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Abstract: Protein kinase CK2, also known as casein kinase-2, is involved in a broad range 

of physiological events including cell growth, proliferation and suppression of apoptosis 
which are related to human cancers. A series of compounds were identified as CK2 

inhibitors and their inhibitory activities varied depending on their structures. In order to 

explore the structure-activity correlation of CX-4945 derivatives as inhibitors of CK2, in 
the present study, a set of ligand- and receptor-based 3D-QSAR models were developed 

employing Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular 

Similarity Index Analysis (CoMSIA). The optimum CoMFA (Rcv
2 = 0.618, Rpred

2 = 0.892) 
and CoMSIA (Rcv

2 = 0.681, Rpred
2 = 0.843) models exhibited reasonable statistical 
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characteristics for CX-4945 derivatives. The results indicated that electrostatic effects 

contributed the most to both CoMFA and CoMSIA models. The combination of docking 
analysis and molecular dynamics (MD) simulation showed that Leu45, Lys68, Glu81, 

Val116, Asp175 and Trp176 of CK2 which formed several direct or water-bridged  

H-bonds with CX-4945 are crucial for CX-4945 derivatives recognition to CK2. These 
results can offer useful theoretical references for designing more potent CK2 inhibitors. 

Keywords: CK2 inhibitors; 3D-QSAR; molecular docking; molecular dynamics 

 

1. Introduction 

The casein kinase-2 (CK2) is a pleiotropic, highly conserved serine/threonine protein kinase 
ubiquitously expressed in both the cytoplasm and the nucleus of eukaryotic cells [1–3]. The protein is 

comprised of tetramer which contains two catalytic subunits, α and/or α′ (37–44 kD), and two 

regulatory β-subunits (24–28 kD) in various combinations. CK2 possesses constitutive catalytic 
activity with the ability to phosphorylate more than 300 physiological substrates and does not require 

phosphorylation by other kinases for activation [2]. Naturally, these features make CK2 appear at 

extremely diverse points of cell signaling pathways, including PI3K/Akt and Wnt signaling cascades, 
NF-κB transcription, and the DNA damage response (reviewed in refs. [1] and [4]), and be involved in 

a number of cellular events contributing to the development of various disorders, particularly cancer. 

These data, in conjunction with the observation that many viruses exploit CK2 as phosphorylating 
agent of proteins essential to their life cycle [2], have made CK2 an attractive yet underexploited new 

therapeutic target for the treatment of cancer [5]. 

To study the function of protein kinase CK2, an effective approach is the use of small molecule 
inhibitors. Thus, intensive efforts have been devoted toward the development of new potent and 

selective CK2 inhibitors which provides a powerful tool to extend our knowledge about CK2 function 

as well as to regulate its activity both in case of health and disease. Most protein kinase inhibitors of 
practical interest, including many of those that have entered clinical practice, are competitive with 

respect to the phosphodonor substrate ATP, which indicates that the binding modes of inhibitors and 

ATP are mutually exclusive [6]. Compared with most of other protein kinases, CK2 has a smaller ATP 
binding site as a result of the presence of unique bulky residues [7], allowing for the design of highly 

selective low molecular weight ATP-competitive inhibitors [8,9]. Up to now, many classes of  

ATP-competitive CK2 inhibitors such as hydroxyantraquinones, hydroxylcoumarines, flavonoids, 
halogenate benzimidazoles and indoloquinazoline [6] have already been discovered, some of which 

achieved the promising inhibition potency in enzyme assays. Especially, some compounds like  

3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC) [10] outstand themselves by their advantage 
that their coumarinic scaffold does not act as a DNA intercalator, a property that reduces the side 

effects with respect to the emodin related inhibitors having antraquinone scaffolds. Despite these 

encouraging advances, development of potent and selective CK2 inhibitors still remains a difficult task 
for scientists [11,12]. In order to facilitate the drug discovery process, in silico screening and library 

design as a productive and cost-effective technology in design of novel lead compounds should be 



Int. J. Mol. Sci. 2011, 12 

 

 

7006 

used in combination with experimental practices [13]. Presently, three-dimensional quantitative 

structure–activity relationship (3D-QSAR) method, including comparative molecular field analysis 
(CoMFA) [14] and comparative molecular similarity analysis (CoMSIA) [15] which have been widely 

used in drug design, is a useful tool to rationalize the molecular structural variations with their 

inhibitory activities. Together with the visualized contour maps of 3D-QSAR model, docking study 
and molecular dynamics (MD) simulation [12], it could provide deep insight into understanding the 

QSAR by taking into account the structural properties of the active site of protein, and thus could more 

effectively direct the design of new potential inhibitors. 
Recent studies suggested that, due to its diverse pharmacological properties and therapeutic 

applications, CX-4945 has been regarded as the most promising candidates against CK2 [15].  

