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Abstract: Ubiquitylation is an important process of post-translational modification. 

Correct identification of protein lysine ubiquitylation sites is of fundamental importance to 

understand the molecular mechanism of lysine ubiquitylation in biological systems.  

This paper develops a novel computational method to effectively identify the lysine 

ubiquitylation sites based on the ensemble approach. In the proposed method,  

468 ubiquitylation sites from 323 proteins retrieved from the Swiss-Prot database were 

encoded into feature vectors by using four kinds of protein sequences information. An 

effective feature selection method was then applied to extract informative feature subsets. 

After different feature subsets were obtained by setting different starting points in the 

search procedure, they were used to train multiple random forests classifiers and then 

aggregated into a consensus classifier by majority voting. Evaluated by jackknife tests and 

independent tests respectively, the accuracy of the proposed predictor reached 76.82% for 

the training dataset and 79.16% for the test dataset, indicating that this predictor is a useful 

tool to predict lysine ubiquitylation sites. Furthermore, site-specific feature analysis was 

performed and it was shown that ubiquitylation is intimately correlated with the features of 

its surrounding sites in addition to features derived from the lysine site itself. The feature 

selection method is available upon request. 

OPEN ACCESS 



Int. J. Mol. Sci. 2011, 12 8348 

 

 

Keywords: ubiquitylation; ensemble classifier; support vector machine;  

lysine ubiquitylation sites 

 

1. Introduction 

Ubiquitylation is a universal and important post-translational modification where ubiquitin is linked 

to some lysine residues of target proteins [1–3], and forms an isopeptide bond between the ε-amino 

groups of lysine residues of a substrate protein and the C-terminal double-glycine carboxy groups of 

ubiquitin protein [4,5]. Note that only the last glycine of ubiquitin is linked to substrate lysine residues 

in this process. There are mainly three kinds of enzymes participating in this highly collaborative 

process, including ubiquitin-activating enzymes, ubiquitin-conjugating enzymes, and ubiquitin  

ligases [6,7]. During the past decade, the function of ubiquitylation has been extended far beyond its 

role in just directing protein degradation [1,2], for example to the control of signal transduction, the 

regulation of DNA repair and transcription, and the implication of endocytosis and sorting [8]. 

Since identification of protein lysine ubiquitylation sites is of fundamental importance to understand 

the molecular mechanism of lysine ubiquitylation in biological systems, many post-genome era 

researchers have focused on this field [9–11]. Meanwhile, some high-throughput experimental 

technologies have been developed to analyze and model the lysine ubiquitylation process at a  

genomic scale, such as proteolytic digestion, three steps affinity purification, and analysis using mass 

spectrometry [12]. However, these conventional experiment approaches are labor-intensive and  

time-consuming, especially for large-scale data sets. Accordingly, several computation approaches 

have been developed to effectively and accurately predict lysine ubiquitylation sites. Tung and Ho 

built a prediction model, UbiPred, by using an informative subset of 531 physicochemical properties 

and a support vector machine. A new algorithm was then proposed for selecting an informative 

physicochemical properties subset, which can significantly improve the accuracy [13]. Radivojac et al. 

developed a random forest predictor of ubiquitylation sites, UbPred. In their method, amino acid 

compositions, physicochemical properties and evolutionary information are first used to represent a 

protein sequence, and then a t-test attribute selection filter is applied to retain only statistically 

significant attributes [14]. Cai et al. proposed a predictor based on nearest neighbor algorithm. In that 

algorithm, they extract conservation scores, disorder scores from a protein sequence, and then utilize 

the maximum relevance and minimum redundancy principle to identify the key features [15]. 

Nevertheless, the prediction performances of these approaches are not always satisfactory. 

In this study, an ensemble computational method is developed to predict lysine ubiquitylation sites 

based on amino acid sequence features. Firstly, four kinds of useful features, which describe each 

amino acid of lysine site and its surrounding sites, are extracted from each protein sequence: amino 

acid composition [16]; evolutionary information [17,18]; amino acid factors [19]; and disorder score [20]. 

Secondly, in order to reduce the computational complexity and enhance the overall accuracy of the 

predictor, an effective feature selection method is used to select some optimal feature subsets. Finally, 

the ensemble classifier is established using the vectors of resulting features subset as input. For the 

new constructed ubiquitylation sites dataset, the accuracy of the proposed predictor is 76.82% for the 
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training dataset, and 79.16% for the test dataset, which is higher than the state-of-art ubiquitylation  

site predictor.  

