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Abstract: Early detection of infection is very important for efficient management of 

Mycosphaerella graminicola leaf blotch. To monitor and quantify the occurrence of this 

fungus during the growing season, a diagnostic method based on real-time PCR was 

developed. Standard and real-time PCR assays were developed using SYBR Green 

chemistry to quantify M. graminicola in vitro or in wheat samples. Microsatellite 

dinucleotide specific-primers were designed based on microsatellite repeats of sequences 

present in the genome of M. graminicola. Specificity was checked by analyzing DNA of 

55 M. graminicola isolates obtained from different geographical origins. The method 

appears to be highly specific for detecting M. graminicola; no fluorescent signals were 

observed from 14 other closely related taxa. Primer (CT) 7 G amplified a specific amplicon 

of 570 bp from all M. graminicola isolates. The primers did not amplify DNA extracted 

from 14 other fungal species. The approximate melting temperature (Tm) of the (CT) 7 G 

primer was 84.2 °C. The detection limit of the real-time PCR assay with the primer sets 

(CT) 7 G is 10 fg/25 µL, as compared to 10 pg/25 µL using conventional PCR technology. 
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From symptomless leaves, a PCR fragment could be generated two days after inoculation. 

Both conventional and real-time PCR could successfully detect the fungus from artificially 

inoculated wheat leaves. However, real-time PCR appeared much more sensitive than 

conventional PCR. The developed quantitative real-time PCR method proved to be rapid, 

sensitive, specific, cost-effective and reliable for the identification and quantification of 

M. graminicola in wheat. 

Keywords: Septoria tritici blotch; microsatellite; wheat; Dothidiomycete;  

molecular diagnostics 

 

1. Introduction 

Septoria tritici blotch (STB) of wheat (Triticum aestivum L.), caused by the fungal pathogen 

Mycosphaerella graminicola (anamorph: Septoria tritici), occurs in all wheat-growing areas  

world-wide, with an increasing economic impact over the last decades [1]. The causal agent, S. tritici, 

was first described by Desmazières [2]. Sanderson identified the ascomycete M. graminicola as the 

sexual stage (teleomorph) of S. tritici [3,4]. The origin of M. graminicola is most likely the Middle 

East [5]. M. graminicola is developing rapidly as a model for fungi in the order Dothideales [6,7]. 

Presently the fungus represents a major economic concern for global wheat production [8].  

Polymerase chain reaction (PCR) methods that record fluorescence in real time when samples pass 

photo detection diodes have been described. This can be achieved by using double-stranded  

DNA-specific dyes, such as SYBR green (SG). The sensitivity of this method is similar or better than 

other PCR methods [2]. Recently, PCR-based real-time quantitative assays have been developed for 

the detection of a variety of plant pathogens [9–11], enabling high throughput diagnostics of plant 

pathogen infection in a relatively short time.  

Specific PCR tests have been developed for identification of M. graminicola in wheat [12–15]. A 

PCR system in a fluorescent amplification-based specific hybridization (FLASH) format was 

developed for the detection and identification of M. graminicola [16]. Microsatellites and repeat 

sequence polymorphisms have been studied previously using real-time PCR chemistries such as 

hybridization probes [17,18]. Microsatellites have been used in several epidemiological studies of 

phytopathogenic fungi [19,20]. 

Our reasoning for testing microsatellites as a diagnostic tool for M. graminicola is based on the 

unique characteristics of this class of markers. Microsatellites are short tandem repeats of a simple 

nucleotide sequence, inherited in a Mendelian fashion, and are evenly distributed in the genome. 

Although we could not test every potential non-target, our assumption is that microsatellites are 

usually species-specific [21,22]. Also, presymptomatic and accurate diagnosis of viable pathogen 

structures in infected wheat plants is desirable for determining latent periods of epidemics and for 

timely treatments with fungicides. 

