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Abstract: A new possibility for estimating the octanol/water coefficient (log P)  

was investigated using only one descriptor, the semi-empirical electrotopological index 

(ISET). The predictability of four octanol/water partition coefficient (log P) calculation 

models was compared using a set of 131 aliphatic organic compounds from five different 

classes. Log P values were calculated employing atomic-contribution methods, as in the 

Ghose/Crippen approach and its later refinement, AlogP; using fragmental methods 

through the ClogP method; and employing an approach considering the whole molecule 

using topological indices with the MlogP method. The efficiency and the applicability of 

the ISET in terms of calculating log P were demonstrated through good statistical quality  

(r > 0.99; s < 0.18), high internal stability and good predictive ability for an external group 

of compounds in the same order as the widely used models based on the fragmental 

method, ClogP, and the atomic contribution method, AlogP, which are among the most 

used methods of predicting log P. 
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1. Introduction 

The logarithm of the molecular 1-octanol-water partition coefficient (log P) of compounds, which is 

a measure of hydrophobicity, is widely used in numerous Quantitative Structure-Activity Relationship 

(QSAR) models for predicting the pharmaceutical properties of molecules [1–7]. In medicinal 

chemistry there is continued interest in developing methods of deriving log P based on molecular 

structure. From the experimental point of view the equilibrium methods for the determination of 

partition coefficients are difficult or, in some cases, impossible, as in the case of instable compounds or 

due to impurities. Other difficulties are associated with the formation of stable emulsions after shaking 

or compounds which have a strong preference for one of the phases of the system. Thus, the agreement 

between the theoretical and experimental approaches to the determination of partition coefficients 

continues to be a focus of scientific interest [8]. Despite the huge amount of experimental data on the 

log P values of organic structures, this is still insufficient compared with the number of compounds for 

which log P is of interest [5]. The first method of calculating log P was the π-system, developed by 

Hansch and Fujita [9,10]. Several different methods for calculating the log P values from chemical 

structure have in common that molecules are cut into groups or atoms; summing the fragmental or 

single-atom contribution results, to give the final log P value. 

The most widely used method for calculating log P is the fragmental method [11], which is based 

on the additive constitutive properties of log P. In the case of the atomic-contribution method [12] the 

atom type is used instead of a fragment. This approach was developed in an effort to attribute 

properties to an atom within a molecular structure and most of these methods do not use correction 

factors, as in the fragmental methods. The more recent approaches consider the molecule as a whole. 

These models attempt to make theoretical estimations of log P, using graph-theoretical descriptors, 

molecular properties or quantum-chemical descriptors to quantify log P, some methods incorporating 

the effects of the three-dimensional structure and the electronic properties of the molecule [13–22]. 

Several researchers have compared the predictive ability of log P calculation models. A review was 

published by Mannhold and Waterbeemd in 2001 comparing log P calculations obtained from different 

models [5]. 

Recently, a new topological index, called the semi-empirical electrotopological index (ISET), was 

developed by our research group in order to obtain a molecular descriptor not directly related to the 

chromatographic retention indices (RI) but based on values calculated by quantum mechanics to obtain 

Quantitative Structure-Property Relationship (QSPR) for different classes of organic compounds. This 

new approach takes into account the charges of the heteroatom and the carbon atoms attached to them 

through the definition of an equivalent local dipole moment [23–26]. 

The main goal of this study is to compare the predictive power of four log P calculation models and 

ISET for a set of 131 aliphatic organic compounds from five different classes. The external validation of 
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the models is performed using the cross-validation coefficient, rcv
2
, and seven experimental log P 

values for aliphatic alcohols are calculated, which are not included in the training sets for each model. 

2. Methods 

The QSPR study of these aliphatic organic compounds was performed with the selection of the  

data set, generation of molecular descriptors, simple linear regression statistical analysis and model 

validation techniques. The model applicability was further examined by plotting predicted data  

against experimental data for all of the compounds. All regression analysis was carried out using the 

Origin [27] and TSAR programs [28]. The statistical parameters used to test the prediction efficiency 

of the models obtained were the correlation coefficient (r), standard deviation (s), coefficient of 

determination (r
2
) and null hypothesis test (F-test). The validity of the model was tested with the  

cross-validation coefficient (rcv
2
) using “leave-one-out” in the software program TSAR 3.3 for 

windows [28]. A group of seven compounds, not included in the original QSPR models, was employed 

for the external validation. 

2.1. Data Set and Calculation Models 

The experimental Log P values for the organic compound groups studied herein were taken from 

the literature [6,7]. Theoretical values of log P for 131 aliphatic organic compounds were obtained 

using four log P calculation models. Log P calculation methods can be roughly divided into two major 

classes: substructure approaches which have in common that molecules are cut into groups (fragmental 

methods) or atoms (atomic-contribution methods) (property-based models); and whole-molecule 

approaches that consider the entire molecule using molecular lipophilicity potentials, topological 

indices or molecular properties. Atomic-contribution methods do not usually require correction factors. 