Our feature analysis shows that flanking residues will influence the property and structure of a 

central residue. That is, the environmental information will be helpful to enhance prediction accuracy. 

In lysine ubiquitylation sites prediction, the position-specific scoring matrix (PSSM) conservation 

scores play a more important role. The other three descriptors, i.e., amino acid composition, disorder 

score and amino acid factors, show almost equal relevance to ubiquitylation. When the window size is 

21, amino acid residues at location 8, 11, 12, 14, 16 and 20 have much more features in the optimal 

features subset, compared with the other locations. 

2. Materials and Methods 

2.1. Data Sets 

In this study, a dataset consisting of 468 ubiquitylation sites from 323 proteins is constructed by 

retrieving annotated proteins from the UniProt database [21] at [22]. These proteins have been 

reprocessed in order to avoid homology bias using the program cd-hit [23], so that the sequence 

identity is lower than 0.6. By mapping the experimentally verified ubiquitylation sites to the 

corresponding 323 protein sequences, the 920 lysine residues with no annotation of ubiquitylation sites 

are regarded as non-ubiquitylation sites. The benchmark dataset is then divided into training dataset 

and test dataset: 65 proteins are randomly selected to construct a test dataset, and the remaining 

proteins make up the training dataset. According to Tung and Cai’s work [13,15], the best window size 

for ubiquitylation site prediction is 21, so we adopt it in this study too; with 10 residues located 

upstream and 10 residues located downstream of lysine residue in the protein sequence. As a result, the 

training dataset includes 298 ubiquitylation sites and 563 non-ubiquitylation sites, and the test dataset 

includes 170 ubiquitylation sites and 357 non-ubiquitylation sites. 

To evaluate the ensemble classifier’s performance and compare it with existing methods, a publicly 

available dataset [15] is also adopted here, which includes 14 ubiquitylation sites and 267  

non-ubiquitylation sites. In this paper we have called this “independent dataset”. In Table 1, we 

describe the number of ubiquitylation and non-ubiquitylation sites in each dataset. 

Table 1. The number of ubiquitylation and non-ubiquitylation sites in each dataset. 

Dataset No of ubiquitylation sites No of non-ubiquitylation sites 

Training dataset 298 563 

Test dataset 170 357 

Independent dataset 14 267 

2.2. Representation of Peptides 

In this study, amino acid composition, PSSM conservation scores, disorder scores and amino acid 

factors are used to transform the peptides into feature vectors. 



Int. J. Mol. Sci. 2011, 12 8350 

 

 

2.2.1. Amino Acid Compositions 

Usually, there are many encoding methods of protein sequence, e.g. amino acid composition [16,24], 

pseudo amino acid composition method [25] and amino acid identity [13], etc. Here we utilize the 

amino acid composition to represent each peptide, which is based on normalized counts of single or 

pairs of amino acids. Firstly, each peptide is represented by a feature vector of length 141 that includes 

20 features for average amino acid composition and 121 dipeptides. Secondly, in order to reduce the 

dimensionality of dipeptides, the 20 amino acids are clustered into 11 groups according to similar 

physicochemical or structural properties [26], and then 121 pairwise combinations are reduced to 66 by 

classifying the dipeptides with the same amino acid composition into one category. 

2.2.2. PSSM Conservation Scores 

Evolutionary conservation, one of the most important types of information in assessing 

functionality in biological analysis, has been used successfully in many studies [17,18]. In biology, 

conserved sequences are similar or identical sequences that occur within protein sequences, nucleic 

acid sequences or within different molecules produced by the same organism. Highly conserved 

proteins are often required for basic cellular function, stability or reproduction. Protein sequences’ 

evolutionary conservation serves as evidence for structural and functional conservation. So the 

corresponding position-specific scoring matrix (PSSM) extracted from sequence profiles generated  

by PSI-BLAST is selected as the second type of feature descriptor in this study. Here, we employ each 

sample to search and align homogenous sequences from NCBI’s NR database [27] using the  

PSI-BLAST program [28] with three iterations (−j 3) and e-value threshold for inclusion in multi-pass 

model 0.0001 (−h 0.0001). 

