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Abstract: The aggregation of the amyloid-β-peptide (AβP) into well-ordered fibrils has 

been considered as the key pathological marker of Alzheimer‘s disease. Molecular 

attributes related to the specific binding interactions, covalently and non-covalently, of a 

library of compounds targeting of conformational scaffolds were computed employing 

static lattice atomistic simulations and array constructions. A combinatorial approach using 

isobolographic analysis was stochastically modeled employing Artificial Neural Networks 

and a Design of Experiments approach, namely an orthogonal Face-Centered Central 

Composite Design for small molecules, such as curcumin and glycosylated nornicotine 

exhibiting concentration-dependent behavior on modulating AβP aggregation and 

oligomerization. This work provides a mathematical and in silico approach that constitutes 

a new frontier in providing neuroscientists with a template for in vitro and in vivo 

experimentation. In future this could potentially allow neuroscientists to adopt this in silico 

approach for the development of novel therapeutic interventions in the neuroprotection and 

OPEN ACCESS 



Int. J. Mol. Sci. 2011, 12             

 

 

695 

neurotherapy of Alzheimer‘s disease. In addition, the neuroprotective entities identified in 

this study may also be valuable in this regard. 

Keywords: amyloid-β protein; Alzheimer‘s disease; molecular mechanics; artificial neural 

networks; curcumin; nicotine; isobolographic analysis; docking; central composite design; 

constraint optimization; ligand-protein complexes; synergism 

 

1. Introduction 

“Neuroscientists are pretty sure they know what causes Alzheimer’s disease, but their 

theory has not yet given rise to effective drugs.”—Alison Abbott, The Plaque Plan [1] 

Neurodegenerative disorders (NDs) are sporadic and/or familial and characterized by the persistent and 

progressive loss of neuronal subtypes [2] and includes mainly Alzheimer's disease (degeneration of basal 

forebrain cholinergic neurons), Parkinson's disease (degeneration of nigro-striatal dopaminergic neurons) 

and Huntington‘s disease (striatal, hypothalamic and cortical degeneration) [2,3], stroke (necrotic infarcts 

coupled with inflammatory gliosis), Amyotrophic Lateral Sclerosis (ALS) (upper and lower motor 

neuronal degeneration and atrophy), multiple sclerosis (lesions and plaques) and  

HIV-1-associated neurocognitive disorders [2,4]. NDs may impact various brain functions, such as 

movement (as in Parkinson‘s disease and ALS) or memory and cognition (as in Alzheimer‘s disease). 

Neuro-regenerative therapies include neuroprotection, nuritogenation and neurorestoration of neuronal 

subtypes especially with traumatic brain and spinal cord injuries. 

Alzheimer‘s disease (AD) is a progressive neurodegenerative disorder, encompassing the 

deterioration of cognitive functions and behavioral changes, characterized by the aggregation of 

amyloid β-protein (Aβ) into fibrillar amyloid plaques in selected areas of the brain with the lipid-carrier 

protein apolipoprotein E (apoE), the microtubule associated protein tau, and the presynaptic protein α-

synuclein [2,5–7]. High levels of fibrillary Aβ, the main constituent of senile plaques, are deposited in 

the AD brain that results in the loss of synapses, neurons and impairment of neuronal function [8]. Aβ 

is derived from the amyloid precursor protein through sequential protein cleavage by aspartyl protease, 

β-secretase and presenilin-dependent β-secretase triggering a cascade of events such as neurotoxicity, 

oxidative damage, and inflammation that contributes to the progression of AD. Aβ fibrillization 

involves formation of dimers and small oligomers followed by growth into protofibrils and fibrils via a 

complex multistep-nucleated polymerization that eventually forms Aβ plaques or deposits (Figure 1) 

[9]. 

Apart from Aβ fibrils, smaller species of aggregated Aβ, known as Aβ oligomers, also represent the 

primary toxic species in AD [10]. Anti-amyloidogenic therapy primarily involves the reduction of Aβ 

production, inhibiting secretase, increasing Aβ clearance, or blocking Aβ aggregation (with antibodies, 

peptides, or small organic molecules that selectively bind and inhibit Aβ aggregate and fibril 

formation) via inhibition of the nucleation-dependent polymerization model [9,11]. Therefore, the use 

of small molecules and peptides that can induce the Aβ peptide to fold into an α-helical or random, 

extended chain structure and the detrimental β-sheet structures to form insoluble amyloids may offer a 
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promising alternative to the pharmacotherapy for AD as inhibitors of Aβ oligomerization [12]. Apart 

from the dose-dependent inhibition of the formation of Aβ fibrils from Aβ40 and Aβ42 and their 

extensions, destabilization of preformed Aβ fibrils is also an interesting therapeutic intervention [13]. 

A number of small molecules have been reported to inhibit Aβ fibrillogenesis or to modulate Aβ 

fibrillization thereby inhibiting Aβ-mediated cellular toxicity resulting from soluble amyloid oligomers 

or prefibrillar aggregation intermediates [14,15]. 

Figure 1. Hierarchical self-assembly of amyloid β-protein (a) amyloid-β protein oligomer; 

(b) proto-fibril; (c) fibril; and (d) plaque deposit. 

 

Drug discovery, modeling and delivery techniques have benefitted profoundly by the adoption of 

computational methods that assist in the design of new therapeutic strategies in a more rapid and 

intricate manner. In silico drug modeling that was employed in the present study, encompasses 

computational methodologies for compound database searching that utilize data from static lattice 

atomistic simulations of protein-ligand interactions to design a rationalized combinatorial approach for 

the neuroprotection and neurotherapy of AD based on the molecular interactions of small therapeutic 

entities with the Aβ-42 monomer. The various steps constituting the current in silico modeling process 

involved: (i) identifying effective neuroprotective entities (NEs) of therapeutic interest based on energy 

minimizations of the protein-NEs complexes (using Molecular Mechanics Simulations and selection of 

the most sensitive NEs employing Artificial Neural Networks optimization); (ii) recognizing the site of 

interaction of the selected NEs on the amyloid protein (using Molecular Mechanics Force Fields and 

Advanced Docking Techniques); (iii) employing Interactive Data Analysis as a combinatorial approach 

(using Isobolographic Analysis); and (iv) determining the design of the synergistic combinations and 
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their optimization (via Design of Experiments using a Face-Centered Central Composite Design) to 

obtain the most stabilized geometrical preferences of the protein-NEs complexes derived from 

Molecular Mechanics calculations. Ligand- and target structure-based strategies are widely used in 

virtual screening, but there is currently no methodology available that integrates the extent of the above 

modeling approaches. In this study, we provide an in silico approach that has combined molecular 

mechanics, stochastic sensitivity analysis, Design of Experiments and interaction studies to design a 

combinatorial therapeutic strategy for the neuroprotection and neurotherapy of AD. 

2. Results and Discussion 

Aβ, similar to other globular proteins, appear to require essential contribution from both 

hydrophobic and ionic interactions during structure formation with hydrophobicity providing a large 

energetic contribution [16,17]. Apart from providing the stabilization energy, these non-bonding 

interactions provide loose network structures, so that Aβ can tolerate residue replacements at packing 

positions without losing its stability or shape. Considering these generalized rules of protein structure, 

it has been assumed that binding of small molecules to a site on Aβ with significant specificity may 

inhibit amyloid fibril formation and other types of aggregation [18]. Therefore, the mechanism of 

action of amyloid aggregation inhibitors in terms of blocking oligomer formation, blocking fibril 

formation, de-aggregating the preformed fibers or rendering Aβ insoluble holds promise for 

neuroprotection as well as neurotherapy. The chemical disruption of this β-sheet containing polymers 

was exemplified approximately two decades ago, when the conformational modification of the KLVFF 

region of Aβ was postulated as a lead for the development of anti-Aβ agents [19]. The following small 

molecular candidates reported previously to bind amyloid, to modulate protein aggregation and/or 

toxicity or screened for such activities were modeled in this study for their ability to interact with the 

Aβ-42 oligomer and included the following: apigenin (APG) [20], congo red (CR) [21,22], curcumin 

(C) [9,13], dihydroxybenzophenone (DHB) [20], indomethacin (IND) [23], thioflavin T (ThT) [24], 

hexamethylpyridinium (HMP) [18], glycosylated nornicotine (G) [12], neocuproine (NEO) [25] and 

polystyrene sulfonate (PSS) [26]. 