To improve the medicinal properties and eliminate or reduce untoward effects of these compounds, 
several groups have performed a series of optimization procedures on them, resulting in some 

compounds with good activity both in the enzymatic and cell culture assays [15,16]. CX-4945, as the 

only one orally administered highly selective and potent CK2 inhibitor, has entered phase I clinical 
trials [16]. Thus development of new potent and selective CK2 inhibitors is a task of great importance. 

In this study, low energy conformation with ligand-based and receptor-based alignments was employed 

to build 3D-QSAR models for CX-4945 derivates. The predictive abilities of the obtained models were 
validated statistically with a representative test set of compounds. In addition, docking analysis and 

molecular dynamics (MD) simulation were also performed to elucidate the probable binding modes of 

these inhibitors. The combined in silico approaches have generated several 3D-QSAR models to gain 
insight into the key structural factors affecting their inhibitory activity and thus aid in designing new 

potent CK2 inhibitors with fewer side effects.  

2. Materials and Methods 

2.1. Data Sets 

By removing compounds with unspecified inhibitory activity or undefined stereochemistry, a total 

of 50 CX-4945 analogues were taken from the literature [17]. All in vitro biological activities (IC50) 
were converted into the corresponding pIC50 (−lg IC50) values, which were used as dependent variables 

in the QSAR study. The total data set of analogues was divided into training and test sets in a ratio of 

4:1. The structures and corresponding pIC50 values of the compounds in the training and test sets are 
given in Table 1. As a general rule, for a reliable 3D-QSAR model, the spread of activity should cover 

at least three log units, and there ideally should be a minimum of 15–20 compounds in the training  

set [18]. The activity range of CX-4945 derivatives is from 5.900 to 9.000 pIC50 units (see Table 1), 
covering four log activity distribution intervals, and there were 40 compounds in the training set. 
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Table 1. The structures of the training and test set molecules of CX-4945 CK2 inhibitors. 

No. Structure IC50 (µM) pIC50 

1 

 

0.08 7.097 

 

No.  R2 IC50 (µM) pIC50 

2 –CO–NH– –COOH 2.1 5.678 

3 † –CO–N((CH2)3OH)– –COOH 1.5 5.824 

4 –(C–O(CH2)3OH)=N– –COOH 0.99 6.004 

5 –(C–NH(CH2)3OH)=N– –COOH 0.75 6.125 

 
No. –NR3R4 R2 IC50 (µM) pIC50 

6 –NH–(CH2)2OH –COOH 1.26 5.900 

7 † –NH–(CH2)2NMe2 –COOH 0.102 6.991 

8 –Pyrrolidino –COOH 1.780 5.750 

9 –NH–phenyl –COOH 0.092 7.036 

10 –NMe–phenyl –COOH 1.070 5.971 

11 † –NH–(2–Me–phenyl) –COOH 0.970 6.013 

12 –NH–phenyl –C-(1H-tetrazol-5-yl) 0.096 7.018 

13 –NH–(CH2)2Ph –COOH 0.516 6.287 

14 –NH–(4–F–phenyl) –COOH 0.219 6.660 

15 –NH–(3–F–phenyl) –COOH 0.068 7.168 

16 † –NH–(4–Cl–phenyl) –COOH 0.178 6.750 

17 –NH–(3–Cl–phenyl) –COOH 0.032 7.495 

18 –NH–(3–MeO–phenyl) –COOH 0.077 7.114 

19 –NH–(3–acetylenyl–phenyl) –COOH 0.028 7.553 

20 –NH–(3–(PhO)–phenyl) –COOH 0.395 6.403 

21 † –NH–(3–(CONHMe)–phenyl) –COOH 0.129 6.889 

22 –NH–(3–Cl–phenyl) –C-(1H-tetrazol-5-yl) 0.129 6.889 

23 –NH–(3–F–phenyl) –C-(1H-tetrazol-5-yl) 0.075 7.125 

 
No. A ring IC50 (µM) pIC50 

24 
 

0.092 7.036 
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Table 1. Cont. 

