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Abstract: Newcastle disease virus (NDV) is used as an antineoplastic agent in clinical 

tumor therapy. It has prompted much interest as an anticancer agent because it can replicate 

up to 10,000 times better in human cancer cells than in most normal cells. This study was 

carried out to determine the oncolytic potential of NDV strain AF2240 and V4-UPM on 

WEHI-3B leukemia cell line. Results from MTT cytotoxicity assay showed that the CD50 

values for both strains were 2 and 8 HAU for AF2240 and V4-UPM, respectively. In 

addition, bromodeoxyuridine (BrdU) and trypan blue dye exclusion assays showed inhibition 

in cell proliferation after different periods. Increase in the cellular level of caspase-3 and 

detection of DNA laddering using agarose gel electrophoresis on treated cells with NDV 

confirmed that the mode of cell death was apoptosis. In addition, flow-cytometry analysis of 

cellular DNA content showed that the virus caused an increase in the sub-G1 region 

OPEN ACCESS



Int. J. Mol. Sci. 2011, 12 8646 

 

(apoptosis peaks). In conclusion, NDV strains AF2240 and V4-UPM caused cytolytic 

effects against WEHI-3B leukemic cell line.  
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1. Introduction  

Leukemia is a malignant neoplasm, characterized by neoplastic proliferation of hematopoietic cells, 

namely their diffuse replacement of the normal bone marrow [1,2]. Chemotherapeutic agents are used 

to prevent leukemic cells from multiplying, invading, metastasizing and finally killing the patient but 

they are very toxic and inhibit replication of both cancer and normal cells [3]. Over the past century, a 

series of case studies and anecdotal reports have indicated that viruses could indeed be used as 

anticancer therapeutics [4]. NDV is one of the nonengineered oncolytic viruses, which has a long 

history as a broad-spectrum oncolytic agent that can destroy tumor cells and stimulate the immune 

system [5]. NDV possesses several unique properties which make it an excellent anticancer agent; it 

has good cell binding properties, it binds specifically to tumor cells, it replicates selectively in tumor 

cell cytoplasm, it is relatively safe and it can act as an adjuvant [6]. It has oncolytic activity that can 

destroy tumor cells and stimulate the immune system. Many strains of NDV (73-T, MH68, Italian, 

Ulester, Rokin, PV701 and HUJ) have been shown to exhibit oncolytic activity [5,7]. In addition, the 

oncolytic effects of six Malaysian strains of NDV (AF2240, 01/C, Ijuk, S, F, and V4) have also been 

studied on several tumor cell lines [5,7]. However, no studies have yet been made using NDV 

oncolytic activity on myelomoncytic leukemia. Therefore, in this study the oncolytic effects of two 

Malaysian local NDV strains AF2240 and V4-UPM were tested in vitro against Mouse myelomoncytic 

leukemia cell line, WEHI-3B. 

2. Results 

2.1. Cytotolytic Effects of NDV on Normal Cells and Myelomonocytic Leukemia Cells 

In this study, the cytolytic effects of Newcastle disease virus strains AF2240 and V4-UPM on 

mouse myelomonocytic leukemia (WEHI-3B), promyelocytic leukemia (HL-60) and T-lymphoblastoid 

leukemic (CEM-SS), normal mouse fibroblast (3T3), mouse spleen lymphocyte and A peripheral 

blood mononuclear cell (PBMC) were determined by measuring the cytotoxic dose that kill 50% of the 

cell population as compared to the untreated control for various periods using colorimetric cytotoxicity 

assay (MTT). The assay for each strain was repeated three times. Both AF2240 and V4-UPM strains 

showed cytolytic effect on WEHI-3B cell lines in dose-dependent manner. The titer of virus that killed 

50% (CD50) of WEHI-3B cells, compared to untreated cells after 72 h of treatment were 2 ± 0.2 HAU 

and 8 ± 0.2 HAU (Haemagglutinating Units) for the AF2240 strain and V4-UPM strain, respectively. 