2.1. Static Lattice Atomistic Simulations of Protein-NE Complexes to Select Optimal Neuroprotective 

Entities for Effective Aβ Protein Binding via AMBER Force Field 

In order to select the best Neuroprotective Entity (NE) for potential neuroprotective or 

neurotherapeutic activity against Alzheimer‘s disease (AD) or influencing the fibrillization or plaque 

formation of Aβ-protein, Molecular Mechanics was employed to determine the individual  

protein-ligand interaction energies between Aβ1-42 and 10 NEs in order to understand the structures 

(Figure 2) and energetics (Table 1) of protein-NE complexes resulting from the interplay between the 

bonding and non-bonding potentials. This provided the comparative in silico profile of the most 

sensitive NEs of Aβ without undertaking any extensive in vitro and in vivo studies. Molecular 

Mechanics described the energies of the complexes in terms of a simple function potentials typically 

consisting of two sets of terms: one accounted for distortion from ideal bond distances and angles and 

the other for non-bonded Van der Waals (VdW) and Coulombic interactions, where the bond and angle 

terms were defined in a self-consistent manner giving an energy minimum at an unstrained  
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structure [27]. The individual energies of the NE molecules were insignificant (as compared to that of 

the target Aβ) to be considered for the computation of ΔEinteraction (EHost:Guest − EHost − EGuest). The total 

steric energy, considered for the interpretation of modeling characteristics, are listed in Table 1. Most 

of the NEs studied demonstrated high energy stabilized structures (Table 1) and interactions with Aβ in 

terms of H-bonding (Figure 2). 

Table 1. Computed energy parameters (kcal/mol) of the protein-NE complexes. 

Molecule Total 

Energy
a
 

Bond 

Length
b
 

Bond 

Angle
c
 

Dihedral
d
 VdW

e
 H-bond

f
 ES

g
 

AβP −642.58 8.86 112.07 54.04 −80.42 −11.19 −728.89 

AβP-CR −596.30 10.97 174.75 74.36 −103.44 −18.33 −734.44 

AβP-PSS −606.71 9.51 171.42 65.70 −102.03 −18.17 −733.17 

AβP-NEO −618.54 8.28 107.03 51.66 −83.07 −16.86 −686.59 

AβP-HMP −619.63 8.34 103.03 50.15 −89.66 −12.64 −677.26 

AβP-APG −636.01 8.34 108.51 49.90 −89.94 −17.39 −692.48 

AβP-ThT −638.33 10.51 135.38 67.69 −108.33 −16.17 −727.29 

AβP-IND −643.98 9.51 128.76 65.28 −99.51 −17.97 −730.10 

AβP-C −652.31 9.63 121.25 68.97 −102.44 −18.38 −731.38 

AβP-DHB −653.94 9.42 114.75 64.71 −94.19 −18.50 −730.18 

AβP-G −666.07 9.15 119.25 61.92 −104.52 −18.62 −733.21 
a 
Total steric energy for an optimized structure 

b 
Bond stretching contributions, reference values were assigned to all of a structure's bond lengths 

c
 Bond angle contributions, reference values were assigned to all of a structure's bond angles 

d
 Torsional contribution arising from deviations from optimum dihedral angles 

e 
van der Waals interactions due to non-bonded interatomic distances 

f 
Hydrogen-bond energy function 

g
 Electrostatic energy 

The molecules are listed in decreasing order of the total minimized energy obtained after MM+ 

simulations. It is evident from the results that Congo Red and Glyconornicotine constituted the least 

and most stable geometrical configurations after molecular interaction with Aβ protein (a difference of 

≈70 kcal/mol). However, the VdW and the electrostatic energies in this case (Congo Red and 

Glyconornicotine) differed only by 1.08 and 1.23 kcal/mol, respectively. Here, the torsional energy 

(bond angle) was the determining factor in the energy minimization. Similarly, in the case of 

Neocuproine, HMP, Apigenin, Thioflavin T, Curcumin and DHB, the energy differences were too 

close to determine their sensitivity and hence effectiveness against Aβ. Furthermore, even if only those 

NEs were considered which provided more stabilized structures than Aβ, 4 NEs will remain with 

Indomethacin very close to Aβ. Indomethacin, Curcumin, DHB and Glyconornicotine are less 

stabilized than Aβ in terms of Bond Length (bond energy) and torsional energy (angle). It is therefore 

extremely convoluted to isolate the most sensitive NEs and the most significant energy values for the 

inhibition of Aβ protein fibrillization or insolubilization of the plaque. To manage these issues machine 

learning approaches, such as Artificial Neural Networks (ANN) was employed for the selection of NEs 

with the most efficient/sensitive binding to Aβ protein. 
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Figure 2. Energy minimized geometrical preferences of the protein-NE complexes derived 

from Molecular Mechanics computations: (a) apigenin; (b) congo red; (c) curcumin;  

(d) dihydroxybenzophenone; (e) glycosylated nornicotine; (f) hexadecylmethylpiperidinium; 

(g) indomethacin; (h) neocuproine; (i) polystyrene sulfonate and (j) thioflavin T. 
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2.2. Selection of Neuroprotective Entity (NE) Using Artificial Neural Networks 

A maximum of 10,000 epochs were run on NeuroSolutions
®
 V5 (NeuroDimension Inc., Gainsville, 

FL, USA) for ensuring optimal training of data. Sensitivity analysis was used for extracting the cause 

and effect relationship between the inputs and the outputs of the network. This provided feedback 

pertaining to the input variable that was the most significant by testing the network with regard to its 

sensitivity about the binding to Aβ, thus elucidating the NEs that were most significant. Table 2 

represents the input data in the form of energy attributes (obtained from the Molecular Mechanics 

simulations using AMBER Force Field) that was trained and the parameters used to construct the 

neural network are as shown in Table 3. 

Table 2. Input Data for neural network training, computations and sensitivity testing. 

Attribute CRa HMPb ThTc Cd Ge APGf DHBg INDh NEOi PSSj AβPk 

Total Energy −596.30 −619.63 −638.33 −652.31 −666.07 −636.01 −653.94 −643.98 −618.54 −606.71 −642.58 

Bond Length 10.79 8.37 10.35 9.64 9.13 8.39 9.48 9.55 8.29 9.53 8.81 

Bond Angle 174.75 103.03 135.38 121.25 119.25 108.51 114.75 128.76 107.03 171.42 112.07 

Dihedral 74.36 50.15 67.69 68.97 61.920 49.90 64.71 65.28 51.66 65.70 54.04 

VdW −103.44 −89.66 −108.30 −102.42 −104.55 −89.94 −94.19 −99.51 −83.07 −102.03 −80.42 

H-bond −18.33 −12.64 −16.17 −18.38 −18.627 −17.39 −18.50 −17.97 −16.86 −18.17 −11.19 

ES −734.44 −677.26 −727.29 −731.38 −733.21 −692.48 −730.18 −730.10 −686.59 −733.17 −728.89 

a Congo red; b Hexadecylmethylpiperidinium; c Thioflavin T; d Curcumin; e Glycosylated nornicotine; f Apigenin;  

g Dihydroxybenzophenone; h Indomethacin; I Neocuproine; j Polystyrene sulfonate; k Amyloid-β Protein. 