25 
 

0.006 8.222 

 
No. R3 IC50 (µM) pIC50 

26 –(CH2)2NMe 0.025 7.602 

27 † –cyclopentyl 0.027 7.569 

28 –OMe 0.008 8.097 

29 –cyclopropyl 0.016 7.796 

30 –(CH2)2O-i-Pr 0.011 7.959 

31 –(CH2)phenyl 0.009 8.046 

32 † –(CH2)2phenyl 0.003 8.523 

33 –(CH2)3phenyl 0.016 7.796 

34 –(3-MeO-phenyl) 0.004 8.398 

35 –(3-Cl,4-F-phenyl) 0.004 8.398 

36 –(3-F-phenyl) 0.005 8.301 

37 † –(2-Cl-phenyl) 0.008 8.097 

38 –(3-Cl-phenyl) 0.001 9.000 

39 –(4-Cl-phenyl) 0.007 8.155 

40 –(3-acetylenyl-phenyl) 0.003 8.523 

41 –(3-CN-phenyl) 0.004 8.398 

42 –(4-(PhO)-phenyl) 0.069 7.161 

43 † –(3-(PhO)-phenyl) 0.019 7.721 

44 –(3-(SO2NH2)-phenyl) 0.043 7.367 

 
No. A1 A3 A4 R1 R2 R3 IC50 (µM) pIC50 

45 –CH= –N= –CH= –H –C-(1H-tetrazol-3-yl) –H 0.045 7.347 

46 ‡ –CH= –N= –CH= –H –CONH2 –H 0.417 6.380 

47 –CH= –N= –CH= –Me –COOH –H 0.006 8.222 

48 –CH= –N= –CH= –H –H –COOH 0.350 6.456 

49 –N= –CH= –N= –H –COOH –H 0.220 6.658 

50 † –N= –N= –CH= –H –COOH –H 0.007 8.155 
† Test set molecule; ‡ Outlier. 

2.2. Conformational Sampling and Alignment 

Molecular alignment of compounds is an important step in the development of CoMFA and 

CoMSIA models. To derive the best possible 3D-QSAR statistical model, two different alignment rules 
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(ligand-based and receptor-based alignments) were adopted in this study. In the ligand-based alignment, 

the 3D structures of all compounds were constructed and subjected to full geometry optimization using 
the sketch molecule module of SYBYL 6.9 package (Tripos Associates, St. Louis, MO). Partial atomic 

charges were calculated by the Gasteiger-Huckel method, and energy minimization was performed by 

using the Tripos force field and the Powell conjugate gradient algorithm with a convergence criterion 
of 0.05 kcal/mol·Å. Then inhibitors were superimposed on the most potent molecule (compound 38) 

according to the common substructure depicted in bold (Figure 1(A)), and the resulting ligand-based 

alignment model is shown in Figure 1(B). In the receptor-based alignment, the protonation states of the 
titratable groups of CK2 were checked by using Whatif [19], the model pKas for ligand titratable 

groups were calculated by SPARC [20]. Then computational docking was performed using Surflex 

module of SYBYL package. All inhibitors were aligned according to the bioactive conformations in 
the binding pocket of CK2α (PDB entry code: 3NGA) obtained from docking with Gasteiger Huckel 

charge (Figure 1(C)).  

Figure 1. (A) Compound 38 used as a template for alignment. The common substructure is 
shown in bold. Ligand- and receptor-based alignments of all the compounds are shown in 

panels (B) and (C), respectively. 

 

2.3. CoMFA and CoMSIA 3D-QSAR Models 

The original setup for CoMFA and CoMSIA modeling was similar to our earlier work [13].  

In summary, CoMFA was carried out using steric and electrostatic potential fields while CoMSIA was 
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based on five fields (steric, electrostatic, hydrophobic, H-bond donors and acceptors). All the 

calculations were performed using Sybyl software. 
In the partial least-square (PLS) regression analyses, CoMFA and CoMSIA descriptors were used as 

independent variables and the pIC50 values were used as dependent variables to derive the 3D-QSAR 

models. The predictive values of the obtained models were evaluated using leave-one-out (LOO) cross 
validation method. The correlation coefficient R2, F value and standard error of estimates (SEE) were 

calculated. The models were also evaluated for their ability to predict the activity of compounds in the 

test set. The predictive R2 (denoted by Rpred
2) was calculated by Equation 1.  

2
pred 1 (PRESS SD)R = − −  (1) 

where SD is the sum of squared deviations between the biological activities of the test set and the 
mean activity of the training set molecules, and PRESS is the sum of squared deviation between the 

actual and predicted activities of the test set molecules. The optimum number of components (ONC) 

corresponding to the lowest PRESS value was used for deriving the final PLS regression models.  