The almost identical methodological background of the fragmental and atomic-contribution methods 

indicates their interchangeability. 

Log P values were calculated employing atomic-contribution methods as in the Ghose/Crippen 

approach [12] (available in the Hyperchem package [29]) or its later refinement, AlogP [30,31], and 

using fragmental methods such as the ClogP method [32] available in the Osiris Property Explorer 

package [33]. ClogP and AlogP methods are among the most prominent methods of predicting log P. 

Both methods have been implemented as part of free and commercial software programs for molecular 

modeling applications [29,33,34]. Values of log P derived from the whole-molecule approach were 

calculated using topological indices as in the MlogP method [35]. AlogP and MlogP are available in the 

VCCLAB on-line software package (ALOGPS 2.1 program) [34]. The calculated and the experimental 

log P values for 131 organic compounds in the test set are shown in Table 1. The theoretical values were 

then determined using the models of Ghose/Crippen, AlogP, ClogP, MlogP and the present model 

through the ISET molecular descriptor. As can be seen in Table 1, some experimental log P values are 

missing, which may be related to the inherent difficulties associated with the determination of log P for 

certain compounds. However, their calculated values are included herein to allow future comparison with 

experimental values. 
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Table 1. Semi-Empirical Electrotopological Indices (ISET), calculated values for Log P 

using Atomic-Contribution Methods (Ghose/Crippen and AlogP), Fragmental Method 

(ClogP), Topological indices (MlogP and ISET) and experimental Log P values (Log Pexp) 

for the studied set of compounds. 