Table 3. Artificial Neural Networks construction parameters employing a neural builder. 

Parameter Setting 

Hidden layer 1 

Exemplars 17 

Output Processing element 1 

Transfer function SigmoidAxon:sigmoid (0/1) 

Learning rule ConjugateGradient: second order method 

for gradient 

Maximum Epochs  10,000: Supervised Learning Control 

Termination at Mean Square Error; Load Best Weights Approach 

Probe Configuration Quantitative-MatrixViewer, MatrixEditor;  

Qualitative-MegaScope, Hinton 

For the 10 NEs employed in this study, the MLP network was able to accurately confirm that 

Curcumin and Glyconornicotine were the most significant NEs in terms of energy attributes of protein-

ligand complexes based on the empirical data. The approach followed in this work required prior 

assumption for the selection of a mathematical model before applying the ANN models so as to be able 

to confirm the sensitivity coefficients of the various NEs as input variables that significantly 

contributed to characterizing the energy values. In order to obtain accuracy and maximum degree of 

precision, the training was undertaken twice (i.e., primary and secondary training). The primary run 

(out of three runs) provided the lowest Mean Square Error (MSE) value. The leveling of the MSE with 
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standard deviation (SD) boundaries for the training runs indicated highly improved data modeling as 

illustrated in Figure 3. Table 4 depicts the average of the MSE values for the three runs of the training, 

the best network run out of 10,000 epochs, and the overall efficiency and performance of the neural 

network during the data training.  

Figure 3. Average MSE for the ANN trains with standard deviations for 10,000 epochs. 

 

Table 4. Neural network indicators characterizing the efficiency and performance of data in 

the training as per ANN. 

Best Network Training Performance AβP 

Epoch # 10,000 MSE 3.457756864 

Minimum MSE
a 

7.93561E-06 NMSE
b 

3.31882E-05 

Final MSE 7.93561E-06 MAE
c 

1.749398046 

- - Min Abs Error
d 

0.887866082 

- - Max Abs Error
e 

2.866526507 

R
2
 - - 0.999983413 

a
MSE: Mean square error 

b
NMSE: Normalized mean square error 

c
MAE: Mean absolute error 

d
Min Abs Error: Minimum absolute error 

e
Max Abs Error: Maximum absolute error 

Basing on the results obtained, it was evident that the training model was highly efficient  

(MSE = 7.93561E-06). Results revealed a highly satisfactory fit for the input variables (R
2
 = 0.999). 

The performance criterion employed to assess the closeness and correlation between the desired and 

the actual network output for energy attributes of Aβ protein evidenced an extremely close mapping 

between the two outputs as illustrated in Figure 4.  
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Figure 4. Mapping of correlation between desired and actual network output. 

 

The sensitivity coefficient of each NE against the energy attributes of AβP is as shown in Figure 5. 

Glyconornicotine presented with the highest sensitivity against the energy attributes of AβP closely 

followed by Curcumin. This revealed their high capacity in stabilizing their respective protein-NE 

complexes. This behavior may be attributed to their high degree of non-bonding interaction in terms of 

Van der Waals forces, electrostatic interactions and H-bonding as shown in Table 1 and Figure 2. The 

sequence of the other remaining NEs in terms of sensitivity against AβP was NEO > PSS > APG > CR 

> HMP > IND > DHB >> ThT. The low sensitivity against AβP shown by DHB and IND despite 

forming highly stabilized protein-NE complexes (Table 1 and Figure 2) may be associated with higher 

torsional energy and lower Van der Waals forces. Results obtained from ANN sensitivity testing 

confirmed the relevance and efficiency of neural networks in optimization of ligand selection for 

effective Aβ protein targeting from an in silico modeling viewpoint. 

Figure 5. A typical bar chart showing the sensitivity coefficients of each NE against AβP 

following ANN sensitivity testing.  

 



Int. J. Mol. Sci. 2011, 12             

 

 

703 

2.3. Binding of Selected Neuroprotective Entities (NEs) to the Amyloid β-Protein 

2.3.1. Molecular Mechanics Simulations 

Static lattice atomistic simulations of protein-NE complexes for the ANN selected NEs (Curcumin 

and Glyconornicotine) exhibiting most sensitive Aβ protein binding was performed to explore the 

active sites for binding of the NEs. The minimizations were performed through the standard protocol 

described earlier in this paper. The H-bonds were recomputed after the AMBER Force Field 

computations as depicted in Figure 6. Curcumin, a phenolic yellow pigment with potent  

anti-inflammatory and antioxidant activities, has been reported to suppress oxidative damage, 

inflammation, cognitive deficits, and amyloid accumulation thereby affecting Aβ accumulation, 

oxidative damage, and inflammation, and other risks associated with Alzheimer‘s disease (AD) [8]. 

Additionally, the molecular structure of Curcumin has been investigated for its effects on Aβ 

aggregation whereby in vitro and in vivo studies demonstrated that Curcumin bound plaques, reduced 

amyloid levels and plaque burden, blocked aggregation and fibril formation as well as de-aggregation 

of Aβ [9]. In the present study, we modeled Curcumin molecule(s) in a close vicinity of Aβ, where it 

was found that Curcumin mostly formed H-bonds with the alanine residues present in the amyloid 

protein and were capable of binding to the aliphatic amino acids residues at various positions within 

the protein, mainly Aβ12–28 (Figure 6a). More than one molecule was also provided to interact with the 

protein structure as it has been proposed that the molar ratios for successful Aβ fibril and aggregate 

inhibition by Curcumin are greater than a 1:1 ratio [9].  

On the other hand, the ability of nicotine to up-regulate the deficient nicotine receptors and 

covalently bind to helical Aβ structures hypothesized it as a neuroprotective agent in AD. Its metabolite 

nornicotine, and more specifically the glycosylated product formed by reaction of nornicotine with the 

ring-opened form of glucose to give the corresponding Amadori product, has been reported to cause 

aberrant nornicotine-based glycation of amyloid protein [12]. This 1,2-dicarbonyl-containing compound 

provides a reactive electrophile capable of covalently modifying protein residues by binding to 

aromatic residues such as phenylalanine and histidine (Figure 6). Therefore, this covalent chemical 

event may also preferentially alter the neurotoxicity of potentially toxic soluble aggregates thereby 

providing an intriguing and potentially valuable treatment for AD and other neurodegenerative 

disorders. Importantly, the ANN selected NEs, Curcumin and Glyconornicotine, were found to be 

interacting more specifically to the fragment VHHQKLVFFAEDVGSNK (Aβ12–28) which has been 

shown to be responsible for peptide aggregation in previous studies [9,12].  
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Figure 6. Visualization of binding of: (a) curcumin-glutamine acid [Aβ25]; and 

(b) glycosylated nornicotine- histidine and phenylalanine [Aβ13 & Aβ20] with Aβ protein. 

The NEs and the H-bonded residues (red) are depicted in tube rendering. 

