (ICC) for SMA Subcommittee on SMA Clinical Trial Design. Neuromuscul. Disord. 

2007, 17, 499–505. 

35. Lomen-Hoerth, C.; Slawnych, M.P. Statistical motor unit number estimation: from theory to 

practice. Muscle Nerve 2003, 28, 263–272.  

36. Slawnych, M.P.; Laszlo, C.A.; Hershler, C. A review of techniques employed to estimate the 

number of motor units in a muscle. Muscle Nerve 1990, 13, 1050–1064.  

37. Galea ,V.; Fehlings, D.; Kirsch, S.; McComas, A. Depletion and sizes of motor units in spinal 

muscular atrophy. Muscle Nerve 2001, 24, 1168–1172.  

38. Bromberg, M.B.; Swoboda, K.J.; Lawson, V.H. Counting motor units in chronic motor 

neuropathies. Exp. Neurol. 2003, 184, 53–57.  

39. Swoboda, K.J.; Prior, T.W.; Scott, C.B.; McNaught, T.P.; Wride, M.C.; Reyna, S.P.; Bromberg, M.B. 

Natural history of denervation in SMA: relation to age, SMN2 copy number, and function.  

Ann. Neurol. 2005, 57, 704–712. 

40. Oskoui, M.; Levy, G.; Garland, C.J.; Gray, J.M.; O’Hagen, J.; de Vivo, D.C.; Kaufmann, P.  

The changing natural history of spinal muscular atrophy type І. Neurology 2007, 69, 1931–1936.  

41. Zerres, K.; Rudnik-Schoneborn, S.; Forrest, E.; Lusakowska, A.; Borkowska, J.;  

Hausmanowa-Petrusewicz, I. A collaborative study on the natural history of childhood and juvenile 

onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J. Neurol. Sci. 1997, 

146, 67–72. 

42. Bono, R.; Inverno, M.; Botteon, G.; Iotti, E.; Estienne, M.; Berardinelli, A.; Lanzi, G.; Fedrizzi, E. 

Prospective study of gross motor development in children with SMA type II. Ital. J. Neurol. Sci. 

1995, 16, 223–230. 



Int. J. Mol. Sci. 2011, 12             

 

 

37

43. Deymeer, F.; Serdaroglu, P.; Parman, Y.; Poda, M. Natural history of SMA IIIb: Muscle strength 

decreases in a predictable sequence and magnitude. Neurology 2008, 71, 644–649. 

44. Monani, U.R.; Coovert, D.D.; Burghes, A.H. Animal models of spinal muscular atrophy. Hum. 

Mol. Genet. 2000, 9, 2451–2457. 

45. Crabtree, N.J.; Kibirige, M.S.; Fordham, J.N.; Banks, L.M.; Muntoni, F.; Chinn, D.; Boivin, C.M.; 

Shaw, N.J. The relationship between lean body mass and bone mineral content in paediatric health 

and disease. Bone 2004, 35, 965–972. 

46. Khatri, I.A.; Chaudhry, U.S.; Seikaly, M.G.; Browne, R.H.; Iannaccone, S.T. Low bone mineral 

density in spinal muscular atrophy. Neuromuscul. Disord. 2008, 10, 11–17. 

47. Kinali, M.; Banks, L.M.; Mercuri, E.; Manzur, A.Y.; Muntoni, F. Bone mineral density in a 

paediatric spinal muscular atrophy population. Neuropediatrics 2004, 35, 325–328. 

48. Shanmugarajan, S.; Tsuruga, E.; Swoboda, K.J.; Maria, B.L.; Ries, W.L.; Reddy, S.V.  

Bone loss in survival motor neuron (Smn(−/−) SMN2) genetic mouse model of spinal muscular 

atrophy. J. Pathol. 2009, 219, 52–60. 

49. Kolb, S.J.; Gubitz, A.K.; Olszewski, R.F., Jr.; Ottinger, E.; Sumner, C.J.; Fischbeck, K.H.;  

Dreyfuss, G. A novel cell immunoassay to measure survival of motor neurons protein in blood 

cells. BMC Neurol. 2006, 6, 6. 

50. Thi Man, N.; Humphrey, E.; Lam, L.T.; Fuller, H.R.; Lynch, T.A.; Sewry, C.A.; Goodwin, P.R.; 

MacKenzie, A.E.; Morris, G.E. A two-site ELISA can quantify uperegulation of SMN protein by 

drugs for spinal muscular atrophy. Neurology 2008, 22, 1757–1763. 

51. Piepers, S.; Cobben, J.M.; Sodaar, P.; Jansen, M.D.; Wadman, R.I.; Meester-Delver, A.;  

Poll-The, B.T.; Lemmink, H.H.; Wokke. J.H.; van der Pol, W.L.; van den Berg, L.H. 

Quantification of SMN protein in leucocytes from spinal muscular atrophy patients: Effects of 

treatment with valproic acid. J. Neurol. Neurosurg. Psychiatry 2010, 

doi:10.1136/jnnp.2009.200253. 

52. Sumner, C.J.; Kolb, S.J.; Harmison, G.G.; Jeffries, N.O.; Schadt, K.; Finkel, R.S.; Dreyfuss, G.; 

Fischbeck, K.H. SMN mRNA and protein levels in peripheral blood. Neurology 2006, 66,  

1067–1073. 

53. Simard, L.R.; Bélanger, M.C.; Morissette, S.; Wride, M.; Prior, T.W.; Swoboda, K.J.  

Preclinical validation of a multiplex real-time assay to quantify SMN mRNA in patients with SMA. 

Neurology 2007, 68, 451–456. 

54. Vezain, M.; Saugier-Veber, P.; Melki, J.; Toutain, A.; Bieth, E.; Husson, M.; Pedespan, J-M.; 

Viollet, L.; Pénisson-Besnier, I.; Fehrenbach, S.; et al. A sensitive assay for measuring SMN 

mRNA levels in peripheral blood and in muscle samples of patients affected with spinal muscular 

atrophy. Eur. J. Hum. Genet. 2007, 15, 1054–1062. 

55. Tiziano, F.D.; Pinto, A.M.; Fiori, S.; Lomastro, R.; Messina, S.; Bruno, C.; Pini. A.; Pane, M.; 

D’Amico, A.; Ghezzo, A.; Bertini, E.; Mercuri, E.; Neri, G.; Brahe, C. SMN transcript levels  

in leukocytes of SMA patients determined by absolute real time PCR. Eur. J. Hum. Genet.  

2010, 18, 52–58. 



Int. J. Mol. Sci. 2011, 12             

 

 

38

56. Tricarico, C.; Pinzani, P.; Bianchi, S.; Paglieranib, M.; Distantec, V.; Pazzaglia, M.; Bustin, S.A.; 

Orlandoa, C. Quantitative real-time reverse transcription polymerase chain reaction: 

normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. 

Anal. Biochem. 2002, 309, 293–300. 

57. Tsai, L.K.; Yang, C.C.; Ting, C.H.; Su, Y.N.; Hwu, W.L.; Li, H. Correlation of survival motor 

neuron expression in leukocytes and spinal cord in spinal muscular atrophy. J. Pediatr. 2009, 154, 

303–305. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