Conventional methods to detect and identify fungal pathogens in crop plants are time consuming, 

laborious, and require skilled taxonomical expertise [23,24]. Therefore, a PCR-based assay was 

developed with M. graminicola-specific primers designed on the repeat motif. The objective of this 
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study was to develop a quantitative PCR (qPCR) assay based on the detection of the SYBR Green dye 

for the quantitative assessment of M. graminicola in wheat tissues.  

2. Experimental Section  

2.1. Fungal Isolates and Growth Conditions 

Fifty-five isolates of M. graminicola and other fungal species used in the current study are listed in 

Table 1. Isolates used for DNA isolation were grown on yeast glucose broth (YG; 1% yeast extract, 

3% glucose) at 18 °C by shaking for five days on an orbital shaker at a speed of 120 rpm. Spores were 

collected from YG by centrifugation and washed three times with sterile water and subsequently once 

with 0.6 M MgSO4 (pH 5.8). For storage for three-to-six months, the M. graminicola isolates were 

cultured on Malt Yeast Agar (MYA) plates then stored at 4 °C or –80 °C in PD broth medium 

supplemented with 10% glycerol [14]. 

Table 1. List of Mycosphaerella graminicola isolates and isolates of other fungal species 

used to evaluate the specificity of the primers developed for identification and detection of 

M. graminicola. 

Isolate 

Code 
Fungal species Host Origin 

PCR 

specificitya 

Isolate 

Code 
Fungal species Host Origin 

PCR 

specificitya 

K-Or-1 M. graminicola Wheat Germany ● H-Ba-103 M. graminicola Wheat Germany ● 

K-Or-30 M. graminicola Wheat Germany ● H-Ba-104 M. graminicola Wheat Germany ● 

K-Or-38 M. graminicola Wheat Germany ● H-Ba-116 M. graminicola Wheat Germany ● 

K-Or-44 M. graminicola Wheat Germany ● CH1 M. graminicola Wheat Switzerland ● 

OK-102 M. graminicola Wheat Germany ● CH2 M. graminicola Wheat Switzerland ● 

OK-108 M. graminicola Wheat Germany ● CH3 M. graminicola Wheat Switzerland ● 

OK-109 M. graminicola Wheat Germany ● CH4 M. graminicola Wheat Switzerland ● 

OK-112 M. graminicola Wheat Germany ● CH5 M. graminicola Wheat Switzerland ● 

OK-120 M. graminicola Wheat Germany ● FCH1 M. graminicola Wheat France ● 

K-Ba-10 M. graminicola Wheat Germany ● FCH2 M. graminicola Wheat France ● 

K-Ba-20 M. graminicola Wheat Germany ● FC1 M. graminicola Wheat France ● 

K-Ba-30 M. graminicola Wheat Germany ● FC2 M. graminicola Wheat France ● 

K-Ba-40 M. graminicola Wheat Germany ● FN4 M. graminicola Wheat France ● 

K-Ba-60 M. graminicola Wheat Germany ● FN5 M. graminicola Wheat France ● 

G-Or-1 M. graminicola Wheat Germany ● GBW1 M. graminicola Wheat England ● 

G-Or-6 M. graminicola Wheat Germany ● GBW2 M. graminicola Wheat England ● 

G-Or-8 M. graminicola Wheat Germany ● GBE2 M. graminicola Wheat England ● 

G-Or-88 M. graminicola Wheat Germany ● GBE4 M. graminicola Wheat England ● 

G-or-98 M. graminicola Wheat Germany ● GBN1 M. graminicola Wheat England ● 

G-Or-102 M. graminicola Wheat Germany ● GBN2 M. graminicola Wheat England ● 

M-or-1 M. graminicola Wheat Germany ● FOV 
Fusarium oxysporum 

 f. sp. vasinfectum 
Cotton Egypt ○ 

M-or-4 M. graminicola Wheat Germany ● FS Fusarium solani Cotton Egypt ○ 

M-Or-8 M. graminicola Wheat Germany ● FG Fusarium germanium Wheat Germany ○ 

M-Or-82 M. graminicola Wheat Germany ● FP Fusarium poae Wheat Germany ○ 
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Table 1. Cont. 