Furthermore, both NDV strains showed cytolytic effect on HL-60 and CEM-SS human leukemia cell 

lines (Table 1). On the other hand, AF2240 and V4-UPM strains showed low cytotoxic effect (CD50) 

on normal mouse fibroblast (3T3), mouse spleen lymphocyte and peripheral blood mononuclear cell 

(PBMC) cells, which were used as normal cells (Table 1).  
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Table 1. Cytotoxic effects dose (CD50) of Newcastle disease virus strains (AF2240 and  

V4-UPM), in comparison with commercial drugs (doxorubicin and arabinocytocine) 

against leukemia and normal cell lines at 72 h of incubation. 

Cell Lines AF 2240 V4-UPM Doxorubicin Arabinocytocine (Ara-C)
WEHI-3B 2 ± 0.2 8 ± 0.2 0.8 ± 0.6 1.0 ± 0.13 
HL-60 25 ± 0.3 110 ± 0.8 1.8 ± 0.1 0.3 ± 0.05 
CEM-SS 16 ± 0.6 64 ± 0.5 3.5 ± 0.1 3.8 ± 0.30 
3T3 NO CD50 NO CD50 7.0 ± 0.4 2.8 ± 0.20 
PBMC NO CD50 NO CD50 11.0 ± 0.8 7.0 ± 0.80 
Mouse spleen 
lymphocyte 

NO CD50 NO CD50 6.5 ± 0.2 4.7 ± 0.6 

2.2. BrdU Cell Proliferation Assay 

The effects of NDV strains AF2240 and V4-UPM on cell proliferation of WEHI-3B cells based on 

the DNA synthesis phase were investigated using BrdU cell proliferation assay. This assay showed 

decrease in 570 nm optical density (OD) of WEHI-3B cells after treated with NDV strains AF2240 and 

V4-UPM in a time and concentration-dependent manner (Figure 1). As observed in Figure 1, untreated 

WEHI-3B cells exhibited an increase in OD from day 1 to 3. However, the WEHI-3B cells treated 

with CD50 and CD75, showed decrease in OD from day 1 to 3. 

Figure 1. BrdU Proliferation assay, effects of different concentrations of Newcastle 

disease virus (NDV) strains AF2240 (A) and V4-UPM (B) on the proliferation and 

viability of WEHI-3B cells.  

  

(A) (B) 

Similarly, as shown in the Figure 1, OD values in treated cells with CD75 decreased more than CD50 

treatment until the third day. The decreased OD post treatment at both concentrations from first to third 

day was statistically significant (p < 0.05) when compared against the negative control. 
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2.3. Trypan Blue Exclusion Assay 

Based on the results of the trypan blue dye exclusion assay, increasing NDV exposure time had a 

significant effect on WEHI-3B cell viability. Treatment of WEHI-3B cells with CD50 and CD75 

concentrations of virus strains (2 and 32 HAU for AF2240 and 8 and 64 HAU for V4-UPM) resulted 

in a dose- and time-dependent inhibition of cell viability. As observed in Figure 2, at high 

concentration (CD75) of AF2240, WEHI-3B cell viability reduced to 52% at 24 h as compared to the 

control and finally declined to 34% and 22% after 48 and 72 h, respectively. At CD50 concentration of 

AF2240, WEHI-3B cell viability reduced to 78% at 24 h as compared to the control and finally 

reduced to 54% and 49% after 48 and 72 h, respectively. On the other hand, at high concentration 

CD75 of V4-UPM, WEHI-3B cell viability reduced to 46% at 24 h as compared to the control and 

finally declined to 25% and 23% after 48 and 72 h, respectively. Whereas, at CD50 concentration of 

V4-UPM, WEHI-3B cell viability reduced to 66% at 24 h compared to the control and finally declined 

to 56% and 50% after 48 and 72 h, respectively.  

Figure 2. Trypan blue exclusion assay. The percentage of viable cells in WEHI-3B  

cell population after treatment with different concentrations of virus strains at various  

time intervals.  