It can be seen from Figure 1, the PSSM matrix is composed of L*20 elements, where L is the total 

number of residues in a peptide, the rows of the matrix represent the protein residues and the columns 

of the matrix represent the 20 amino acids. Each amino acid in the PSSM profiles is encoded by an 

evolutionary information vector of 20 dimensions using the ith row of PSSM. Then we normalize the 

values of PSSM in range of [0, 1] by using formula (value − minimum)/(maximum − minimum) before 

we use this PSSM matrix. In order to consider the neighboring effect of residues surrounding each 

ubiquitylation site, a sliding window of size w is utilized to combine the evolutionary information from 

downstream and upstream neighbors. For an ubiquitylation site K in sequence position i, we used a 

feature vector Pi to represent it. Pi is defined as follows, where w is an odd number which stands for 

the size of sliding window, and p[i] is the ith row of normalized PSSM matrix. The length of vector Pi 

is w*20. 

],...,,...,[ ]2/)1([][]2/)1([ −+−−
= wiiwii pppP  (1)  
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Figure 1. Schematic representation of transformation of each protein sequence into L*20 

dimensional position-specific scoring matrix (PSSM); the rows represent the protein 

residues and the columns represent the 20 amino acids. 

 

2.2.3. Disorder Scores 

In recent decades, the functional importance of disorder regions has been increasingly  

recognized [29,30]. Protein disorder in the nonglobular segments allows for more modification sites and 

interaction partners, and is of great importance to predict protein structures and functions [29,31,32]. In 

this paper, we use the disorder score calculated by VSL2 [33] to represent each amino acid disorder 

status in the given protein sequence. The VSL2 predictor can accurately identify both long and short 

disordered regions [34,35]. The disorder score features are composed of the disorder scores of the 

lysine site and its surrounding sites. 

2.2.4. Amino Acid Factors 

The structure and function of proteins are largely dependent on the composition of various 

properties of each of the 20 amino acids. The individual amino acid physicochemical properties have 

been successfully used in lysine ubiquitylation identification [36,37]. AAIndex [38] is a well known 

database of amino acids’ biochemical and physicochemical properties. Atchley et al. [19] have 

conducted multivariate statistical analysis on this database. They summarized this and provided five 

highly interpretable and multi-dimensional numeric indices that represent electrostatic charge, codon 

diversity, molecular volume, secondary structure, and polarity. Thus, we use these five numerical index 

scores (also called “amino acid factors”) to encode each amino acid in this study. 

2.2.5. Feature Space 

For every sample in the dataset, its feature space is composed of the features of AA compositions, 

PSSM scores, amino acid factors and disorder scores. Totally, there are 627 features to be encoded in a 



Int. J. Mol. Sci. 2011, 12 8352 

 

 

sample, including 86 amino acid composition features, 420 (20 × 21 = 420) PSSM conservation score 

features, 100 (20 × 5 = 100) amino acid factors features and 21 disorder score features. 

2.3. Feature Selection Based on Normalized Conditional Mutual Information 

Usually, the most popular feature selection methods find a single features subset whose 

discriminative capability is limited for classification purpose [39]. In fact, there are many feature 

subsets with good discriminative power, so we use an effective feature selection method [40], Feature 

Selection based on Normalized Conditional Mutual Information (FSNCMI), to predict lysine 

ubiquitylation sites by manipulating multiple feature subsets simultaneously. Unlike other ensemble 

methods which use different classifiers or different sample subsets to strengthen the final prediction 

accuracies, FSNCMI obtains multiple feature subsets by the same selection technique with different 

starting points in its research process. 

To measure the information shared by two features, mutual information (MI) is used here, defined 

as follows: 
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=  
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where X and dom(X) are discrete random variable and its domain, p(x, y) is the joint probabilistic 

density, and p(x) and p(y) are the marginal probabilistic densities. According to the concept of 

Shannon entropy, joint entropy and conditional entropy in information theory [41], the following 

equations stand: 

),()()()/()()/()();( YXHYHXHXYHYHYXHXHYXI −+=−=−=  (3)  

Similarly, the conditional mutual information between X and Y given Z is defined as: 

( ; / ) ( / ) ( / , )I X Y Z H Y Z H Y X Z= −  (4)  

where Z is a discrete random variable. 