2.4. Molecular Dynamics 

Molecular dynamics simulations were carried out using the Amber 10 package [21] by starting the 

docked structure. Ligand parameters and charges were determined with the antechamber module of 
Amber 10 based on the general atom force field (GAFF) [22] and the AM1-BCC charge scheme [23]. 

The standard AMBER force field for bioorganic systems (ff03) [24] was used to describe the protein 

parameters. All systems were solvated in a rectangular box of TIP3P water [25], keeping a minimum 
distance of 10 Å between the solute and each face of the box. The system was neutralized, and 0.15 M 

sodium chloride was added to the simulation box. To remove possible bad contacts, the complex was 

energy minimized by a multistep procedure including 500 steepest-descent steps followed by 9500 
conjugate-gradient steps. 

Then the solvent molecules in the minimized models were heated up to 300 K and equilibrated  

200 ps with the positional restraints on the protein heavy atoms. The MD simulations were performed 
in the NPT ensemble at constant pressure (1 atm) with isotropic position scaling and at 300 K. Finally, 

the production phase was run for 5 ns with a 2 fs time step. The long-range electrostatics was treated 

by using the particle-mesh-Ewald (PME) method [26] with default values. 

3. Results and Discussion 

Since the structural alignment of the compounds is crucial to develop a successful 3D-QSAR model, 

in this study, two rules (both ligand- and docking-based) are employed to align each class of 
compounds to derive the reliable CoMFA and CoMSIA models. The results obtained from both 

alignment methods using the same training set compounds are summarized in Table 2. The selected 

test set (representing 25% of the training set), which was not included in the model training process, 
was used to evaluate the predictive power of the CoMFA and CoMSIA models. There are several 

statistical parameters, i.e., the cross-validated correlation coefficient (rcv
2), non-cross-validated 

correlation coefficient (rncv
2), standard error of estimate (SEE) and F-statistic values (F) that are 

inherent in appraising a QSAR model for the compounds to be studied. 
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For CoMSIA models, all possible combinations of fields were evaluated to determine which of the 

five fields are actually needed for the generation of a predictive model, because the five descriptor 
fields are not totally independent of each other and such dependencies of individual fields might 

decrease the statistical significance of the models. In the present work all 31 possible combinations of 

the descriptors were attempted to build the optimum models with highest Rcv
2 values and other proper 

statistical results. The resultant optimum models exhibited agreeable statistical results for this class of 

compounds (Table 2). 

Table 2. Summary of Comparative Molecular Field Analysis (CoMFA) and Comparative 
Molecular Similarity Index Analysis (CoMSIA) results of ligand- and docking-based 

models about CX-4945 derivatives. 

Parameters Ligand-based alignment Docking-based alignment 

CoMFA CoMSIA CoMFA CoMSIA 

Rcv
2 0.618 0.681 0.562 0.545 

ONC 3 3 4 5 
SEP 0.567 0.518 0.616 0.637 
Rncv

2 0.860 0.828 0.877 0.791 
SEE 0.343 0.380 0.326 0.187 

F value 71.892 56.197 62.523 173.161 
Rpred

2 0.892 0.843 0.556 0.580 
Field contribution 

Steric 0.423 0.180 0.668 0.151 
Electrostatic 0.567 0.820 0.332 0.246 
Hydrophobic - - - 0.321 

Acceptor - - - 0.282 
Rcv

2 = Cross-validated correlation coefficient using leave-one-out procedure;  
Rncv

2 = Non-cross-validated correlation coefficient; SEE = Standard error of estimate;  
F = Ratio of Rncv

2 explained to unexplained = Rncv
2/(1 − Rncv

2); Rpred
2 = Predicted correlation 

coefficient for the test set of compounds; SEP = Standard error of prediction; ONC = Optimal 
number of principal components.  

3.1. Validation of the 3D QSAR Models 

CoMFA model validated internally yielded Rcv
2 = 0.618 with three optimum components and  

Rcv
2 = 0.562 with four optimum components for the ligand- and docking-based alignment methods, 

respectively. Then the number of components identified in the LOO cross-validation process was used 

in the final non-cross-validated PLS run. As a consequence, the training set of 40 compounds led to 