Isolate 

Code 
Fungal species Host Origin 

PCR 

specificitya 

Isolate 

Code 
Fungal species Host Origin 

PCR 

specificitya 

M-Or-98 M. graminicola Wheat Germany ● MP 
Macrophomina 

phaseolina 
Cotton Egypt ○ 

M-or-102 M. graminicola Wheat Germany ● SP Septoria passerinii Barely USA ○ 

L-Or-1 M. graminicola Wheat Germany ● TH 
Trichoderma 

harzianum 
Cotton Egypt ○ 

L-Or-8 M. graminicola Wheat Germany ● SN 
Stagonospora 

nodorum 
Wheat Germany ○ 

L-Or-84 M. graminicola Wheat Germany ● PT Pyernophora teres Wheat Germany ○ 

L-Ba-1 M. graminicola Wheat Germany ● PTR 
Pyernophora  

tritici-repentis 
Wheat Germany ○ 

L-Ba-8 M. graminicola Wheat Germany ● PH 
Pseduosercosporella 

 heropotrichoides 
Wheat Germany ○ 

L-Ba-110 M. graminicola Wheat Germany ● Pen Pencillium sp. Unknown Egypt ○ 

H-Or-1 M. graminicola Wheat Germany ● Alt Alternaria sp. Unknown Egypt ○ 

H-Or-8 M. graminicola Wheat Germany ● CB Cercospora beticola Suger beet Germany ○ 

H-Or-90 M. graminicola Wheat Germany ●  

aThe presence or absence of species-specific amplicon is indicated by a positive (●) or negative (○) for each set of primers. 

2.2. Artificial Inoculation of Wheat Plants and DNA Isolation  

Seeds of cultivar Ritmo (a highly susceptible wheat cultivar) were germinated on filter paper in the 

dark at 25 °C. After 24 h, the seeds were placed at 5 °C for 48 h followed by incubation at 25 °C for 

24 h. The plants were then transferred to a growth chamber at 19 °C, with a day/night regime of  

16 h/8 h. Wheat seedlings were inoculated by placing 10 µL of M. graminicola pycnidiospore 

suspension (containing 106 spores) on each emerged leaf (leaf 2). Control plants were treated with 

distilled water. The inoculated plants were kept in a mist chamber for 72 h and then returned to the 

growth chamber at 21 °C (day)/16 °C (night) temperatures with a day/night regime of 16 h/8 h. 

Samples for PCR analysis were collected at 0, 2, 6, 8, 10, 12, 14, 16, 18 and 20 days after inoculation. 

DNA was extracted from wheat leaves according to procedures described by Guo et al. [15]. 

2.3. DNA Isolation 

A modification of the traditional sodium dodecyl sulfate (SDS) extraction procedure was  

adopted [1]. Fungal mats (100 mg) were harvested and homogenized in 400 µL of sterile salt 

homogenizing buffer (200 mM Tris-HCl, pH 8.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS). Then, 

6 µL of RNase A (final concentration 20 mg mL–1) was added and mixed. The samples were incubated 

at 65 °C for 10 min, after which 130 µL of 3 M sodium acetate, pH 5.2, was added to each sample. 

Samples were mixed in a Vortex for 30 s at maximum speed, and incubated at –20 °C for 10 min. The 

lysate was centrifuged at 13,000 rpm at 4 °C for 15 min. The supernatant was transferred to fresh 

tubes. An equal volume of isopropanol was added to each sample, mixed, and samples were incubated 

at −20 °C for 10 min. Samples were then centrifuged for 20 min at 4 °C, at 6,000 rpm. DNA pellets 
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were washed twice with 700 µL of washing solution (100% and 70% ethanol, respectively). The DNA 

pellets were subsequently air-dried in an oven at 40 °C for at least 10 min. The resultant DNA pellet 

was then resuspended in 100 µL of 1 × TE (10 mM Tris-HCl, 1 mM EDTA) buffer, pH 8.0.  