 

2.3.2. Docking Studies 

To further analyze the molecular basis of interaction and affinity of binding of Curcumin and 

Glyconornicotine onto the Aβ1-42 peptide, the NEs were docked into the active site of the Aβ1–42 

peptide. Docking results of these NEs are shown in Table 5. The ranking of NEs was based on the 

Glide score. Both NEs accepted poses with the protein (1Z0Q). The difference in Glide score between 

the NEs was minimal (±0.9) which revealed that the binding mode of both Curcumin and 

Glyconornicotine to Aβ1-42 may be considered similar. Results also demonstrated that docking 

simulations were able to dock both NEs at the fragment VHHQKLVFFAEDVGSNK (Aβ12–28) 

(Figure 7), even though they can form H-bonds at different sites as detailed later in this paper. Since 

Curcumin and Glyconornicotine have approximately the same sensitivity towards Aβ as revealed by 

ANN, it is therefore apparent that they may bind in a similar pattern to the active site of Aβ.  

Table 5. Docking results of curcumin and glyconornicotine in the original crystal structure 

of amyloid β protein (1Z0Q) using Glide-xp. 

Rank Ligand 
No. of poses 

generated 
Glide score ΔScore 

H-bond
a
 

length (A˚) 

Emodel
b 

(kcal/mol) 

1 Curcumin 10 −3.79 −0.9(1–2) 2.73 −37.3 

2 
Glycosylated 

nornicotine 
10 −2.89 +0.9(2–1) 1.89 −33.3 

a 
Average of all bond lengths 

b 
Emodel is a specific combination of GScore, CvdW and the internal torsional energy of the ligand 

conformer. 
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Upon comparison between the docking results of Curcumin and Glyconornicotine, the docking 

score was found to be superior in the case of Curcumin. However, Glynornicotine displayed sufficient 

interaction with the receptor especially in terms of H-bonding (which is considered an important factor 

in protein ligand interaction). In the case of Curcumin, 10 poses were generated, of which only four 

showed H-bonding interaction. On the contrary, in the case of Glyconornicotine, all 10 poses formed 

H-bonds. Figure 7 demonstrates the top-ranked poses with values indicating the H-bonding distances. 

Since all three distances are =/<2 Å this represents rather strong H-bonding interaction. The specific 

residue binding results of docking was consistent with the Molecular Mechanics simulation results as 

Glyconornicotine exhibited common H-bonding with phenylalanine in both the cases. This 

demonstrated the efficiency and accuracy of applied modeling methodologies in the present work for 

the alignment and generation of poses. 

Figure 7. Binding of Curcumin (C) and Glyconornicotine (G) to respective sequences of 

the Aβ1-42 peptide with H-bond formation of the optimal poses docked into 1Z0Q also 

shown. (a) C: possibility of 2 H-bonds between the proteins (residues highlighted in pink); 

(b) C: highly stable pose apart from optimal conformation and (c) G: optimal pose with 

values (magenta indicates H-bonding distances). 
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2.4. Isobolographic Analysis 

The neuroprotective potential of Curcumin (C) and Glyconornicotine (G) was explored in a unique 

way involving the possibility of their synergistic action in terms of energy minimizations owing to 

different interaction sites as described by the docking studies. The potential of modeling Curcumin and 

Glyconornicotine in combination as a highly minimized energy of Aβ protein-NE complex in a 

synergistic manner was undertaken. The NEs, curcumin and glycosylated nornicotine, were modeled 

alone (2, 3 and 4 molecules in the case of Curcumin and 1, 2, 3, 4 and 5 molecules for 

Glyconornicotine) as well as in combination as fixed ratios of equi-effective energy responses for each 

NE. Several Molecular Mechanics investigations were performed to explore the individual effect of the 

NEs by modeling increasing number of molecules with the protein using AMBER Force Field (Table 

6). The iso-effect (referred to as the minimum total energy achieved) was determined to be the highest 

response with the maximum number of NE molecules in the case of individual NEs versus the number 

of molecules in combination to produce the same effect (Table 6). Therefore, the total minimized 

energy achieved with four Curcumin molecules and five Glyconornicotine molecules was considered to 

be the iso-effect. 

Table 6. Computed energy parameters (kcal/mol) of the protein-NE complexes. 

Molecule 
Total 

Energy
d 

Bond 

Length
e 

Bond 

Angle
f 

Dihedral
g Vdw

h 
H-bond

i 
ES

j 

AβP −642.583 8.816 112.076 54.040 −80.426 −11.192 −728.898 

AβP-(C)1
a 

−582.939 11.447 179.994 80.810 −104.533 −17.946 −732.712 

AβP-(C)2 −652.313 9.643 121.259 68.974 −102.424 −18.382 −731.383 

AβP-(C)3 −660.406 11.318 139.298 104.718 −138.832 −18.819 −757.09 

AβP-(C)4 −682.039 12.910 150.151 115.683 −164.561 −17.052 −779.169 

AβP-(C)5 −676.414 13.833 158.07 127.859 −179.578 −17.251 −779.348 

AβP-(G)1
b 

−666.074 9.135 119.259 61.920 −104.552 −18.627 −733.21 

AβP-(G)2 −673.763 9.402 122.92 66.095 −120.558 −18.899 −732.723 

AβP-(G)3 −681.320 9.718 123.795 70.168 −137.011 −19.282 −728.71 

AβP-(G)4 −691.403 10.076 129.734 71.880 −151.861 −20.955 −730.279 

AβP-(G)5 −698.344 10.536 132.023 77.219 −169.188 −21.046 −727.889 

AβP-(G)6 NOT Converged (13125 cycles 28811 points) 

AβP-(C)1-(G)1
c 

−702.102 9.752 121.608 80.58 −127.923 −17.01 −769.11 
a
 AβP-(C)n: n is the number of molecule(s) of curcumin. 

b
 AβP-(G)n: n is the number of molecule(s) of glyconornicotine. 

c
 AβP-(C)n-(G)n: n is the number of molecule(s) of curcumin and glyconornicotine. 

d 
Total steric energy for an optimized structure. 

e 
Bond stretching contributions, reference values were assigned to all of a structure's bond lengths. 

f
 Bond angle contributions, reference values were assigned to all of a structure's bond angles. 

g
 Torsional contribution arising from deviations from optimum dihedral angles. 

h 
van der Waals interactions due to non-bonded interatomic distances. 

i 
Hydrogen-bond energy function. 

j
 Electrostatic energy. 
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MM+ simulations were then performed using combinations such as C1-G1, C1-G2, C2-G1 and so 

forth to achieve the iso-effect energy level. Interestingly, the response obtained by AβP-(C)1-(G)1 was 

superior to that of four and five molecules of Curcumin and Glyconornicotine, respectively. Further, 

the isobologram of the combination of Curcumin and Glyconornicotine demonstrated that the 

experimentally derived energy values decreased below the theoretical molecule-additive limit, and the 

quantitative parameter (Λ) of the theoretical additive point and those of the experimental point did not 

overlap (Figure 8). This indicated a significant difference between the experimental and the theoretical 

additive point (P < 0.05) and a synergistic interaction between Curcumin and Glyconornicotine in the 

static lattice atomistic simulations. In addition, the total fraction value was 0.45, which was <1, 

indicating a synergistic interaction (Table 7). 

Figure 8. Isobologram showing the interaction between Curcumin and Glyconornicotine 

on the energetic response of Molecular Mechanics simulations. The number of molecules 

(for an energy minimized stable structure) of Curcumin and Glyconornicotine are 

contrived. The profile connecting the minimum energy points is the theoretical additive 

line, and the theoretical additive point (▲) for the NE combination is shown on the 

additive line. The minimized energy value (■) of the combination of the two NEs was 

significantly lower than the theoretical additive value, indicating a synergistic interaction.  

 

Table 7. Quantitative parameter (Λ) determination for interaction between curcumin and 

glycosylated nornicotine. 