Equation 4 represents the reduction of uncertainty of Y with respect to X, when Z is known. From 

the definition of conditional mutual information, we know that I(f;C/FS) can be used to measure the 

information amount shared by the feature f and the class labels C. Yet this information has not been 

captured by the already selected features FS. Therefore, the conditional mutual information I(f;C/FS) 

can be taken as the evaluation criterion J(f) of feature selection to evaluate the significant degree of 

feature f, and then at each step, the feature with maximal I(f;C/FS) will be selected. Normally, FS is 

replaced by one of its member fs to deal with the problem that the estimation of I(f;C/FS) by 

multivariable dense distribution is usually unfaithful [42]. Thus we have 

( ) arg min ( ; / )
s

s
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∈
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Note that the criterion of conditional mutual information may tend to choose the feature with more 

concrete values [43], so we normalize it by H(f,C) and refer to it as normalized conditional mutual 

information, i.e., 
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Based on the above analysis, the normalized form of conditional mutual information can also be 

used to evaluate the correlation between features and target classes when other features are known. On 

the ground of this criterion, the ensemble feature selection method can be induced by using normalized 

conditional mutual information, which is described as follows: 

Algorithm 1. FSNCMI: feature selection based on normalized conditional mutual information. 

Input: An ubiquitylation sites dataset M = (D, F); the index of starting point t; the number of selection 

features k; 

Output: A set of selected features FSi; 

(1)  Initialize related parameters, FSi =∅, F = F, t = 0; 

(2)  For each feature f ∈ F do 

(3)   calculate its mutual information with the target classes C; 

(4)  Sort them in a descending order; 

(5)  FSi = {ft}, F = F − {ft}, where ft is the starting point; 

(6)  While |FSi| < k do  

(7)   For each feature f ∈ F do 

(8)    Calculate its criterion J(f) according to Equation.(4); 

(9)  If J(f) = 0 then F = F − {f}; 

(10)   Select the gene with the largest J(f); 

(11)   FSi = FSi ∪{f}, F = F − {f}; 

(12) End 

This algorithm works in a straightforward way. For the stopping condition k, we choose the strategy 

that when the difference of J(fi) with J(fi-1) is lower than a very small value, the iterative procedure is 

terminated. For the starting point, we choose t = 0, since the top-ranked features have higher mutual 

information and they may highly correlate with each other. To some extent, this will strengthen the 

stability and classification performance of the classifier [42]. 

2.4. Random Forests Classification 

Random Forests (RF) is a classification algorithm combining ensemble tree-structured classifiers [44], 

which has been successfully used to deal with some problems in the bioinformatics area [45–47]. In 

RF, each tree is grown using a subset of the possible attributes in the input vectors [48]. The results  

from [46] showed that combining multiple trees produced in randomly selected subspaces can enhance 

the prediction performance. The RF is useful for estimating prediction errors. The prediction error is 

estimated by using an out-of-bag (OOB) sample. For each RF tree, the OOB sample including 

approximately one-third of the training dataset is applied to test the decision tree constructed by using 

the remaining training dataset with no pruning procedure. Finally, the overall prediction error is then 

calculated by combining results from the trees via voting, which can avoid over fitting on the training 

set while preserving maximum accuracy. The RF algorithm is available via the link at [49]. Recently, 

the RF code for the MATLAB windows is also available at [50], which has two functions, one is 

“classRF-train” for establishing a prediction model, and the other is “classRF_predict” for predicting 

the test dataset using the prediction model. The classifier in this study is developed based on this RF. 
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2.5. Model Building 

The ensemble classifier can combine several decisions induced by the individual classier into one in 

some way. Compared with traditional methods, ensemble classifier can effectively improve classification 

performance, reliability and stability of individual classier. Figure 2 describes the whole framework of  

our model. 

Figure 2. The framework of the ensemble model. 

 

Figure 2 shows the main framework of our method. Firstly, each peptide is transformed to vectors 

by using amino acid composition, PSSM conservation scores, disorder scores and amino acid factors 

features. Secondly, FSNCMI feature selection method is utilized to extract P informative feature 

subsets. After that, these corresponding RF predictors will be aggregated into a consensus using the 

majority voting strategy. 

2.6. Evaluation 

Jackknife test [51] is a rigorous and objective statistical test, and has been widely used to examine 

the performance of various predictors [52–55]. Therefore we use it to evaluate our method as well, 

where proteins are singled out from the dataset one by one as a testing protein and the classifier  

is trained by the remaining proteins. Besides the jackknife test on training set, we also utilize  

sub-sampling (e.g., 5- or 10-fold cross validation) and an independent test [56] to evaluate our model. 