2.4. Microsatellite Selection and Design of PCR Primers  

Microsatellites of varying length and type (di or trinucleotide) were selected from those identified 

by Karaoglu et al. [25], which are listed at http://www.mmrl.med.usyd.edu.au/an_contig.html. 

Microsatellite dinucleotide specific-primers were designed [(CTC TCT CTC TCT CT) G] based on 

microsatellite repeat sequence selected from the finished genome sequence of isolate IPO323 of  

M. graminicola (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html). 

2.5. Microsatellite-Primed PCR (MSP-PCR) 

PCR mixtures contained 2 mM deoxynucleoside triphosphates, 10 pmol concentrations of primer; 

0.2 U of Taq polymerase (Biolab, England), 1 × buffer (Promega, Mannheim, Germany), 1.5 mM 

MgCl2 and 50 ng of template DNA in a total volume of 25 μL. The reactions were carried out in a 

PTC-200 Thermocycler (MJ Research, Waltham, USA) as follows: 1 cycle of 2 min at 94 °C followed 

by 40 cycles of denaturation at 94 °C for 1 min, annealing at 55 °C for 90 s and extension at 72 °C for 

2 min. The thermal profile ended with a final extension at 72 °C for 7 min. All PCR amplification 

products were analyzed by agarose gel (1.5%) electrophoresis [26]. 

2.6. Light Cycler PCR (LC-PCR) 

Real-time PCR reactions were carried out with a LightCycler instrument using the QuantiTect™ 

SYBR® Green PCR Kit (Qiagen, Hilden, Germany) with 0.3 μM of each primer, 5 mM MgCl2 and 

5 μL of DNA template. DNA was replaced by sterile water in the negative control. The program used 

for real time PCR was 10 min at 95 °C, followed by 35 cycles of 15 s denaturation at 95 °C, 30 s 

annealing at 60 °C, 30 s elongation at 72 °C. Samples were placed into a glass capillary, capped, 

centrifuged for a few seconds in a micro-centrifuge using appropriate adapters, and then placed into 

the LightCycler rotor. In addition, the PCR products were recovered from the capillaries and analyzed 

by agarose gel (1.5%) electrophoresis and stained with ethidium bromide [27]. 

2.7. Specificities and Sensitivities of PCR Amplifications 

The specificities of the gene-specific primers designed in this study were tested in PCR 

amplifications using purified genomic DNA from various fungal species as template. To assess the 

sensitivity of the detection of M. graminicola using the designed primers, DNA dilution series 

containing 10 ng to 50 fg of DNA from selected isolates were subjected to conventional, and real-time 

PCR analyses, respectively. 
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3. Results 

3.1. Specificity and Sensitivity of the PCR Assays 

The specificity of the real-time PCR assay was tested with template DNA extracted from the 55 

isolates of M. graminicola and other fungal species that are listed in Table 1. Dinucleotide  

specific-primer amplified a single fragment from total genomic DNA of M. graminicola (Figure 1) and 

its inoculated leaves. There was no amplification obtained in healthy plants (HP) or the other fungal 

pathogens tested (Stagonospora nodorum (SN), Pseudocercosporella herpotrichoides (PT)) (Figure 2). 

The (CT) 7 G primer amplified a unique DNA fragment of approximately 570 bp from 

M. graminicola, whereas no amplification was achieved with DNA isolated from other fungal species. 

Using DNA extracted from M. graminicola cultures, the detection limit was 100 pg/µL with 

conventional PCR, whereas the detection limit was 50 fg/µL by real-time PCR, thus the real-time PCR 

assay was 20-fold more sensitive than conventional PCR (Figure 3). 