Molecule Response (units) 
a
AβP-(Curcumin)4 

 −682.039 
b
AβP-(GlycoNorNicotine)5 

 −698.344 

Isoeffect
*
 −690.192 

c
AβP-(Curcumin)1-

d
(GlycoNorNicotine)1

  −702.102 

Quantitative parameter (Λ)** 0.45 
*
Average of AβP-(Curcumin)4 and AβP-(GlycoNorNicotine)5 

0.45
5

1

4

1

b

d

a

c
*Λ*   
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2.5. Design of Experiments 

It is fast becoming standard practice in research and development to employ Design of Experiments 

(DOE) methods, especially in the later stages of development, when the goal shifts from screening to 

product and process optimization [28]. Response Surface Methodology (RSM), such as the Central 

Composite Design, is the most popular class of RSM designs [29]. In this study a Face-Centered 

Central Composite Design (FCCCD) (Mintab
®
 V15, Minitab Inc., Boston, MA, USA) was employed 

with two study variables namely the number of Curcumin (C) and Glyconornicotine (G) molecules. 

The number of molecules of curcumin (X1) and glycosylated nornicotine (Glyconornicotine) (X2) was 

selected as the independent variables studied at two levels each (2–4 for curcumin and 1–5 for 

Glyconornicotine). Natural variable level settings for both molecules were used. The design consisted 

of four cube points, five center-points in cube, four axial points (points parallel to each variable axis on 

a circle of radius equal to 1.0 and origin at the center-point) and 0 axial center-points. An α = 1.0 

defined a geometrically square design that was both rotatable and orthogonally blocked. Orthogonally 

blocked designs allow for model terms and block effects to be estimated independently and minimize 

the variation in the regression coefficients [30]. Rotatable designs provide the desirable property of 

constant prediction variance at all points that are equidistant from the design center, thus improving the 

quality of the prediction [31]. Since it was not be possible to have both properties for the FCCCD 

design that was selected, Minitab
®
 opted for orthogonal blocking and simultaneously attempted to 

converge as close as possible to the α value for rotatability. In order to ensure the successful 

optimization and prediction from the design, the region of operability encompassed the region of 

interest. The upper and lower limits of the independent variables were determined by modeling 

multiple NEs simultaneously. AβP-(C)1 and AβP-(C)5 were eliminated due to having higher total 

energy values as compared to and AβP and AβP-(C)4, respectively while AβP-(G)6 failed to converge 

even after 13125 cycles (Table 8). The number of Curcumin and Glyconornicotine molecules was in 

the region of interest described by the variable ranges. The design consisted of a two level full factorial 

with a total of 13 experimental runs. 

Based on the orthogonal features of the design, a series of polynomial equations with one variable 

was obtained with the other six variables set at zero. Analysis of Variance (ANOVA), correlation 

analysis, path analysis, and regression analysis was used to analyze the dataset and statistical 

acceptability of the models proposed. The axial points and replicates were added to the design to 

provide for estimation of curvature of the models and to allow for estimation of experimental error. 

Table 8. Randomized Face-Centered Central Composite Experimental Design Template. 

F# C
a 

G
b 

Total 

Energy
c 

Bond 

Length
d 

Bond 

Angle
e 

Dihedral
f 

Vdw
g 

H-

bond
h 

ES
i 

1 4 1 −727.66 11.79 141.36 104.69 −181.21 −16.98 −787.32 

2 4 3 −741.28 12.79 148.87 112.83 −225.90 −15.13 −774.75 

3 2 3 −737.52 11.13 131.88 96.25 −186.38 −15.23 −775.20 

4 3 3 −733.11 12.06 145.71 111.11 −199.46 −14.81 −787.73 

5 3 5 −723.80 12.49 145.85 115.90 −231.79 −17.25 −748.99 

6 2 5 −718.92 11.83 139.50 109.48 −214.81 −17.74 −747.17 

7 4 5 −716.37 12.63 151.29 116.57 −256.36 −16.10 −724.40 



Int. J. Mol. Sci. 2011, 12             

 

 

709 

Table 8. Cont. 

F# C
a 

G
b 

Total 

Energy
c 

Bond 

Length
d 

Bond 

Angle
e 

Dihedral
f 

Vdw
g 

H-

bond
h 

ES
i 

8 3 3 −710.02 11.92 138.78 101.08 −198.06 −16.54 −747.21 

9 3 1 −720.89 11.01 132.18 87.816 −158.60 −17.95 −775.35 

10 2 1 −717.16 10.29 123.51 86.057 −148.40 −17.22 −771.40 

11 3 3 −732.58 12.05 148.88 112.68 −222.08 −17.40 −766.71 

12 3 3 −743.03 12.76 148.15 108.23 −227.16 −15.31 −769.70 

13 3 3 −728.71 11.84 148.35 113.06 −217.03 −17.36 −767.57 
a
 Curcumin 

b
 Glyconornicotine 

c
 Total steric energy for an optimized structure 

d 
Bond stretching contributions, reference values were assigned to all of a structure's bond lengths 

e
 Bond angle contributions, reference values were assigned to all of a structure's bond angles 

f
 Torsional contribution arising from deviations from optimum dihedral angles 

g 
van der Waals interactions due to non-bonded interatomic distances 

h 
Hydrogen-bond energy function 

i
 Electrostatic energy 

2.5.1. Analysis of the Face-Centered Central Composite Design 

The correlation of the independent variables and the responses were estimated by polynomial 

equations, using the least-square method. From a statistical point of view, three tests were used to 

evaluate the adequacy of the models; Student‘s t-test which is about the significance of factors,  

R-square test and Fisher tests. It was found that the individual effects were significant at a 5% 

significance level and only the interactions (CG), (CC), (GG) were not significant and were excluded 

during optimization. The test of reliability was performed by Fisher‘s variance ratio test known as the 

F-test. The tabulated F values at a 5% level of significance were between 1.08 and 12.42. Hence, it was 

concluded that the two variances are equal and that most of the response variation can be explained by 

the regression. Furthermore, the test for significance of regression confirmed that the established 

models provided an excellent fit to the observed data (Figure 9). Finally, the R
2
-value was found to be 

significantly high for the Bond Length, Bond Angle and Van der Waals forces with values of 89.9%, 

89.0% and 92.8% respectively (Table 9). These variables were considered statistically relevant for both 

Curcumin and Glyconornicotine and therefore considered further in this study to proceed with 

optimization. In general, results also revealed that the difference between the measured and the fitted 

values did not exceed 3% indicating that the models can adequately represent the data. At a 

significance level of 0.05, the mean Curcumin and Glyconornicotine appeared not to be significant to 

the Total Energy (Table 9).  
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Table 9. Pertinent statistical descriptors for determining the model adequacy (p-values and R
2
). 