No. Class of compounds ISET 
ISET  

Log P 

Ghose/Crippen 

Log P 
AlogP ClogP MlogP Log Pexp 

Hydrocarbon 

01 Ethane 1.9981 1.88 1.30 1.28 1.38 1.76 1.81 

02 Propane 2.8148 2.40 1.69 1.74 1.84 2.28 2.36 

03 N-Butane 3.6343 2.91 2.09 2.20 2.31 2.73 2.89 

04 N-Pentane 4.4457 3.43 2.49 2.65 2.77 3.14 3.39 

05 N-Hexane 5.2622 3.95 2.88 3.11 3.23 3.52 4.00 

06 N-Heptane 6.0787 4.46 3.28 3.57 3.70 3.87 4.50 

07 N-Octane 6.8952 4.98 3.67 4.02 4.16 4.20 5.15 

08 N-Nonane 7.7117 5.49 4.07 4.48 4.63 4.52 5.65 

09 N-Decane 8.5282 6.01 4.47 4.93 5.09 4.82 6.25 

10 N-Undecane 9.3447 6.53 4.86 5.39 5.55 5.11 6.54 

11 N-Dodecane 10.1612 7.04 5.26 5.85 6.02 5.40 6.80 

12 N-Tridecane 10.9777 7.56 5.66 6.30 6.48 5.67 7.50 

13 N-Tetradecane 11.7942 8.08 6.05 6.76 6.95 5.93 8.00 

14 2-Methylpropane 3.5421 2.86 2.02 1.99 2.18 2.73 2.76 

15 3-Methylheptane 6.7641 4.89 3.61 3.36 4.04 3.87  

16 2.4-Dimethylpentane 5.8455 4.31 3.15 3.16 3.45 3.87  

17 Ethene 2.0294 1.20 1.13 0.95 1.15 0.70 1.13 

18 Propene 2.8082 1.74 1.48 1.35 1.55 1.22 1.77 

19 1-Butene 3.5848 2.28 1.87 1.81 2.01 1.67 2.40 

20 1-Pentene 4.3996 2.84 2.27 2.26 2.48 2.08 2.80 

21 1-Hexene 5.2140 3.40 2.67 2.72 2.94 2.46 3.40 

22 1-Heptene 6.0305 3.96 3.06 3.17 3.40 2.81 3.99 

23 1-Octene 6.8606 4.53 3.46 3.63 3.87 3.15 4.57 

24 E-2-Octene 6.7939 4.49 3.41 3.58 3.80 3.15 4.44 

25 2-Ethylhexene 6.5614 4.33 3.22 3.57 3.35 3.15 4.31 

Aldehyde 

01 Acetaldehyde 3.3967 −0.23 −0.58 −0.18 0.43 −0.32 −0.22 

02 Propionaldehyde 4.1866 0.27 0.05 0.48 0.89 0.20 0.30 

03 Butyraldehyde 5.0052 0.79 0.44 0.94 1.36 0.65 0.83 

04 Hexanal 6.6508 1.85 1.24 1.85 2.28 1.44 1.89 

05 Heptanal 7.4709 2.38 1.63 2.31 2.75 1.79 2.42 

06 Octanal 8.2859 2.89 2.03 2.77 3.21 3.04 2.90 

07 2-Methyl-1-Propanal 5.6519 0.73 0.61 0.95 1.23 0.65 0.77 

08 E-2-Butenal 3.8057 0.60 0.52 0.92 1.00 0.55 0.52 

09 E-2-Hexenal 5.4466 1.68 1.32 1.83 1.93 1.34 1.58 
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Table 1. Cont. 

Ketone 

01 Acetone 4.0158 −0.08 0.38 −0.24 0.74 0.20 −0.24 

02 2-Butanone 4.5952 0.30 1.01 0.42 1.21 0.65 0.29 

03 2-Pentanone 5.3987 0.84 1.40 0.88 1.67 1.06 0.91 

04 2-Hexanone 6.1987 1.38 1.80 1.34 2.14 1.44 1.38 

05 2-Heptanone 7.0080 1.92 2.20 1.79 2.60 1.79 1.98 

06 2-Octanone 7.8306 2.48 2.59 2.25 3.06 2.13 2.37 

07 2-Nonanone 8.6458 3.02 2.99 2.70 3.53 3.36 3.14 

08 2-Decanone 9.4583 3.57 3.39 3.16 3.99 3.66 3.73 

09 2-Undecanone 10.2706 4.11 3.78 3.62 4.46 3.95 4.09 

10 2-Dodecanone 11.0872 4.66 4.18 4.07 4.92 4.23 4.55 

11 3-Pentanone 5.3900 0.84 1.64 1.09 1.67 1.06 0.99 

12 3-Methyl-2-Butanone 5.2258 0.73 1.57 0.88 1.55 1.06 0.84 

13 4-Methyl-2-Pentanone 6.0484 1.28 1.73 1.13 2.01 1.44 1.31 

14 5-Nonanone 8.5885 2.98 3.22 2.91 3.53 2.45 2.88 

15 3-Hexanone 6.1931 1.37 2.03 1.55 2.14 1.44 1.45 

16 2.2 -Dimethyl-3 Butanone 5.8039 1.11 2.24 1.30 2.06 1.44 1.20 

17 5-Methyl-2-Hexanone 6.8815 1.84 2.13 1.59 2.48 1.79 1.88 

18 5-Methyl-2-Octanone 8.5182 2.94 2.92 2.50 3.40 2.45 2.92 

19 2.2.4.4-Tretramethyl-3-3-

Pentanone 

7.7789 2.44 4.09 2.85 2.05 2.45 3.00 

20 3-Methyl-2-Pentanone 6.0746 1.30 1.97 1.34 2.01 1.44  

21 4-Methyl-3-Pentanone 6.0227 1.26 2.20 1.55 2.01 1.44  

22 4-Heptanone 7.0130 1.93 2.43 2.00 2.60 1.79  

23 2.4-Dimethyl-3-Pentanone 6.6629 1.69 2.76 2.02 2.35 1.79  

Ester 

01 Methyl Acetate 5.2056 0.20 −0.14 0.02 0.48 0.13 0.18 

02 Ethyl Acetate 5.9566 0.72 0.21 0.37 0.91 0.59 0.73 

03 2-Methylbutyl Acetate 8.1580 2.23 1.47 1.67 2.18 1.73 2.29 

04 Propyl Acetate 6.8215 1.31 0.67 0.89 1.38 1.00 1.24 

05 Butyl Acetate 7.6480 1.88 1.07 1.35 1.84 1.37 1.82 

06 3-Methylbutyl Acetate 8.1012 2.19 1.40 1.60 2.18 1.73 2.25 

07 Propyl Butyrate 8.3084 2.34 1.70 2.02 2.31 1.73 2.15 

08 Methyl Propionate 5.9612 0.72 0.49 0.69 0.94 0.59 0.82 

09 Propyl Formate 6.0387 0.77 0.47 0.85 1.11 0.59 0.83 

10 Isobutyl Isobutyrate 8.5664 2.51 2.27 2.34 2.52 2.06 2.48 

11 Isopentyl Isovalerate 9.9907 3.50 2.76 2.89 3.45 2.68 3.62 

12 Methyl Butyrate 6.7703 1.27 0.89 1.14 1.41 1.00 1.29 

13 Methyl Isopentanoate 7.2346 1.60 1.22 1.40 1.75 1.37 1.82 

14 Methyl Decanoate 11.7131 4.55 3.37 3.88 4.19 3.88 4.41 

15 Ethyl Formate 5.21385 0.20 0.0 0.32 0.64 0.13  

16 Isopropyl Acetate 6.3210 0.97 0.62 0.75 1.32 1.00  

17 Isobutyl Acetate 4.2872 1.69 1.08 1.21 1.72 1.37  
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Table 1. Cont. 