Since the number of ubiquitylation sites and non-ubiquitylation sites are imbalanced in both the 

training set and the independent set, the Matthews’s correlation coefficient (MCC) is used here to 

objectively measure the performance of our ensemble classifier. MCC is usually regarded as a 

balanced measure to process imbalanced data [53]. Meanwhile, sensitivity (Sn), specificity (Sp) and 

accuracy (AC) are also used. These parameters are defined by the following formulas: 

n

TP
S

TP FN
=

+
 

p

TN
S

TN FP
=

+
 

(7)  

where TP, TN, FP and FN stand for true positive, true negative, false positive and false  

negative, respectively. 
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3. Results and Discussion 

3.1. Prediction Performance of Our Method 

Here, we evaluate the prediction performance of the ensemble classifier on the training set 

constructed in this study which consists of 298 ubiquitylation sites and 563 non-ubiquitylation sites. In 

our model, the number of features (stopping condition k in Algorithm 1) is an important parameter in 

the implementation of the ensemble predictor, so we should assign k with an appropriate value. We 

compare the difference of J(fi) with J(fi-1), and find that when i = 13 (i = 1 to 627), the difference is 

lower than the threshold 0.015. So the number of selected features in the ensemble selector is set to  

be 12. Such a selection is reasonable, because f13 brings little information to any already selected 

features in FS. 

Moreover, for prediction performance, the quantity of base classifiers (Qbc) is another aspect 

associated with ensemble classifier. Therefore, in the implementation of ensemble model, Qbc must 

also be considered. Intuitively, the prediction capability of ensemble model is highly affected by the 

number of base classifiers and, the more base classifiers contained in an ensemble selector, the higher 

the accuracy obtained by the model. To illustrate this kind of relationship between Qbc and prediction 

performance, we run our model with various numbers of Qbc. The results on the training set 

constructed in this study which consisted of 298 ubiquitylation sites and 563 non-ubiquitylation sites, 

are presented as Figure 3. As can be seen in the figure, the prediction performance of ensemble model 

becomes stable when Qbc reaches the point where Qbc equals 16. Although the increasing of Qbc will 

improve the classification performance and the stability of the ensemble model to some extent, it is not 

appropriate to employ as many base classifiers as possible. The reason for this is that when Qbc 

reaches a certain value, the performance will only increase a little, but the computational cost of 

building base classifiers will increase abruptly. As is shown in Figure 3, the ensemble model obtains 

the highest accuracy of 76.82% when Qbc is 10.  

Figure 3. The relationship between the prediction performance and the quantity of  

base classifiers. 

7172737475
767778
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Since the evaluation criterion of FSNCMI is normalized conditional mutual information, the 

maximum relevance and minimum redundancy principle (mRMR) [57] feature selection method, 

which is based on mutual information, is also taken as the base line. mRMR chooses those features 

which has more relevance to the class labels and less redundancy to the selected features at the same 
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time. In our experiments, mRMR chooses the same features as FSNCMI, for both the training dataset 

and the independent dataset. All experiments are performed and report the Sn, Sp, AC and MCC. The 

comparison results of the two feature selection methods by jackknife test on the training set are shown 

in Table 2. The comparison results of the two feature selection methods by 5-fold cross validation  

test on the test dataset are shown in Table 3. For the training set and the independent test set, our 

ensemble predictor achieves accuracies of 76.82% and 79.16%; higher than the results obtained by 

using the mRMR feature selection method by 9.4% and 9.96% respectively. This may be due to the 

use of an effective feature selection method (FSNCMI), which can manipulate multiple feature  

subsets simultaneously. 

Table 2. The performance comparison of two feature selection methods on the training dataset. 

Method Sn (%) Sp (%) AC (%) MCC 

mRMR [57] 64.76 ± 2.12 68.21 ± 3.52 67.42 ± 1.37 0.282 ± 0.13 

This paper 76.85 ± 1.84 76.91 ± 2.09 76.82 ± 1.03 0.519 ± 0.08 

Table 3. The performance comparison of the two feature selection methods on the test dataset. 