 C
a
 G

b
 C

2c
 G

2d
 CG

e
 R

2
 

Total Energy 

 

0.649 0.796 0.529 0.068 0.537 43.5 

Bond Length 

 

0.001* 0.001* 0.478 0.097 0.287 89.9 

Bond Angle 

 

0.001* 0.003* 0.221 0.091 0.435 89.0 

Dihedral 

 

0.010 0.001* 0.678 0.224 0.283 86.1 

VdW 

 

0.003* 0.000* 0.880 0.106 0.696 92.8 

H-bond 

 

0.414 0.659 0.172 0.027 0.479 57.6 

ES 

 

0.812 0.006* 0.843 0.164 0.154 74.0 
a 
Curcumin         

b 
GlycoNorNicotine        

c 
Curcumin*Curcumin      

d 
GlycoNorNicotine*GlycoNorNicotine   

e 
Curcumin*GlycoNorNicotine     

* indicates statistically significant values 

Estimated Regression Coefficients for all molecular attributes  

Total Energy = -731.182 - 1.951C + 1.103G - 4.005C
2 

+ 13.048G
2 

+ 3.263CG   (1) 

Bond Length = 12.122 + 0.6593C + 0.6423G - 0.1377C
2 

- 0.3519G
2 

- 0.1760CG  (2) 

Bond Angle = 145.220 + 7.771C + 6.597G - 2.946C
2 

- 4.303G
2 

- 1.512CG  (3) 

Dihedral = 108.264 + 7.051C + 10.566G - 1.294C
2 

- 3.981G
2 

- 2.886CG   (4) 

VdW = -211.158 - 18.980C - 35.792G + 1.011C
2 

+ 11.950G
2 

- 2.182CG   (5) 

H-bond = -16.2168 + 0.3307C + 0.1756G + 0.8547C
2 

- 1.5644G
2 

+ 0.3488CG  (6) 

ES = -769.414 + 1.218C + 18.915G - 1.493C
2 

+ 11.298G
2 

+ 9.670CG   (7) 

where, C = curcumin and G = glyconornicotine 

The sequential and adjusted sums of squares (i.e., Seq SS and Adj SS) (Table 3) were identical for 

all terms since the design matrix was orthogonal (Table 10).  

Table 10. Analysis of Variance for all molecular attributes. 

 Total 

Energy 

Bond 

Length 

Bond 

Angle 

Dihedral VdW H-bond ES 

a
Seq SS 545.95 5.7884 751.627 1070.68 10361.38 8.3031 2907.70 

b
Adj SS  545.95 5.7884 751.627 1070.68 10361.38 8.3031 2907.70 

c
P-value 0.447 0.002* 0.003* 0.006* 0.001* 0.212 0.050 

d
F 1.08 12.42 11.30 8.69 18.09 1.90 3.98 

a 
Sequential Sum of Squares (Source: Regression) 

b 
Adjusted Sum of Squares (Source: Regression) 

c 
P-value (Source: Regression) 

d 
F (Source: Regression) 
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Figure 9. Linear correlation plots between fitted and actual values for (a) total steric 

energy; (b) bond length contributions; (c) bond angle contributions; (d) dihedral torsional 

contribution; (e) Van der Waals interactions; (f)
 h

ydrogen-bond energy function and 

(g) electrostatic energy. 
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Figure 10a–c displays the diagnostic data for the design. The residuals versus fitted profiles 

displayed a large randomized spread in the data points for the highest fitted values. However, it is 

difficult to reject the assumption of constant variance in the residuals. The residuals for the variable 

Van de Waals (VdW) that was selected for optimization among the Bond Length and Bond Angle 

followed a relatively bell-shaped curve, though the Normal probability plot had two values off linearity 

at either end (corresponding to high and low values). This further established the significance of VdW 

in binding of Curcumin and Glyconornicotine to Aβ to afford neuroprotection. However, for the 

variables Bond Length and Bond Angle (Figures 10a,b) the p-value for the Anderson Darling test for 

Normality was >0.05 as well as the histograms displaying a bias in the frequency of the residuals below 

and above baseline. Hence the null hypothesis of Normality cannot be rejected and the mean of the 

residuals was zero. The I-chart (Individuals control chart) in the top right hand corner of Figures 10a–c 

assesses the independence assumption, and does not exhibit any concerning features. The variables 

Bond Length, Bond Angle and VdW for the NE combination were included in the statistical design for 

identifying the optimal NE combination and quantity of molecules required for neuroprotection. 

Figure 11a-c displays the 2D contour plots obtained for the three pertinent variables, Bond Length, 

Bond Angle and VdW employed for optimization. The optimized region (of 3 

Curcumin:3 Glynornicotine) is also highlighted on the respective contour plots. 

Figure 10. Linear correlation plots depicting corresponding residual plots for various variables. 
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Figure 10. Cont. 

 

Figure 11. Corresponding Contour Plots of (a) bond length, (b) bond angle and (c) VdW 

vs. Curcumin and Glyconornicotine. The histograms show the frequency distribution of the 

13 runs with respect to normality from the optimized value.  
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Figure 11. Cont. 
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2.5.2. Response Optimization  

The Response Optimizer tool of Minitab
®
 V15 (Minitab Inc., Boston, MA, USA) was used to obtain 

the optimized levels of Curcumin and Glyconornicotine based on their molecular attributes in terms of 

Bond Length, Bond Angle and VdW. A single optimal combination was obtained following 

constrained optimization of the three variables as represented in Table 11. Upon comprehensive 

evaluation of feasibility searches and subsequently exhaustive grid searches, a neuroprotective 

combination of three molecules of Curcumin and three molecules of Glyconornicotine fulfilled the 

maximum requisites of an optimum combination primarily due to superior regulation of energy 

attributes. Figure 12 shows the desirability plots of each constraint for the optimized combination. 

Table 12 displays the local solution for Bond Length, Bond Angle and VdW in terms of the desirability 

score, predicted response, the actual response after Molecular Mechanics simulations of the optimized 

combination along with the percentage prediction errors. The prediction error for the response 

parameters ranged between 1.1 and 3.1% with the value of absolute error of 2.36. The low values of 

error indicated the high prognostic ability of the FCCCD employed in this study. 

Table 11. Variable constraints employed for response optimization. 

Parameters Goal Lower Target Upper Weight 

Bond Length Target 10 12 12.5 1 

Bond Angle Target 123 148 148.5 1 

VdW Minimum −256 −256 −1.00 1 

Table 12. Actual and predicted response values for the optimized formulation. 

Local Solution Desirability Predicted 

Responses 

Actual 

Responses 

Error (%) 

Bond Length 0.75547 12.1223 12.4932 2.9 

Bond Angle  0.88880 145.2200 149.7621 3.1 

VdW 0.91242 −211.1582 −213.5112 1.1 

Absolute error = 2.36 
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Figure 12. Desirability plots depicting the requisite variables for attributes of optimal 

combination with the desired targeted responses. 
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2.6. Discussion 

This study provides a foremost comprehensive in silico evidence across combinatorial interventions 

for the potential neuroprotection and neurotherapy of Alzheimer‘s disease (AD). In silico methods 

were developed to establish predictive models for concentration dependent interaction of 

neuroprotective entities (NEs) for modulating Aβ protein aggregation and oligomerization (Figure 13). 

Firstly, an extensive database search was performed to retrieve a library of small molecules, such as 

apigenin, congo red, curcumin, dihydroxybenzophenone, glycosylated nornicotine, 

hexadecylmethylpiperidinium, indomethacin, neocuproine, polystyrene sulfonate and thioflavin T, 

reportedly having high affinity for binding with Aβ protein leading to chemical disruption of the Aβ 

folding. Secondly, static lattice atomistic simulations, using ChemBio3D Ultra 11.0 and HyperChem
TM

 

8.0.8, were performed throughout the study for quantifying the molecular attributes of the  

protein-ligand(s) interactions in the terms of various pertinent energy attributes and to generate 

preliminary data for protein-ligand sensitivity analysis, ligand-ligand interaction studies and 

combinatorial optimization. Thirdly, selection of NEs based on sensitivity analysis, employing ANN 

using NeuroSolutions
®
 V5, was conceded and the molecules Curcumin and Glycosylated nornicotine 

demonstrated higher sensitivities toward energy minimizations with Aβ based upon the Mean Square 

Error and input-output mapping.  

 



Int. J. Mol. Sci. 2011, 12             

 

 

716 

Figure 13. Schematic summarizing the in silico theoretical molecular model developed in 

this study for the screening of neuroprotective entities for Alzheimer‘s disease. 