Ester 

18 Ethyl Butyrate 7.5262 1.80 1.23 1.49 1.84 1.37  

19 Ethyl Valerate 8.3037 2.33 1.63 1.95 2.31 1.73  

20 Ethyl Hexanoate 9.1100 2.89 2.02 2.40 2.77 2.06  

21 Ethyl Heptanoate 9.9322 3.46 2.42 2.86 3.23 2.38  

22 Ethyl Octanoate 10.7424 4.02 2.82 3.32 3.7 3.59  

23 Ethyl Nonanoate 11.5522 4.58 3.21 3.77 4.16 3.88  

24 Ethyl Decanoate 12.3802 5.15 3.61 4.23 4.43 4.16  

Alcohol 

01 Ethanol 5.0258 −0.03 0.08 −0.01 0.43 −0.17 −0.31 

02 1-Propanol 5.8387 0.48 0.55 0.51 0.89 0.35 0.34 

03 1-Butanol 6.6371 0.99 0.94 0.97 1.35 0.80 0.84 

04 1-Pentanol 7.4533 1.51 1.34 1.43 1.82 1.21 1.40 

05 1-hexanol  8.2626 2.03 1.73 1.88 2.28 1.59 2.03 

06 1-Heptanol 9.0808 2.55 2.13 2.34 2.74 1.94 2.34 

07 1-Octanol 9.8913 3.07 2.53 2.80 3.21 3.19 3.15 

08 1-Nonanol 10.7101 3.60 2.92 3.25 3.67 3.50 3.57 

09 1-Decanol 11.5199 4.11 3.32 3.71 4.14 3.81 4.01 

10 1-Dodecanol 13.1499 5.15 4.11 4.62 5.07 4.38 5.13 

11 1-Tetradecanol 14.7791 6.20 4.91 5.53 5.99 4.91 6.11 

12 1-Pentadecanol 15.5986 6.72 5.30 5.99 6.46 5.17 6.64 

13 1-Hexadecanol 16.4091 7.24 5.70 6.45 6.92 5.42 7.17 

14 1-octadecanol 18.039 8.28 6.49 7.36 7.85 5.90 8.22 

15 2-Propanol 5.1764 0.061 0.49 0.37 0.83 0.35 0.05 

16 2-Butanol 6.1384 0.67 0.96 0.89 1.29 0.80 0.61 

17 2-pentanol  6.8713 1.14 1.36 1.35 1.76 1.21 1.14 

18 2-Hexanol 7.6936 1.67 1.75 1.80 2.22 1.59 1.61 

19 2-Heptanol 8.5136 2.19 2.15 2.26 2.68 1.94 2.31 

20 2-Octanol 9.3313 2.71 2.54 2.72 3.15 2.27 2.84 

21 2-Nonanol 10.1490 3.24 2.94 3.17 3.61 3.50 3.36 

22 3-Pentanol 6.9241 1.17 1.43 1.42 1.76 1.21 1.14 

23 3-hexanol  7.7334 1.69 1.82 1.87 2.22 1.59 1.61 

24 3-Heptanol 8.5339 2.20 2.22 2.33 2.68 1.94 2.31 

25 3-Nonanol 10.1594 3.24 3.01 3.24 3.61 2.59 3.36 

26 4-Heptanol 8.4277 2.14 2.22 2.33 2.68 1.94 2.31 

27 4-Nonanol 10.0707 3.19 3.01 3.24 3.61 2.59 3.36 

28 5-Nonanol 10.0579 3.18 3.01 3.24 3.61 2.59 3.36 

29 2-Methyl-1-propanol 6.7118 1.04 1.34 0.83 1.23 0.80 0.65 

30 2-Methyl-1-pentanol 8.0889 1.92 1.74 1.75 2.16 1.59 1.78 

31 2-Methyl-2-propanol 5.6439 0.36 0.57 0.57 0.98 0.80 0.37 

32 2-Methyl-2-butanol 6.4088 0.85 1.04 1.10 1.44 1.21 0.89 
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Table 1. Cont. 