Rncv
2 = 0.860, SEE = 0.343, F = 71.892, Rpred

2 = 0.892 and Rncv
2 = 0.877, SEE = 0.326, F = 62.523, 

Rpred
2 = 0.556 for ligand- and docking-based models, respectively. The electrostatic field makes more 

contribution to the activity (~56.7%) in ligand-based CoMFA model while less (~33.2%) in the 

docking-based one. 
CoMSIA modeling gave Rcv

2 = 0.681 at three PLS components, Rncv
2 = 0.828, Rpred

2 = 0.843,  

SEE = 0.380 and SEP = 0.518 with steric of 18.0% and electrostatic of 82.0% field contributions for 

the ligand-based alignment, while yielded Rcv
2 = 0.545 at five PLS components, Rncv

2 = 0.791,  
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Rpred
2 = 0.580, SEE = 0.187 and SEP = 0.637 with steric of 15.1%, electrostatic of 24.6%, hydrophobic 

of 32.1% and H-bond acceptor of 28.2% field contributions for the docking-based alignment, 
respectively. All these results suggested that ligand-based alignment of this class of compounds led to 

the models with larger Rcv
2, Rncv

2, Rpred
2 and lower SEE, SEP values than those obtained from  

receptor-based alignment. Therefore, the ligand-based 3D-QSAR models of this class of compounds 
were chosen as the optimal model in this work and utilized for further discussion. 

During the cross-validation procedure, compound 46 is detected as an outlier (whose residual 

between the experimental and predicted values is more than 1.5 log unit) for both CoMFA and 
CoMSIA models. Some reasons may cause this appearance as an outlier. Compound 46 has a unique 

structure feature including an amide segment probably responsible for specific interactions which may 

make it an outlier. To test the predictive ability of the model, a test set of ten molecules excluded from 
the model derivation was employed. The predictive correlation coefficients Rpred

2 of ligand-based 

CoMFA and CoMSIA models were 0.892 and 0.843, respectively. The average absolute residuals of 

the predicted vs. corresponding experimental pIC50 values were 0.256 and 0.259, respectively. The plot 
of actual activity versus predicted pIC50 of the training set and test set was illustrated in Figure 2. The 

plots represent a uniform distribution around the regression line, indicating the satisfactory predictive 

capability and accuracy of the model. 

Figure 2. (A) Plot of the predicted pIC50 versus the experimental pIC50 values for CoMFA 

analysis. (B) Plot of predicted activities versus experimental activities for CoMSIA 

analysis. The solid lines are the regression lines for the fitted and predicted bioactivities of 
training and test compounds. 

 

3.2. 3D-QSAR Contour Maps 

CoMFA and CoMSIA contour maps are generated by interpolating the products between the  

3D-QSAR coefficients and their associated standard deviations to visualize the information of the 

derived 3D-QSAR models. The maps depict regions having scaled coefficients greater than 80% 
(favored) or less than 20% (disfavored). To aid in visualization, the most active compound is shown 

with the contour maps which indicate regions in 3D space around the molecules where changes in the 

particular physicochemical properties are able to explain the experimental binding differences. The 
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combination of CoMFA and CoMSIA approaches enables one to check the convergence of the results, 

or to obtain conclusions that can complement each other [27,28]. In such a case, exploiting the results 
of both approaches leads to an optimal interpretation at the 3D level of the QSAR [28,29]. Thus, they 

not only rationalize the quantitative relationship between the molecular structures and their activity, 

but also provide valuable structural optimization clues for drug design. 
The CoMFA contour maps (Figure 3A,B) generated from the model derived by steric/electrostatic 

field combination are the same as the CoMSIA contour maps (Figure 4A,B) obtained by 

steric/electrostatic field combination, indicating the convergence of the results. For steric fields, the 
green and yellow contours describe regions of space around the molecules, in which green colored 

regions indicate areas where increased steric bulk links with enhanced activity, and yellow regions 

suggest areas where increased steric bulk is unfavorable to activity. Compound 38 was selected as a 
reference molecule to aid the visualization. As illustrated in Figures 3(A) and 4(A), a median green 

contour is found adjacent to the positions -19 and -20 of ring D, thus molecules which carry bulkier 

substituents such as chlorine at position-20 (compound 38) are more active than those compounds with 
less bulky substitutions like fluorine at the same position (compound 36). Thereby, an addition of 

bulky groups at these positions around the green contour probably improves the potency of the 

inhibitors. Another group of CoMFA and CoMSIA sterically disfavored yellow contours are present 
outside ring D, which strongly delimits the size of the side-chain around ring-D. For instance, the low 

potency of compounds like 10, 11 and 33 is probably attributed to the presence of too bulky 

substituents at position-15, which conflicts with the yellow forbidden region. This suggests that the 
optimal length of the substituents at position-15 will enhance the activity of these compounds  

(32 and 38). Furthermore, the yellow contour around position-19 and -20 of ring D is farther than the 

green one, indicating too bulky groups at these positions are unfavorable.  