 

2.4. DNA Fragmentation Assay 

Fragmentation of chromosomal DNA is the biological hallmark of apoptosis. During apoptotic cell 

death, cellular endonucleases cleave genomic DNA between nucleosides producing fragments whose 

lengths vary by multiples of 180–200 bp. When resolved using agarose gel electrophoresis, these DNA 

fragments appear as a nucleosomal ladder In this study, both NDV strains AF2240 and V4-UPM caused 

DNA fragmentation in WEHI-3B cells at CD50 values, 2 and 8 HAU for AF2240 and V4-UPM, after 24, 

48 and 72 h. DNA fragmentation of 180–200 base pairs multiples appeared as distinctive ladder-like 

pattern on an agarose gel (Figure 3).  
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Figure 3. Agarose-gel-electrophoretic patterns showing DNA fragmentation of WEHI-3B 

cells treated with NDV strains AF2240 and V4-UPM at CD50 concentrations. From left to 

right: lane 1,7: 100 bp DNA markers; lane 2,8: WEHI-3B cell treated with doxorubicin  

(8 µg/mL); lane 3,9: untreated WEHI 3B cell; lane 4–6: WEHI-3B cell treated with 

AF2240 strain after 24, 48, and 72 h, respectively; lane 10–12: WEHI-3B cell treated  with 

V4-UPM strain after 24, 48, and 72 h, respectively. 

 

2.5. Effects of NDV on Cell Cycle Distribution 

In this study, quantification of apoptosis on the basis of nuclear changes was performed by staining 

apoptotic nuclei with propidium iodide (PI). FACS analysis was used to study the cell cycle kinetics of 

NDV strains AF2240 and V4-UPM (CD50) on WEHI-3B cells, whereby 20,000 cells were analyzed 

using the Cell Quest Software. As shown in Figures 4, 5 and 6, after 24 h treatment with CD50 values 

of NDV strains AF2240 and V4-UPM, both virus strains were able to induce 14% and 13% of 

apoptotic cells of WEHI-3B cells population and the number of apoptotic cells started to increase 

gradually with time. After 48 and 72 h of treatment, NDV strain AF2240 was able to induce 18% and 

21% of apoptotic cells (Figure 4A) while NDV strain V4-UPM able to induce 15% and 20% after 

48 and 72 h (Figure 4B). There was a significant increase in apoptosis (Sub-G1) induction with time  

(p < 0.05) of WEHI-3B cell treated with both NDV strains compared to untreated cells. On the other 

hand both NDV strains showed no arrests of WEHI-3B cells at specific cell cycle phase, meaning 

NDV was able to kill WEHI-3B cells at different cell cycle stages. This virus-induced cell cycle 

perturbation concurred with the previous results, suggesting that WEHI-3B cells undergo apoptosis 

more extensively with increasing time.  
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Figure 4. Flow-cytometry Cell cycle analysis of WEHI-3B cell population after staining 

with propidium iodide. (A) Cells treated with NDV strain AF2240 at CD50 value; (B) cells 

treated with NDV strain V4-UPM at CD50 value. Note: Each value represents of the mean 

of three replication ± SEM, (p < 0.05). 

(A) (B) 

Figure 5. DNA fluorescence histograms of WEHI-3B cells treated with NDV strain 

AF2240 at CD50 value (a) untreated cells; (b) cells treated after 24 h; (c) cells treated after 48 

h; (d) cells treated after 72 h. (B) Sub-G1; (C) G1; (D) S; and (E) G2/M. 

(a) (b) 
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Figure 5. Cont. 

(c) (d) 

Figure 6. DNA fluorescence histograms of WEHI-3B cells treated with NDV strain  

V4-UPM at CD50 value (a) untreated cells; (b) cells treated after 24 h; (c) cells treated after 

48 h; (d) cells treated after 72 h. (B) Sub-G1; (C) G1; (D) S; and (E) G2/M. 

(a) (b) 
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Figure 6. Cont. 