Alcohol 

33 2-Methyl-2-pentanol 7.2184 1.36 1.43 1.55 1.91 1.59 1.39 

34 2-Methyl-2-hexanol 8.0185 1.87 1.83 2.01 2.37 1.94 1.84 

35 2-Methyl-3-pentanol 7.6238 1.62 1.83 1.74 2.10 1.59 1.67 

36 3-Methyl-1-butanol 7.3289 1.43 1.27 1.22 1.69 1.21 1.42 

37 3-Methyl-2-butanol 6.7223 1.05 1.36 1.21 1.63 1.21 1.14 

38 3-Methyl-2-pentanol 7.5616 1.58 1.76 1.67 2.10 1.59 1.67 

39 3-Methyl-3-pentanol 7.1923 1.35 1.51 1.62 1.91 1.59 1.39 

40 3-Methyl-3-hexanol 7.9993 1.86 1.90 2.08 2.37 1.94 1.87 

41 4-Methyl-1-pentanol 8.1457 1.96 1.67 1.68 2.16 1.59 1.78 

42 4-Methyl-2-pentanol 7.5971 1.60 1.69 1.60 2.10 1.59 1.67 

43 5-Methyl-2-hexanol 8.4042 2.12 2.08 2.06 2.56 1.94 2.19 

44 2-Ethyl-1-butanol 8.0637 1.90 1.74 1.75 2.16 1.59 1.78 

45 2-Ethyl-1-hexanol 9.6883 2.94 2.53 2.66 3.08 2.27 2.84 

46 3-Ethyl-3-pentanol 7.9941 1.86 1.97 2.14 2.37 1.94 1.87 

47 2.2-Dimethyl-1-propanol 6.8319 1.11 1.45 1.11 1.74 1.21 1.36 

48 2.2-Dimethyl-1-butanol 7.6225 1.62 1.85 1.56 2.21 1.59 1.57 

49 2.2-Dimethyl-1-pentanol 8.0200 1.87 2.25 2.02 2.67 1.94 2.39 

50 2.2-Dimethyl-3-pentanol 7.9220 1.81 2.34 2.01 2.61 1.94 2.27 

51 2.3-Dimethyl-1-butanol 7.7752 1.72 1.68 1.54 2.03 1.59 1.17 

52 2.3-Dimethyl-2-butanol 7.1113 1.29 1.44 1.42 1.78 1.59 1.17 

53 2.3-Dimethyl-2-pentanol 7.9254 1.81 1.84 1.87 2.25 1.94 2.27 

54 2.4-Dimethyl-1-pentanol 8.7738 2.36 2.07 2.00 2.50 1.94 2.19 

55 2.4-Dimethyl-2-pentanol 7.7712 1.727 1.76 1.80 2.25 1.94 1.67 

56 2.4-Dimethyl-3-pentanol 8.0997 1.93 2.23 2.05 2.44 1.94 2.31 

57 2.6-Dimethyl-4-heptanol 9.8577 3.05 2.88 2.83 3.36 2.59 3.13 

58 3.3-Dimethyl-1-butanol 7.3456 1.44 1.71 1.43 2.21 1.59 1.57 

59 3.3-Dimethyl-2-butanol  7.2531 1.38 1.87 1.49 2.15 1.59 1.19 

60 2.2.3-Trimethyl-3-pentanol 8.2383 2.01 2.41 2.21 2.76 2.27 1.99 

2.2. Semi-Empirical Electrotopological Index, ISET 

In this study, the new descriptor, that is, the recently developed electrotopological index,  

ISET [23–26], is applied to QSPR studies to predict the octanol/water partition coefficient, Log P, for a 

large amount of organic compounds, including aliphatic hydrocarbons such as alkanes and alkenes, 

aldehydes, ketones, esters and alcohols. This new descriptor can be quickly calculated for this series of 

molecules from the semi-empirical, quantum-chemical, AM1 method and correlated with the 

approximate numerical values attributed by the semi-empirical topological index to the primary, 

secondary, tertiary and quaternary carbon atoms. Thus, unifying the quantum-chemical with the 

topological method gives a three-dimensional picture of the atoms in the molecule [23]. It is important 

to note that the AM1 method gives more reliable semi-empirical charges, dipoles and bond lengths 

than those obtained from time-consuming, low-quality, ab initio methods, that is, when employing a 

minimal basis set in ab initio calculations [36]. Despite the fact that the calculated partial atomic 
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charges may be less reliable than other molecular properties, and that different semi-empirical methods 

give values for the net charges with poor numerical agreement, it is important to recognize that their 

calculation is easy and that the values at least indicate trends in the charge density distributions in the 

molecules. Since many chemical reactions or physico-chemical properties are strongly dependent on 

local electron densities, net atomic charges and other charge-based descriptors are currently used as 

chemical reactivity indices [37]. 

For alkanes and alkenes, this correlation has allowed the creation of a new semi-empirical 

electrotopological index (ISET) for QSRR models [20] based on the fact that the interactions between 

the solute and the stationary phase are due to electrostatic and dispersive forces. This new index, ISET, 

is able to distinguish between the cis- and trans-isomers directly from the values of the net atomic 

charges of the carbon atoms that are obtained from quantum-chemical calculations. For polar 

molecules like aldehydes, ketones, esters and alcohols, the presence of heteroatoms like oxygen 

changes considerably the charge distribution of the corresponding hydrocarbons giving a partial 

increase in the interactions between the solute and the stationary phase. An appropriate way to 

calculate the ISET was developed, which takes into account the dipole moment exhibited by these 

molecules and the atomic charges of the heteroatoms and the carbon atoms attached to them. By 

considering the stationary phase as a non-polar material, the interaction between these molecules and 

the stationary phase are electrostatic with a contribution from dispersive forces. These interactions 

slowly increase relative to the corresponding hydrocarbons. Hence, the interactions between the 

molecules and the stationary phase slowly increase and, clearly, this is due to the charge redistribution 

that occurs in the presence of the heteroatom. This charge redistribution accounts for the  

dipole moment of the molecules. The dispersive force between these kinds of molecules and the 

stationary phase includes the charge-dipole interactions and dipole-induced dipole interactions, which 

are weak relative to the electrostatic interactions. Thus, the dipolar charge distribution in such 

molecules leads to a small increase in the interactions of the solute with the stationary phase relative to 

hydrocarbons where the dipole moment is zero, or almost zero. Clearly, the major effects on the charge 

distribution due to the presence of the (oxygen) heteroatoms occur in its neighborhood and the excess 

charge at these atoms leads to electrostatic interactions that are stronger than the weak dispersive 

dipolar interactions. 