Figure 3. CoMFA StDev * Coeff contour plots. (A) Steric (green/yellow) contour map 

combined with compound 38. Green contours indicate regions where bulky groups 

increase activity; yellow contours indicate regions where bulky groups decrease activity. 
(B) Electrostatic contour map (red/blue) in combination with compound 38. Red contours 

indicate regions where negative charges increase activity; blue contours indicate regions 

where positive charges increase activity. 
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In the electrostatic field contour maps of CoMSIA and CoMFA, the red contours show favorable 

electronegative regions, and the blue contours show the regions where the electropositive charges are 
favored for enhancing the bioactivity. As shown in Figures 3B and 4B, a huge blue contour around ring 

C indicates the importance of electropositive substituent at this position to the inhibitory activity. For 

examples, compound 17 with a –COOH at position-2 of ring C exhibited better potency than 
compound 22 which possesses a -C-(1H-tetrazol-5-yl) group at the same position. In addition, another 

electropositive favorable blue contour near position-15 suggests that maybe substituents more 

positively charged (like the –NH– of compound 10) than –NMe– (of compound 09) in this region are 
good for increasing the activity. Therefore, reasonable structural modifications can be carried out to 

improve the activity and selectivity of CK2α inhibitors. Another red contour near position-12 of ring A 

indicates that electronegative groups at this region will enhance the activity. For examples, compound 50, 
having relatively electropositive group (=N– at position-12) is more active than compound 49 wherein 

=CH– group is attached. Compound 25 having relatively electronegative group ( ) is more active 

than compound 24 (with  group at the same location).  

Figure 4. CoMSIA StDev * Coeff contour plots. (A) Steric (green/yellow) contour map 

combined with compound 38. Green contours indicate regions where bulky groups 

increase activity; yellow contours indicate regions where bulky groups decrease activity. 
(B) Electrostatic contour map (red/blue) in combination with compound 38. Red contours 

indicate regions where negative charges increase activity; blue contours indicate regions 

where positive charges increase activity. 

 

3.3. Docking Analysis and Comparison with 3D Contour Maps 

Besides the ligand-based 3D-QSAR studies, molecular docking for all 50 inhibitors was performed 

not only to understand the nature of interactions between these compounds and CK2α kinase but also 
to complement the 3D-QSAR analysis for the rational design of drugs. 

Before docking analysis, a redocking process of the cocrystallized ligand compound 38 (CX-4945) 

into CK2α receptor (PDB code: 3NGA) was carried out to validate the docking protocol and 
parameters used. The top-ranked docked solution was found in one favorable cluster of docking poses 
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with average root-mean-square deviation (RMSD) values ranging from 0.3 to 1.9 Å for the 10 top-ranked 

docking poses, suggesting the binding mode is successfully reproduced. Additionally, several key 
residues including Lys68, Glu81, Val116, His160, and Asp175 appear in the binding cavity, confirming 

the reasonability of docking protocol. For this class of compounds, the docking results in the absence 

of the crystallized waters are poorer than those in the presence of crystallized waters. This is probably 
that crystallized waters are crucial for mediating the interactions between ligand and the protein. 

Compound 38 was selected as a reference to analyze the binding mode of docking shown in  

Figure 5. Compound 38 locates at a cavity consisting of Leu45, Gly46, Arg47, Val53, Val66, Lys68, 
Ile95, Phe113, Glu114, His115, Val116, Asn118, His160, Met163, Ile174, Asp175, and Trp176. The 

ligand is anchored in the binding site mainly via three H-bonds and two water-mediated contacts with 

the protein. The carboxyl group at position-2 of ring C forms an H-bond with side chain of Lys68  
(–O···HN, 1.9 Å) and the backbone of Asp175 (–O···NH, 1.9 Å), and the nitrogen atom at position-12 

of ring A forms an H-bond with the backbone of Val116 (–N···NH, 1.7 Å). The hydroxyl group at 

position-2 forms two H-bonds with water1 (W1), which itself forms two H-bonds to the backbone  
–NH– of Trp176 and side chain Glu81, respectively. Carbonyl group forms an H-bond with –OH of 

Asp175 through water2 (W2). These results are consistent with the CoMFA and CoMSIA electrostatic 

blue contour at position-2 of ring C which suggests that electropositive substituents in this area can 
increase the activity, and the red contour at position-12 of ring A which indicates that electronegative 

substituents in this area can increase the activity. Furthermore, no amino acid residues appear upon the 

plane of the benzene ring (ring D), indicating that bulky substituents in this position are favored for 
inhibitory activity. This is also evidenced by the presence of a sterically favorable green contour 

around this area as seen by the CoMFA and CoMSIA models. While the area above or below ring D is 

occupied by residues of Leu45, Gly46 and His160, suggesting that the substituents bearing side chains 
in this position will conflict with these residues and decrease the inhibitor activity. Therefore, the ring D 

substituent of compound 38 that fits snugly into this hydrophobic cleft would be preferential. 