Figure 1. Polymerase chain reaction (PCR) amplification of genomic DNA isolated from 

55 isolates of M. graminicola using primer pair (CT) C9 showing a amplification product 

of 570 bp. Lane M, 100 bp DNA marker; arrows indicate the 1000 and 500 bp DNA 

marker. 

 

Figure 2. Polymerase chain reaction (PCR) amplification performed to assess specificity 

of the primer pair (CT) C9. A PCR fragment of 570 bp could only be amplified from  

Lanes 1–8 of genomic DNA from different isolates of Mycosphaerella graminicola, lane 9, 

DNA from Stagonospora nodorum (SN), lane 10, DNA from Pseudocercosporella 

herpotrichoides (PT), lane 11, healthy plant (HP), and lane 12–13, plants infected by 

M. graminicola (IP1 and IP2). Lane M, 100 bp DNA marker. 
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Figure 3. Comparison of the sensitivity of conventional (A) and real-time PCR (B), using 

different concentrations of Mycosphaerella graminicola DNA. For both (A) and (B), Lane 

1, 10 ng; lane 2, 1 ng; lane 3, 100 pg; lane 4, 10 pg; lane 5,1 pg; lane 6, 100 fg;  

lane 7, 50 fg. Lane M, 100 bp DNA marker. 

 

3.2. Melt Curve Analysis 

In the assay, SYBR Green I was used as the fluorescent dye enabling real-time detection of PCR 

products. Characterization of the amplicons was achieved by melting point analysis 84 ± 0.2 °C. 

Nonspecific products such as primer dimers could readily be distinguished from PCR products by their 

lower melting points. PCR reactions performed on 50 ng of M. graminicola DNA with primers 

targeted at fungal sequences led to similar Ct and dissociation curves compared to a control devoid of 

DNA matrix, showing the specificity of fungal quantification (Figure 2). The system enables a  

35-cycle PCR with 35 samples to be completed in 45 min, including quantification and identification 

of the product. Typical results from the probe melt curve analysis are shown in Figure 4. All products 

were subjected to analytical gel electrophoresis to confirm the 570 bp amplicon size. 

Figure 4. Amplification plot of fungal DNA from Mycosphaerella graminicola and other 

fungal species, as well as in symptomless wheat tissue and a non-template negative control 

by using a LightCycler instrument and (CT) C9 primer pair. 
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3.3. Quantification of M. graminicola in Infected Plants 

Artificially M. graminicola-inoculated asymptomatic wheat leaves were collected and fungal DNA 

was detected with conventional PCR and real-time PCR 0, 2, 6, 8, 10, 12, 14, 16, 18 and 20 days post 

inoculation. Inoculated wheat leaves showed the 750-bp fragment that is diagnostic for M. graminicola 

infections after PCR with dinucleotide specific primers. No PCR products were generated with DNA 

isolated from Fusarium graminearum-inoculated or Pseudocercosporella herpotrichoides-inoculated 

wheat plants or from DNA isolated from healthy wheat tissue. A clear single DNA fragment was 

amplified from the samples taken on day 0, 2, 6, 8, 10, 12, 14, 16, 18 and 20 after inoculation  

(Figure 5, lanes 1–10). From inoculated wheat leaves harvested at day 0, although thoroughly washed 

with water prior to PCR, a clear fragment was still present representing the inoculated fungus. The 

intensity of the amplified DNA fragment increased significantly at 10 days after inoculation. Between 

10 and 20 days after inoculation, the intensity of the amplified fragment increased more than five-fold. 

As mentioned before, the dinucleotide-specific primers can detect the pathogen from 10 pg of DNA 

isolated from infected leaf tissue in conventional PCR assays and from 50 fg in real-time PCR assays; 

the higher sensitivity offered by the real-time PCR assay makes it more reliable for detecting the 

fungus during the latent stage of infection. The sensitivity of the method would allow the 

quantification of fungal growth in different plant tissues during the progress of infection. 