For aldehydes, ketones, esters and alcohols all these factors were included in the calculation of the 

retention index through a small increase in the values for the atomic descriptor (named SETi) for the 

heteroatoms and carbon atom attached to them [24–26]. This was achieved by multiplying the SETi 

values of these atoms by a function Aµ which is logarithmically dependent on the dipole moment of the 

molecule and the net charge at the oxygen and carbon atoms (to include both the electrostatic and 

dispersive interactions) that are embodied in the definition of the local dipole moment µF [24–26]. In 

this approach the dispersive dipolar interactions were included in the calculation of the retention index 

by multiplying the SETi values of the heteroatoms (oxygen) and carbon atoms attached to the 

heteroatoms by the dipolar function Aµ. That is, in this model the ISET is calculated as in Equation 1, 

µ i µ j

i, j

SET SETi
( log )I I A SET A SET== +∑ ∑  

(1)  
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where the SETi values are obtained through a linear relationship with the net atomic charge obtained 

from AM1 calculations [18–21]. In Equation 1, Aµ is logarithmically dependent on the dipole moment 

of the molecule, as in Equation 2:  

µ

F

1 log(1 )A = + +
µ

µ
 (2)  

where µ  is the calculated molecular dipole moment and µF is the equivalent local dipole moment which 

is dependent on the charges of the atoms belonging to the C-heteroatom group. In the above expression 

for the ISET (Equation 1) the dipolar function Aµ is taken as the unit for the remaining carbon atoms of 

the molecules. The various definitions of the local dipole moment µF are given in previous papers 

concerned with the retention index of aldehydes, ketones, esters and alcohols [24–26]. 

For the ISET model, the AM1 semi-empirical calculations of the net atomic charges were performed 

using the Hyperchem software package [29]. The initial geometries were obtained through molecular 

mechanics (MM+) calculations, being subsequently optimized using the AM1 method [36,38], 

employing the Polak-Ribiere algorithm and gradient minimization techniques with a convergence limit 

of 0.0001 and RMS gradient of 0.0001 kcal (A mol)
−1

. Mulliken population analysis was employed to 

obtain the net atomic charge of the carbon atoms and oxygen atoms. The net atomic charge (Qi) is 

obtained from the difference between the electronic charge of the isolated atom (Z) and the calculated 

charge of the bound atom (qi), that is, Qi = Z − qi . The SETi values for each atom are obtained from 

Equation 2 using the AM1 net atomic charges (Qi). Employing AM1 calculations these quantities are 

more easily obtained for a large number of molecules of reasonable size compared with those obtained 

when employing a minimal basis set in ab initio calculations [36]. Despite of the usually limited 

quantitative accuracy of semi-empirical methods the computational efficiency available nowadays [35] 

enables electronic properties of a large number of molecules to be obtained in a reasonable amount of 

time, and computational time is an important feature when developing models of quantitative 

structure-activity relationships (QSAR)[37]. 

3. Results and Discussion 

The 3-hexanone molecule represented in the graph below is taken as an example of the ISET 

calculation using the present approach. The net atomic charges and SETi values are given in Table II of 

the reference 24. 

 

F C Od Q Q= −µ  (3) 

µF = 1.2342 |0.224 − [−0.288]| = 0.6319 

Aµ = 1 + log[1 + (2.6790/0.63191)] = 1.7193 

ISETO1 = (=O) = AµSETO1 + log AµSETC3 = 1.9507 + log 0.3899 = 1.5416 

ISETC1 = (–CH3) = SETC1 + log SETC2 = 0.9892 + log 0.9998 = 0.9891 
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ISETC2 = (–CH2–) = SETC2 + log SETC1+ log AµSETC3 = 0.9998 + log 0.9892 + log 0.3899 = 0.5860 

ISETC3 = (>C<) = AµSETC3 + log SETC2 + log AµSETO1 + log SETC4  

= 0.3899 + log 0.9998 + log 1.9507 + log 0.9998 = 0.6799 

ISETC4 = (–CH2–) = SETC4 + log AµSETC3 + log SETC5 = 0.9998 + log 0.3899 + log 0.8988 = 0.5444 

ISETC5 = (–CH2–) = SETC5 + log SETC4 + log SETC6 = 0.8988 + log 0.9998 + log 0.9998 = 0.8986 

ISETC6 = (–CH3) = SETC6 + log SETC5 = 0.9998 + log 0.8988 = 0.9535 

ISET = 1.5416 + 0.9891 + 0.5860 + 0.6799 + 0.5444 + 0.8986 + 0.9535 = 6.1931 

The results obtained in the statistical analysis of the single linear regression between experimental 

and calculated Log P values using ISET are shown in Table 2 for each class of compounds studied. 