(c) (d) 

2.6. Activation of Caspase-8, an Initiator Caspase for the Extrinsic Pathway 

The involvement of caspase-8 in response to the treatment of NDV was determined. Treatment for 

12 h activated caspase-8 at 26.8% and increased to 59.1% at 24 h post-treatment (Figure 7A).  

Figure 7. Effects of NDV on caspase 8 (A), caspase 9 (B) and caspase 3/7 (C) in WEHI-3B 

cells. Data were expressed as mean ± SEM of three experiments (n = 3). Significant 

differences from untreated control are indicated by p < 0.05.  

 
(A) 



Int. J. Mol. Sci. 2011, 12 8653 

 

Figure 7. Cont. 

 
(B) 

 
(C) 

2.7. Activation of Caspase-9, an Initiator Caspase for the Intrinsic Pathway 

The involvement of caspase-9 in response to the treatment of NDV was also examined. As shown  

in Figure 7B, there was a gradual increase (from 12 to 24 h) of caspase-9 activation at 46.5 and  

55.8%, respectively.  

2.8. Activation of Effector/Executioner Caspases (Caspase-3/7) 

The involvement of effector caspase, caspase-3/7 in response to the treatment of NDV was further 

determined. Treatment of WEHI-3B cells with NDV for 12 h activated caspase-3/7 at 42.67% and 

increased to 78.4% at 24h post-treatment (Figure 7C).  
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3. Materials and Methods 

3.1. Propagation and Purification of NDV Strains AF2240 and V4-UPM 

NDV was propagated in allantoic fluid of 9–11 days-old embryonated chicken eggs at 37 °C for 48 h. 

The allantoic fluid was harvested and the presence of virus was confirmed by the haemaglutination  

test [8]. NDV purified as previously described by Chambers and Samson (1980) [9]. 

3.2. Cells and Cell Culture 

(WEHI-3B) murine myelomoncytic leukemia cell line and 3T3 (Mouse fibroblast) cell lines were 

provided by the Laboratory of Molecular and Cell Biology, Institute of Bioscience, Universiti Putra 

Malaysia. WEHI-3B and 3T3 cell lines were cultured in DMEM (Sigma, USA) containing 10% fetal 

bovine serum (FBS), 100 U/mL penicillin and 100 μg/mL streptomycin at 37 °C in a humidified 

atmosphere of 5% CO2 in air. The cells were grown to confluence and sub-cultured at three to four 

days interval before the experiments. 

3.3. Cell Viability and Proliferation Assessment  

3.3.1. MTT Cytotoxicity Assay 

Leukemia cells inhibition by NDV was measured using Microtitration cytotoxicity [10,11]. About 

150 µL complete medium were added into of flat-bottom 96–well plate (Nunclon™, Denmark) and  

50 µL of the 2-folded serial virus dilution were added into the wells. In the last well, 50 µL of PBS were 

added instead of the virus, which represented as control. Then 50 µL of 5 × 105 cells of CEM-SS (human 

T-lymphobalstic leukemia), WEHI-3B (Mouse Myelomoncytic leukemia), HL-60 (Promyelocytic 

leukemia), were added to top up the final volume to 200 µL and the plate was incubated at 37 °C in an 

atmosphere of 5% CO2. Seventy-two hours later, 20 µL of MTT (5 mg/mL) in PBS solution was added 

to each well then the plate was further incubated for 4 h. Most of the medium was removed and  

100 µL of DMSO (dimethyl sulfoxide) was added into the wells to soluble the crystals. Finally the OD 

was measured by (ELISA) reader at wavelength of 570 nm. Then graphs of percentage of viable cells 

versus virus titer HAU were plotted. The value of CD50 was determined from the graphs obtained at 

the concentration that cause 50% cell reduction as compared with controls.  