3.4. Comparison with Binding Modes of 3,8-Dibromo-7-hydroxy-4-methylchromen-2-one (DBC)  

The binding modes of this type of inhibitors were compared with those of DBC on purpose to 

explore their similarities and differences and to get a better understanding of the variations in their 

biological activities. DBC is the derivative of coumarin which belongs to natural benzopyrone 
derivatives. Since benzopyrones widely exist in vegetables, fruit, seeds, nuts, coffee, tea and wine [30], 

it is not difficult to see why extensive study on their pharmacological and therapeutic properties  

has been underway over many years [30,31]. Especially, coumarin is a natural substance that  
has shown antitumor activity in vivo, with the effect believed to be due to its metabolites (e.g.,  

7-hydroxycoumarin) [31]. 

Based on the docking study, we found that H-bond and water-mediated interactions are both 
important between the CX-4945 inhibitors and the CK2α receptor. For CX-4945 (shown in Figure 5A), 

three direct H-bonds are formed between compound 38 and residues Lys68, Val116 and Asp175. Water 

molecule (W1) mediated interactions are formed between compound 38 and residues Glu81 and 
Trp176. As regards DBC (shown in Figure 5B), it locates at a hydrophobic cavity consisting of the side 

chains of Leu45, Gly46, Val53, Lys68, Ile66, Phe113, Glu114, Val116, Met163, Ile174, Asp175, 
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Trp176 and Gly177. DBC hydroxyl group forms a direct H-bond with residues Lys68 (–O···HN, 1.8 Å) 

and Asp175 (–O···HN, 2.5 Å), respectively. Furthermore, the hydroxyl group of DBC establishes 
another H-bond with Trp176 backbone via a water molecule (W1), which further confirms that this 

structure is crucial to the DBC inhibitory activities. 

By comparison, we obtained the following conclusions: (1) Note that the DBC is always co-planar, 
but in the CX-4945 case the inhibitor is displaced laterally so that it overlaps different sections of the 

hydrophobic cavity, and in the latter it enters the cavity deeper than the DBC, reaching the hinge 

region, where it establishes more bonds with the receptor; (2) Lys68 and Asp175 are both involved in 
the binding modes, indicating that both of them are important for the interaction between these two 

series of inhibitors and the CK2α protein; (3) Both inhibitors form more than two H-bonds with the 

CK2α, indicating that they exhibit potent inhibitory activity; (4) Besides the direct H-bond, the 
interaction mediated by water is also vital for the recognition process of both classes of inhibitors. 

Particularly, water molecule that mediates an H-bond between the OH group of inhibitors and the 

Trp176 backbone of CK2α may be conserved. 

Figure 5. Plot of the CK2α structures of the binding site with ligand. (A) The binding 

modes between CX-4945 and CK2α (PDB code: 3NGA). (B) The binding modes between 

DBC and CK2α (PDB code: 2QC6). H-bonds are denoted as dotted black lines. 

 

3.5. MD Simulations Analysis 

To investigate the positional and conformational changes of inhibitors relative to the binding site, a 

5 ns MD simulation was performed based on the crystal structure of CK2α in complex with CX-4945 
(PDB code:3NGA). Initially, to determine the conformational stability of the CK2α structure, the 

RMSD over the lifetime with respect to its starting structure, is examined. The RMSD of all backbone 

atoms as a function of time is depicted in Figure 6(A). After 1.5 ns, the RMSD of the complex reaches 
about 2 Å and retains this value throughout the simulation, indicating that the overall structure of the 

CK2α has reached a stable conformation in time during the simulations. 