They indicate that the theoretical partition coefficients calculated using the ISET method give good 

agreement with the experimental partition coefficients. The QSPR models obtained with ISET showed 

high values for the correlation coefficient (r > 0.99), and the leave-one-out cross-validation 

demonstrate that the final models are statistically significant and reliable (rcv
2
 > 0.98). As can be 

observed, this model explains more than 99% of the variance in the experimental values for this set of 

compounds. Among the various classes of compounds the best results obtained with the ISET method 

are for hydrocarbons (Table 2), which is related to the fact that the present model was developed 

initially for this class of organic compounds. Values of r = 0.9986 and s = 0.10 were obtained for 

hydrocarbons, which are the lowest values considering the other four models. 

Table 2. The coefficients a and b (Y = a + bX) and statistical parameters (r
2
, r, F, s, rcv

2
) for 

linear regressions between experimental and calculated Log P values using different 

methods (Ghose/Crippen Log P, AlogP, MlogP, ClogP, and ISET Log P) for each class of 

compounds studied (according to Table 1). 

Class Method N a b r
2
 r F s rcv

2
 

Hydrocarbon Ghose/Crippen Log P 23 −0.0740 1.3559 0.9925 0.9962 2760.8 0.1694 0.9907 

AlogP 23 0.3080 1.1554 0.9952 0.9976 4345.4 0.1352 0.9940 

ClogP  23 0.1451 1.1513 0.9923 0.9961 2694.0 0.1715 0.9904 

MlogP 23 −0.0923 1.2953 0.9565 0.9780 462.2 0.4066 0.9494 

ISET Log P 23 0.0039 0.9997 0.9971 0.9986 7289 0.1045 0.9964 

Alcohol Ghose/Crippen Log P 60 −0.6651 1.3623 0.9822 0.9911 3202.8 0.2196 0.9813 

AlogP 60 −0.3038 1.1600 0.9897 0.9949 5592.7 0.1668 0.9893 

ClogP  60 −0.7966 1.1550 0.9914 0.9957 6651.4 0.1531 0.9910 

MlogP 60 −0.4666 1.3344 0.9611 0.9803 1431.6 0.3249 0.9561 

ISET Log P 60 3,2482 0,6394 0.9876 0.9938 4612.6 0.1835 0.9870 

Aldehyde Ghose/Crippen Log P 9 0.2243 1.2357 0.9539 0.9767 145.0 0.2318 0.9134 

AlogP 9 −0.2236 1.0954 0.9789 0.9894 324.6 0.1611 0.9613 

ClogP  9 −0.6533 1.1187 0.9979 0.9990 3388.8 0.0503 0.9966 

MlogP 9 0.1668 1.0159 0.9489 0.9741 130.0 0.2566 0.8469 

ISET Log P 9 0.0016 1.0014 0.9972 0.9986 2525.9 0.0583 0.9961 
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Table 2. Cont. 

Ketone Ghose/Crippen Log P 19 −0.8484 1.2097 0.9188 0.9585 192.3 0.3861 0.8867 

AlogP 19 −0.1299 1.1494 0.9862 0.9931 1213.4 0.1593 0.9829 

ClogP  19 −0.8479 1.1132 0.9115 0.9547 175.1 0.4031 0.8974 

MlogP 19 −0.2586 1.1454 0.9694 0.9846 538.8 0.2370 0.9622 

ISET Log P 19 −2.7182 0.6693 0.9864 0.9932 1229.7 0.1582 0.9831 

Ester Ghose/Crippen Log P 14 0.3894 1.1472 0.9688 0.9843 372.9 0.2124 0.9573 

AlogP 14 0.1815 1.1080 0.9681 0.9839 364.7 0.2147 0.9590 

ClogP  14 −0.3054 1.1334 0.9943 0.9971 2076.6 0.0912 0.9928 

MlogP 14 0.1370 1.1742 0.9851 0.9925 791.6 0.1470 0.9630 

ISET Log P 14 −3.1575 0.6587 0.9903 0.9951 1222.9 0.1186 0.9838 

a = intercept; b = slope; r
2
 = coefficient of determination; r = correlation coefficient; s = standard 

deviation; rcv
2
 = cross-validation coefficient; F = null hypothesis test (F-test). 

The present results can be compared with those recently published for a new approach based on the 

Kovats retention indices, which uses multiple linear regressions [7], where reportedly for  

37 hydrocarbons s = 0.46, for 11 aldehydes s = 0.27, for 27 alcohols s = 0.32 and for 13 esters s = 0.17. 

As can be seen in Table 2, the lowest standard deviation was obtained for the aldehydes correlation  

(s = 0.05) and for alcohols the correlation was greater (s = 0.18). The range of standard deviations 

obtained verifies the applicability of the present approach to different classes of organic compounds. 

For alcohols, the earlier approach of Duchowicz et al. [6], based on the concept of flexible topological 

descriptors and on the optimization of correlation weights of local graphic invariants, is applied to 

model the octanol/water partition coefficient of a representative set of 62 alcohols, resulting in a 

satisfactory prediction with a standard deviation of 0.22. Recently, Liu et al. [39] carried out a QSPR 

study to predict the log P for 58 aliphatic alcohols using novel molecular indices based on graph theory, 

by dividing the molecular structure into substructures obtaining models with good stability and 

robustness, and values predicted using the multiple linear regression method are close to the 

experimental values (r = 0.9959 and s = 0.15). The above results show the reliability of the present 

model calculation based on the semi-empirical calculation of atomic charges and local dipole moments 

using only one descriptor, ISET. 