 

Ligand selection was then followed by a detailed interaction studies using a more focused fragment-

based geometrical optimization. This ‗‗binding surface hypothesis‘‘ was later substantiated through the 

use of docking studies (Glide 4.0). Previous studies have demonstrated the nicotine-based enhancement 

of memory function and reduction of cognitive deficits associated with experimental models of AD 

through multiple mechanisms, such as an increase in the expression of nicotinic acetylcholine (ACh) 

receptors, stimulating cortical ACh release and expression of cholinergic markers mediated by 

neurotrophic factors [32]. Additionally, an important mechanism involving the glycation of Aβ protein 

by glycosylated nornicotine recognized the chemical potential of this secondary metabolite to 

participate in potentially detrimental covalent chemistry leading to pathological consequences of 

nornicotine based protein glycation [12]. In our molecular modeling and docking studies, we explored 

the possible sites for glycation of Aβ within VHHQKLVFFAEDVGSNK (Aβ12–28) residues. 

Interestingly, the glucose side-chain of glycosylated nornicotine exhibited H-bonding with histidine 

and phenylalanine in the case of Molecular Mechanics simulations and with glutamine, phenylalanine 

and aspartic acid during the docking studies. Phenylalanine binding may potentially lead to glycation of 

the VFF tripeptide sequence of the Aβ protein which has been reported to be responsible for Aβ12–28-
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induced amnesia in a mouse model of Aβ toxicity [33]. Our in silico findings in terms of potential 

glycation sites, in addition to lysine reported by Dickerson and Janda (2003) [12], may lead to further 

exploration of the pathological consequences of nornicotine-based protein glycation. On the other 

hand, curcumin delivery has been reported to have pleiotropic activities relevant to AD including 

stimulation of phagocytic Aβ clearance, anti-inflammatory and antioxidant activity, metal chelation, 

neurogenesis and Aβ- and Tau-binding properties [9,34]. In the present study, we modeled the Aβ-

binding properties of Curcumin for the exploration of possible interaction sites. The binding outcome 

varied in both the case as Curcumin exhibited binding with glutamine and glutamic acid in case of 

Molecular Mechanics simulations and docking studies respectively. Additionally, Curcumin 

demonstrated binding to the ends of the full Aβ (data not shown). 

Once the different binding sites were confirmed, a Curcumin and Glyconornicotine interaction 

analysis was performed for synergism, if any. A highly synergistic interaction was observed displaying 

a possible reduction in individual effective concentration by a factor of 4 and 5, respectively, without 

compromising and even substantiating the therapeutic benefit. This reduction in concentration levels 

may have implications in overcoming the notions related to nicotine-addiction and low brain uptake of 

Curcumin. Finally, combinatory optimization in terms of requisite variables and maximum-

stabilization with the desired targeted responses was conducted employing Design of Experiments 

using Minitab
®
 V15. A neuroprotective combination of three molecules of Curcumin and three 

molecules of Glyconornicotine was proposed by the model indicating a possible 1:1 combination with 

maximum of three molecules of each NE per Aβ oligomer. Thus, our work offers a mathematical and 

in silico approach that constitutes a new frontier in providing neuroscientists with a template for in 

vitro and in vivo molecular experimentation. Future work is recommended in terms of in vivo 

pharmacokinetic and pharmacodynamic modeling for the verification of the above theoretical modeling. 

3. Experimental Section 

3.1. Preparation of Protein Target Structure and Compound Libraries 

The starting coordinates of the Alzheimer's disease (AD) amyloid β(1–42) peptide (Aβ1–42) [PBD 

ID: 1Z0Q] and AD amyloid β(1–42) fibrils [PBD ID: 2BEG] were obtained from the Protein Data 

Bank (www.pdb.org) [35] and further modified for molecular mechanics and docking computations. 

The coordinates of ligand Neuroprotective Entities (NEs) (Figure 14) were obtained from the ChEBI 

database (Chemical Entities of Biological Interest) (www.ebi.ac.uk/chebi) [36] and included the 

following: apigenin (ChEBI: 18388), congo red (ChEBI: 34653), curcumin (ChEBI: 3962), 

indomethacin (ChEBI: 49662) and polystyrene sulfonate (PSS) [ChEBI: 53280]. Inhibitor derivatives 

such as dihydroxybenzophenone (DHB), hexadecyl-N-methylpiperidinium (HMP) and glycosylated 

nornicotine (GlycoNorNicotine) were built using benzophenone (ChEBI: 41308), piperidinium ion 

[ChEBI: 48633] and nornicotine [ChEBI: 28313] as templates, respectively. Neocuproine and 

Thioflavin T (ThT) (PubChem: 16953) were selected from The Timely Data Resources (TDR) Targets 

Database (www.tdrtargets.org) [37] and PubChem (www.pubchem.ncbi.nlm.nih.gov) [38]. 

http://www.pdb.org/
http://www.ebi.ac.uk/chebi
http://sydney.indymedia.org/tdr_citation.aspx
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Figure 14. Neuroprotective Entities (NEs) employed in this study for modeling simulations. 

 

3.2. Static Lattice Atomistic Simulations  

Molecular Mechanic Computations in vacuum were performed using HyperChem
TM

 8.0.8 

Molecular Modeling Software (Hypercube Inc., Gainesville, FL, USA) and ChemBio3D Ultra 11.0 

(CambridgeSoft Corporation, Cambridge, UK). The Aβ1–42 peptide molecule and Aβ1–42 fibril was 

downloaded using the GetNetFile Tool in ChemBio3D Ultra in their syndiotactic stereochemistry as 

3D models and saved in an appropriate HyperChem
TM

 compatible file format for further processing 

and computations. The structure of Aβ12–28 peptide chain was generated using the Sequence Editor 

Module on HyperChem
TM

. Structures of various Aβ inhibitor ligand Neuroprotective Entities (NEs) 

were constructed employing innate bond angles as defined in Hyperchem
TM

. The models were initially 

energy-minimized using MM+ Force Field and the resulting structures were once more  

energy-minimized using the AMBER (Assisted Model Building and Energy Refinements) Force Field. 

The conformer having the lowest energy was used to create the target-ligand complexes. A complex of 

one molecule with another was assembled by parallel disposition, and the same procedure of  

energy-minimization was repeated to generate the final models constituting: AβP-CR (congo red), 

AβP-HMP (hexadecyl-N-methylpiperidinium), AβP-ThT (thioflavin T), AβP-C (curcumin), AβP-G 

(glyconornicotine), AβP-APG (apigenin), AβP-DHB (dihydroxybenzophenone), AβP-IND 
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(indomethacin), AβP-NEO (neocuproine), AβP-PSS (polystyrene sulfonate) (for selection of the most 

sensitive Aβ-inhibitor/neuroprotective entity using Artificial Neural Networks sensitivity testing) and 

curcumin-AβP-glyconornicotine molecules at varying concentrations (for optimization of the highly 

minimized ternary complex using a Face-Centered Central Composite Design). Full geometrical 

optimizations were performed in vacuum employing the Polak–Ribiere conjugate gradient method 

until a Root Mean Square (RSM) gradient of 0.001 kcal/mol was reached. Force Field options in the 

AMBER (with all hydrogen atoms explicitly included) and MM+ (extended to incorporate non-bonded 

restraints) methods were set at HyperChem
TM

 user defaults. For Molecular Mechanics computations, 

the Force Fields were utilized with a distance-dependent dielectric constant scaled by a factor of 1. The 

1–4 scale factors were as follows: electrostatic 0.5 and van der Waals 0.5. Furthermore, various 

energies and molecular attributes involved in the molecular interactions were computed. 