For CK2α, CX-4945 is captured in the ATP binding site sandwiched between the C- and N-terminal 
lobes (Figure 7(A)). We found that the condensed planar structure of CX-4945 comprising three flat 
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rings A, B and C is remarkably stable, displaying backbone RMSF values around 0.6 Å. Whereas the 

side chain (ring D) shows pronounced flexibility with RMSF 2.0 Å. In the CK2α binding cleft, the 
condensed planar structure of CX-4945 binds to the CK2α through the van der Waals contacts and 

hydrophobic interactions with a hydrophobic surface of the CK2α binding cleft formed by residues 

Leu45, Gly46, Val53, Val66, Ile95, Phe113, Met163, Ile174, Asp175 and Trp176 (Figure 8(A)). 
Simultaneously, three direct (between the carboxyl group of ring C and Lys68, between the carboxyl 

group of ring C and Asp175, and between the nitrogen of ring A and Val116) and W1-mediated  

H-bonds observed from the crystal structure keep stability during the whole simulation (Figure 8(A), 
bottom left and top right), while the W2-mediated H-bond is not conserved in the simulation. These 

interactions including W1-mediated H-bonds enable the CK2α to grasp the ligand tightly.  

At the “mouth” of the CK2α binding cleft where side-chain ring D lies (Figure 8(B)), Gly-rich loop 
backbone (residues 46–51 in CK2α) as the upper lip shows a significant flexibility, which moves ‘‘up’’ 

and is shifted away from the lower lip His160. Meanwhile, the imidazolyl of His160 flips downward, 

thus opening the mouth of the cleft. This enlarged space of the mouth enables ring D to rotate freely to 
explore an optimum pose. This observation highlights the flexibility of the Gly-rich loop and His160, 

which is able to adjust them to the type of ligand present in the cavity. 

Figure 6. (A) Time evolution of the root-mean-square deviation (RMSD) of CK2α 
measured from the corresponding initial structure. (B) View of superimposed backbone 

atoms of the average structure of the molecular dynamics (MD) simulation (magenta) and 

the starting structure (blue) for CK2α. CX-4945 is shown as ball and stick in magenta for the 
average structure and in blue for initial complex, respectively. 
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Figure 7. (A) Overall structure of the CK2α in complex with CX-4945. The N-terminal 

lobe, which is rich in β-strands and ends at Asn118, is implicated in nucleotide binding. 
The C-terminal lobe is mainly α-helical and serves as a docking site for substrates.  

CX-4945 binds to the ATP-binding site near the hinge region, which unites both lobes. 

(B) The binding mode between CX-4945 and CK2α. CX-4945 binds to CK2α directly or 
through the water molecules W1 and W2. H-bonds are shown as dotted green lines; Active 

site amino acid residues are represented as sticks; the inhibitor is denoted as stick and 

ball model. 

 

Figure 8. (A) Plot of the MD-simulated structure of the binding site with CX-4945. H-bonds 
are shown as dotted black lines, active site amino acid residues are represented as sticks, 

the inhibitor is shown as stick and ball model, W1 is represented as Vdw, respectively. 

Three direct (D1, D2 and D3) and W1-mediated (D4, D5 and D6) H-bonds keep stability 
during the whole simulation (bottom left), the direct H-bond between the nitrogen of ring A 

and Val116 observed from the crystal structure is also stable in the simulation (top right). 

(B) Superposition of the initial and final snapshots of the CK2α simulation. For clarity, 
only the Gly-rich loop is colored in gray (initial) and red (final). Residue His160 in final 

structure is shown in red stick presentation, while in initial structure is shown in stick 

presentations: cyan for carbon, white for hydrogen, red for oxygen, and blue for nitrogen 
atoms, respectively. As indicated by the red arrows, the Gly-rich loop moves upward while 

His160 flips downward, thus opening the mouth of the cleft. 
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4. Conclusion 

In this study, the ligand-based and receptor-based 3D-QSAR studies using CoMFA and CoMSIA 
approaches have been performed on CX-4945 derivatives as CK2 inhibitors. From the resultant model, 

the established ligand-based 3D-QSAR models show good correlative and predictive ability in terms 

of higher Q2, Rncv
2, and Rpred

2 values. The resulting contour maps produced by the best CoMFA and 
CoMSIA models provide useful information about the intermolecular interactions of inhibitors with 

the surrounding environment. The results are in good correlation with the specific interactions between 

the inhibitors and the binding pocket of human CK2α identified in the docking analysis. MD 
simulation results of CK2α in complex with CX-4945 reveal that CX-4945 forms several direct or 

water-bridged H-bonds with the participation of W1, Leu45, Lys68, Glu81, Val116 and Trp176. These 

hydrogen bonds allow CX-4945 to bind to CK2α strongly and selectively. All these results will be 
extremely beneficial for guiding future structural modifications and developing novel and potent 

CK2 inhibitors. 
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