The statistical analysis for the predictive ability of four log P calculation models and ISET for a set 

of 131 aliphatic organic compounds from five different classes are summarized in Table 2. The AlogP 

method gives a stable performance for all classes of organic compounds tested, with much less 

variability in the statistical quality of results among different subclasses (r > 0.98 and s < 0.22). The 

ClogP method offers good predictability (r > 0.99 and s < 0.17), giving larger deviations only in the 

case of ketones (r = 0.955; s = 0.40). The MlogP and Ghose/Crippen methods have much larger 

deviations (r > 0.974 and s < 0.39) in comparison with the other methods. 

The experimental and predicted log P values using ISET and the other four models (and the respective 

deviations) for an external group of alcohols are shown in Table 3. The Ghose/Crippen method and  

its refinement AlogP shows appreciable deviations for 1-undecanol and 4,4-dimethyl-1-pentanol, 

respectively, whereas the ClogP values are greater for branched alcohols. For the three last branched 

alcohols in Table 3 the whole molecule approach MLogP, which employs an MLR with final 

regression equation involving 13 parameters, gives the same value for Log P, being unable to 



Int. J. Mol. Sci. 2011, 12            

 

 

7261 

distinguish the structural differences between these branched alcohols. The average standard deviation 

of calculated Log P for the seven alcohols of Table 3 using the ISET model is 0.15, whereas for the 

Ghose/Crippen method it is 0.34. The AlogP method, which is applicable to most neutral organic 

compounds and selective charged compounds, shows an average standard deviation of 0.26. In contrast, 

the ClogP method, which uses a large number of parameters and correction factors, results in a 

standard deviation of 0.17, while for the whole molecule approach the value is 0.24. These results 

demonstrate that the predictability of the present model for polar aliphatic organic compounds has the 

same pattern of accuracy as the widely used ClogP model. 

Table 3. Difference between experimental and predicted Log P (∆Log P) using ISET and  

the different methods studied (Ghose/Crippen, AlogP, MlogP, ClogP) for external group  

of alcohols. 

No. Compounds Log Pexp ISET 
∆ISET 

Log P 

∆Ghose/Crippen 

Log P 
∆AlogP ∆ClogP ∆MlogP 

01 1-Undecanol 4.42 12.3394 −0.22 0.7 0.26 −0.18 0.32 

02 2-Undecanol 4.42 11.7816 0.14 0.6 0.33 −0.12 0.32 

03 4-Octanol 2.68 9.2504 0.02 0.06 −0.1 −0.47 0.41 

04 2-Methyl-1-butanol 1.14 7.2774 −0.26 −0.2 −0.15 −0.55 −0.07 

05 2-Methyl-3-hexanol 2.19 8.2667 0.16 −0.04 0 −0.37 0.25 

06 2.3-Dimethyl-3-pentanol 1.67 7.78 −0.05 −0.24 −0.27 −0.58 −0.27 

07 4.4-Dimethyl-1-pentanol 2.39 8.6815 0.09 0.29 0.51 −0.28 0.45 

The predictive ability of a QSPR model can be estimated using an external test set of compounds 

that has not been used for building the model. According to Tropsha and Golbraikh [40] a high value 

of cross-validated r
2
 (q

2
) alone is insufficient criterion for a QSAR model to be considered highly 

predictive, and the use of an external set of compounds for the model validation is always necessary. The 

authors’ state that the correlation coefficient, r, between the predicted and observed activities of 

compounds from an external test set should be close to 1 [40,41]. Following these authors, we considered 

seven compounds not included in the original model (Table 3) plotting observed vs. predicted log P 

values obtaining Y = 1.0273X − 0.1223 with r
2
 = 0.9858 and Y = 0.9893X (with the intercept set to 0) 

with r
2
 = 0.9842. Predicted vs. observed log P values, Y = 0.9596X + 0.1557 with r

2
 = 0.9858 and  

Y = 1.008X with r
2
 = 0.9828 were plotted. The QSPR model has a value of cross-validated (using 

leave-one-out), rcv
2
 = 0.9870 showing that the model has high predictive power. 

4. Conclusions 

The efficiency and the applicability of the descriptor ISET in terms of predicting log P using the 

quantitative structure-activity relationship (QSPR) were demonstrated through the good statistical 

quality and high internal stability obtained for the studied classes of compounds as well as the good 

predictive ability for the external group of compounds. The ISET model also has the advantage of 

simplicity, using only one descriptor, and it has statistical quality of the same order as the widely used 

models based on the fragmental method, ClogP, and the atomic-contribution method, AlogP. The 
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quality of the results obtained can be considered appropriate for the development of QSPR models for 

other compounds in the future. 
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