Figure 5. Polymerase chain reaction amplification performed to diagnose Mycosphaerella 

graminicola in artificially inoculated wheat leaves by (CT) C9 primer pair (product 

570 bp). Lanes 1 to 10, DNA from inoculated leaves sampled at 0, 2, 6, 8, 10, 12, 14, 16, 

18 and 20 days post inoculation with M. graminicola; lanes 11–12, DNA from healthy 

plants; lane 13, DNA from leaves inoculated with Pseudocercosporella herpotrichoides; 

lane 14, leaves inoculated d with Fusarium graminearum. Lane M, 100 bp DNA marker. 

 

4. Discussion 

Microsatellites have been used as genetic markers in numerous DNA and PCR fingerprinting trials 

for strain typing of a variety of filamentous fungi and yeasts without prior knowledge of their 

abundance and distribution in the investigated fungal genomes [21,28,29]. Here, we describe the use of 

conventional and real-time PCR using fluorescent SYBR Green I dye to quantify M. graminicola 

present in wheat tissue.  
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The SYBR Green dye has no sequence specificity and therefore does not require the design of 

specific fragments complementary to the target DNA. It can be used to detect any double-stranded (ds) 

DNA PCR product [30]. In the current research, positive amplification was conducted under a melting 

temperature of 84 °C. Therefore, non-specific amplification and primer dimers could easily be 

distinguished from the authentic amplicon pool. The values of the cycle threshold (Ct) linearly 

correlated with the concentration of the target DNA, indicating that the method is suitable for 

qualitative and quantitative assay.  

Specific dinucleotide primers amplified a single PCR fragment of 570 bp specific for isolates of 

M. graminicola, but no fragment was generated from 14 other fungal species belonging to 13 different 

genera. The primers amplified similar-sized fragments from fungus culture grown in vitro and wheat 

leaves inoculated with M. graminicola. This primer pairs allowed a reliable DNA quantification at 

concentrations as low as 50 fg, which is very sensitive, as reported by other researchers [12,14,15]. 

Real-time PCR was found to be more sensitive than the standard amplification procedure, and a 

successful amplification was obtained with M. graminicola DNA. Dinucleotide and trinucleotide 

repeats have higher probabilities of polymorphism than mononucleotide repeats [31]. The visual 

diagnostics of disease is difficult due to the presence of different Mycosphaerella species within one 

field and even on one plant, and the difficulty in distinguishing symptoms caused by biotic and abiotic 

stress. Identification of Mycosphaerella species based on morphology and presence of fruiting bodies 

and conidia is difficult due to the considerable morphological similarity of this fungus with other 

closely related fungi [16]. 

Here we compared conventional PCR and real-time PCR assays, which enabled us to detect the 

pathogen on asymptomatic plants collected two days after artificial inoculation. It has also been shown 

that this assay can be used to monitor fungal development in wheat tissue during the course of 

infection, even the starting inoculum could be detected immediately after washing of the  

inoculated leaves. 

Fraaije et al. [12] did not detect an exponential increase in biomass until 14 days post inoculation 

using the PCR/PicoGreen assay. In our case using SYBR Green, we observed a significant increase at 

10 days after inoculation. Real-time PCR was more sensitive than conventional PCR and can be used 

for routine quantitative analysis of M. graminicola in wheat tissue to trace new infections. This will be 

especially important when the target DNA concentration is low or PCR inhibitory substances are 

present [32].  

Biomass accumulation of avirulent isolates of M. graminicola on resistant hosts could also be 

assessed by TaqMan® quantitative PCR using mating-type-specific probe and primer combinations, 

and results showed that the biomass of avirulent isolates on resistant host species and cultivars was 

either maintained or increased over time [33].  

Accurate, rapid, and early detection of M. graminicola on wheat will assist the development of 

sustainable disease control and management. 
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