3.3. Sensitivity Testing by Artificial Neural Networks for Optimal Neuroprotective Entity Selection 

Sensitivity testing and optimization was conducted by employing a feedback Multilayer Perceptron 

(MLP) neural network to train the empirical input bond-energy data with static back propagation 

(NeuroSolutions
®
 V5, FL, USA). The MLP is a layered feedforward network typically trained with 

back propagation of errors using gradient descent or conjugate gradient algorithms. The advantage of 

being able to approximate any input/output map makes an MLP highly useful in applications requiring 

static pattern classification [39]. Figure 15 illustrates the typical MLP network constructed and the 

network topology for the hidden input and output layers. A genetic algorithm with a Sigmoid Axon 

transfer function and Conjugated Gradient learning rule was employed for the hidden input and 

output layers.  

Figure 15. Schematics depicting the constructed Multilayer Perceptron network and the 

network topology for the hidden input and output layers employing Artificial 

Neural Networks. 

 

3.4. Prediction of the Structure and Binding Affinity of Target-Ligand Complexes 

For preparation of the protein target structure, the Aβ complex obtained from the Protein Data Bank 

was modified for docking computations via Glide 4.0 software (Schrödinger LLC, New York, NY, 

USA, 2005). The computations were performed by importing the Aβ complex to Maestro 

(Schrödinger) along with identifying and eliminating co-crystallized ligands and further minimized 

using the Protein Preparation wizard applying an OPLS-AA Force Field (autoref.pl script). 

Minimizations were performed until the average Root Mean Square (RSM) deviation of the 

non-hydrogen atoms reached 0.3 Å [40]. The ligand (obtained from databases as described in the 
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materials section) analogue library was generated by modifying the respective functional groups using 

the reagent database and a combinatorial design module. Each structure was assigned an appropriate 

bond order (LigPrep script). The inhibitors were converted to Mae format (Maestro, Schrodinger, Inc.) 

and optimized by means of the MMFF94 Force Field using user defaults [41]. Glide 4.0 computations 

such as docking and scoring functions were performed with various scaling factors for the Van der 

Waal radii of the receptor and ligand atom. The receptor-grid files were generated using a Grid-

Receptor Generation algorithm after ensuring that the protein and ligands were in the correct form for 

docking. The size of ligands to be docked was selected from the workspace and was docked with the 

active site using the ‗Xtra Precision‘ algorithm. Conformations were generated internally and conceded 

these through a series of filters involving Grid-Based Force Field evaluation and refinement of docking 

solutions including torsional and rigid body motions of the ligand using the OPLS-AA Force Field. 

The surviving docking solutions were then subjected to Monte Carlo procedure minimization of energy 

scores and the final energy evaluations were performed with GlideScore to generate the single best 

pose as the output for a particular ligand. 

3.5. Interaction Studies Employing Isobolographic Analysis 

The Loewe additivity relationship was used to analyze interactions between each Neuroprotective 

Entity (NE). The equation assumes that the fractional effect contributed from each NE is additive to 

explicate the entire response from combinations. The Combination Index (Λ) is calculated using 

Equation (8). 

*n
C

nC
...

*2
C

2
C

*i
C

1
C

Λ                 (8) 

where, Ci are the concentrations of various NEs in combination, and C1* are the concentrations of 

various NEs that would produce the same effect when used alone. A ―Λ‖ of <, =, or > 1 indicates 

synergy, additivity, and antagonism, respectively [42]. Isobolographic analysis for the combination of 

most sensitive NEs (as determined by ANN), in terms of contribution to the energy minimization of 

target-ligand complex, was conducted based on comparisons of a number of interacting ligand 

molecules that were determined to be equi-effective. The NEs were modeled alone as well as in 

combination as fixed ratios of equi-effective energy responses for each NE. The energy minimized 

confirmations of the combined NEs were used to compute the various pertinent energies and molecular 

attributes involved in the molecular interactions. The isobolos were constructed by plotting the Total 

Energy values of one NE on the independent axis and that of other as the dependent variable, modeled 

alone and in combination. 

3.6. Design of Experiments 

A Face-Centered Central Composite Design (FCCCD) with α = 1 was employed as per standard 

protocol. The number of molecules of NEs, X1 and X2, were selected as the independent variables 

studied at two levels each (2–4 for curcumin and 1–5 for glyconornicotine). The upper and lower limits 

were determined by performing MM+ simulations of protein-NE complexes as shown in Table 6. The 

central point (0, 0) was studied in quintuplicate. All other processing variables were kept invariant 
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throughout the study. Table 8 summarizes an account of the 13 experimental runs studied, their factor 

combinations and the responses obtained after subsequent modeling simulations undertaken. The Total 

Energy, Bond Length, Bond Angle, Dihedral, Van der Waals, H-Bonding and Electrostatic energies 

were specified as the response variables. Various Response Surface Methodology computations for the 

current optimization study were performed employing Minitab
®
 V15 software (Minitab Inc., Boston, 

MA, USA). Polynomial models including interaction and quadratic terms were generated for the 

response variables using Multiple Linear Regression Analysis (MLRA). The general form of the model 

is represented in Equation (9). 

Y = β0 + β1X1 + β2 X2 + β3 X1 X2 + β4 X1
2
 + β5 X2

2
 + β6 X1 X2

2
 + β7 X1

2
 X2              (9) 

where, β0 is the intercept representing the arithmetic average of all quantitative outcomes of 13 runs; β1 

to β7 are the coefficients computed from the observed experimental values of Y; and X1 and X2 are the 

coded levels of the independent variable(s). The terms X1X2 and Xi
2
 (i = 1 to 2) represent the 

interaction and quadratic terms, respectively. Statistical validity of the polynomials was established on 

the basis of ANOVA provision in the Minitab
®
 V15 software. Subsequently, feasibility and grid 

searches were performed to locate the composition of the optimum combinations (i.e., optimum 

number of NE molecules to ensure Aβ binding and neuroprotection). In addition, 2D contour plots 

were constructed using the design outputs generated in order to visualize the data regions of interest. 

Numerical optimization using the desirability approach was employed to locate the optimal settings of 

the independent variables in order to obtain the desired response. An optimized formulation was 

developed by setting constraints on the dependent and independent variables. The optimized 

combination developed was evaluated for the responses and the experimental values obtained were 

compared with those predicted by the mathematical models generated. 

4. Conclusions 

Our approach was to assay a library of potential neuroprotective entities (NEs) that were previously 

reported to address binding features that are critical for inhibition of Aβ aggregation. Our findings 

indicate that a combination of NEs may result in synergistic activity with a significant reduction in 

dose. Firstly, in the ANN sensitivity testing, we selected curcumin and glyconornicotine as the most 

sensitive NEs toward stabilizing the Aβ protein. It is worth noting that, both these compounds have 

been shown to inhibit Aβ aggregation by other experimental approaches [9,12]. In the second 

component of our study, we used isobolographic analysis simultaneously with Design of Experiments 

to deduce the interrelation between both the NEs in terms of synergism and their collective influence 

on the Aβ binding at concentration rations of ligand:ligand, 1:1, and protein:ligand, 1:3. In addition, the 

molecular basis of interaction and affinity of binding of curcumin and glyconornicotine onto the Aβ1–42 

peptide was deduced using Molecular Mechanics and Advanced Docking computations. Results 

obtained from in silico from this study suggest that curcumin and glycosylated nornicotine can form a 

potential neuroprotective and neurotherapeutic combination against aggregated Aβ that causes 

Alzheimer‘s disease. We anticipate that in future neuroscientists would adopt this in silico approach to 

develop novel therapeutic interventions for the neuroprotection and neurotherapy of Alzheimer‘s 
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disease or as a template for other therapeutic strategies. In addition, the neuroprotective entities 

identified in this study may also be valuable in this regard. 
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