Method Sn (%) Sp (%) AC (%) MCC 

mRMR [57] 51.68 ± 1.35 74.22 ± 0.92 69.20 ± 1.06 0.229 ± 0.09 

This paper 72.61 ± 2.34 81.27 ± 0.76 79.16 ± 0.98 0.503 ± 0.07 

Recently, two groups managed to identify a large number of endogenous ubiquitylation sites in 

human cells using mass spectrometry [58,59]. We picked out 300 lysine ubiquitylation sites 

downloaded from [58], and each ubiquitylation site in this dataset does not appear in the training 

dataset or the test dataset. Similarly, the 300 ubiquitylation residues with no annotation of 

ubiquitylation sites are regarded as non-ubiquitylation sites. The ensemble model obtains an accuracy 

of 75.26% and MCC of 0.623. In the future, we will use these identified sites as the training dataset to 

further improve the prediction accuracy of our ensemble model. 

3.2. Comparison with Existing Methods 

In this section, the proposed ensemble predictor is further compared with three recently reported 

predictors [13–15] on a publicly available dataset [15], which includes 14 ubiquitylation sites and  

267 non-ubiquitylation sites. The number of ubiquitylation sites and non-ubiquitylation sites in this 

dataset are highly imbalanced, and this situation is close to reality. The compared results are shown in 

Table 4. As can be seen from the table, the ensemble predictor proposed in this study obtains an MCC 

of 0.153, higher than the other three methods with an accuracy of 71.32%. In Table 4, “NA” means 

that the corresponding terms are until now unknown. 

Table 4. The performance comparison of different predictors on the independent dataset. 

Predictor Sn (%) Sp (%) AC (%) MCC 

mRMRPred [15] 34.34 79.67 68.34 0.139 

UbiPred [13] NA NA NA 0.135 

UbPred [14] NA NA NA 0.117 

This paper 57.14 ± 1.39 74.15 ± 0.95 71.32 ± 1.26 0.153 ± 0.06 
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3.3. Feature Analysis 

As is described in Section 2.2, we utilize four kinds of attributes to represent a peptide: amino acid 

compositions; PSSM conservation scores; disorder scores; and amino acid factors. In this section, 

feature analyses are performed on the training dataset. Firstly, the number of each type of features in 

the selected 10 subsets is counted and shown in Figure 4. There are 12 amino acid compositions 

features, 75 PSSM conservation scores features, 10 disorder scores features and 24 amino acid factors 

features in the selected subsets. From Figure 4, we can conclude that the PSSM conservation scores 

play the most important role in the lysine ubiquitylation prediction. In addition, it should be noted that 

most disorder scores features are extracted from site 13, this means that the disorder status of amino 

acid around the ubiquitylation site may affect the ubiquitylation process. 

Figure 4. The number of each type of feature in the 10 selected subsets. 
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Secondly, the number of features in each amino acid site taken from the 10 selected subsets is 

counted and shown in Figure 5. It is obvious that there are much more features in the selected subsets 

on sites 7, 8, 11, 12, 14, 16, 20 and 21 than on the other sites. This phenomenon may explain why 

Tung and Ho [13] found the best window size for ubiquitylation sites prediction to be 21. 

Figure 5. The number of all features on each site in the 10 selected subsets. 

 

Finally, the number of PSSM features in each amino acid site taken from the selected 10 subsets is 

counted and shown in Figure 6. It can be seen that the conservation of lysine residue plays a key role in 

the ubiquitylation process; moreover, the nearby sites 8, 12, 14 and remote sites 2, 7, 16, 17, 20 have 

more PSSM conservation scores features than the others. 
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Figure 6. The number of PSSM features on each site in the 10 selected subsets. 
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4. Conclusions 

Prediction of lysine ubiquitylation sites is important to understand the molecular mechanism of 

lysine ubiquitylation in biological systems. Though some researchers have focused on this problem, 

the accuracy of prediction has still not been satisfied. In this study, we develop an ensemble predictor 

for the prediction of lysine ubiquitylation sites based on a new feature selection method using the 

information of sequence conservation, amino acid composition, amino acid physicochemical properties 

and residue disorder status. The accuracy of our predictor is higher than those of state-of-art 

ubiquitylation sites prediction tools. Experimental results have shown that our method is very 

promising and may be a useful supplement tool to existing methods. Moreover, the conclusions 

derived from this paper might help to understand more about the ubiquitylation mechanism and guide 

related experimental validations.  

Since user-friendly and publicly accessible web-servers represent the future direction for 

developing more practically useful models, simulated methods or predictors, in our future work we 

will attempt to provide a web-server for the method presented in this paper. 
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