3.3.2. BrdU Proliferation Assay 

The BrdU proliferation assay for treated and untreated WEHI-3B cells was carried out using a kit 

BrdU Cell Proliferation assay (CHEMICON, USA). WEHI-3B cells at concentration of 1 × 105 cells/mL 

treated with both NDV strains at CD50 and CD75 concentrations (2 and 32 HAU for AF2240 and 8 and 

64 HAU for V4-UPM). Then the plates were incubated in an atmosphere of 5% CO2 at 37 °C for 24, 

48 and 72 h. After incubation periods, the cells were washed with PBS twice. Further procedure was 

done according to protocol specified by the manufacturer. The plates were read using a 

spectrophotometer microplate reader at dual wavelength of 450 nm and 550 nm. The OD of samples 

was plotted against time to determine the growth rates of cells in a given value.  
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3.3.3. Trypan Blue Exclusion Assay 

Trypan Blue Exclusion assay was employed to determine the number of viable cells in cultures. The 

cells were incubated with different CD50 and CD75 concentrations of both NDV strains (2 and 32 HAU 

for AF2240 and 8 and 64 HAU for V4-UPM) at 37 °C. The viability of the cells was then determined 

at the designated time interval. Cells were analyzed by viable cell counts and the percentage of cell 

viability was obtained. The results were expressed as the mean percentage of cell viability ± SEM of 

triplicate cultures. 

3.4. DNA Fragmentation Assay 

Cells at a concentration of 5 × 106 cells/mL were seeded into 6-well plate (NunclonTM, Denmark) in 

2 mL culture medium with a concentration of CD50 value of viruses. Some wells were left with no 

virus to be used as a control. After the 72 h of incubation, cells were spun down at 1000 rpm for  

10 min and the pellet was washed with PBS twice. The DNA extraction from treated and untreated 

cells was carried out according to protocol of a kit for Blood and Cultured Cells from QIAGEN. The 

purified DNA was subjected to electrophoresis in 1.5% agarose gel. The gel was electrophoresed for 

and stained in ethidium bromide. The bands were visualized using UV light transillumintor.  

3.5. Analysis of Cellular DNA Content Using Propidium Iodide 

Cells at a concentration of 5 × 106 cells/mL of WEHI-3B cell line was incubated in 6-well plate in 

with a concentration of CD50 value of virus for 72 h. Some wells were left with no virus to be used as a 

control. After the incubation period, the Cells were fixed by adding 500 µL of 80% cold ethanol and kept 

for at least 2 h at −20 °C. Cells were pelleted at 1000 rpm for 10 min and the ethanol was discarded. The 

cell pellet was washed with 1 mL (PBS/sodium azide) twice. The pellet was resuspended with 1 mL of 

(PBS + 0.1% triton X-100 + 10 mm EDTA + 50 µg/mL RNase + 2 µg/mL Propidium iodide) followed 

by incubated for 1/2 to 1 h at 4° C. Finally, samples were analyzed by flow cytometer (Beckman 

Coulter, USA).  

3.6. Analysis of Caspase-3/7, 8 and 9 Activities 

Caspase-3/7, 8 and 9 activities was measured using Caspase-Glo® 3/7, 8 and 9 Assay Kit (Promega, 

USA). The kit provided a lumigenic caspase-3/7, 8 and 9 substrates, in a reagent optimized for  

caspase activity, luciferase activity and cell lysis. Cells of WEHI-3B were grown in white-wall, optical 

bottom 96-well plate and treated with NDV at CD50 for 0, 12 and 24 h. After the incubation time, an 

equal volume of the reagent were added to the cells and further incubated for 1 h. The contents  

were mixed gently using a plate shaker at 300 to 500 rpm for 30 s. Luminescene plate reader, Tecan 

(Infinite M200) was used to measure luminescene intensity. Blank values were subtracted from 

experimental values.  
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3.7. Statistical Analysis 

Data was expressed as mean ± SEM. Statistical analysis was performed with Student’s t-test for data 

from MTT cytotoxicity assay, BrdU Proliferation Assay, Trypan blue exclusion assay, flowcytometry 

and caspases with p value of less than 0.05. 

4. Discussions  

Oncolytic viruses are viruses that infect and replicate in cancer cells, destroying these harmful  

cells and leaving normal cells largely unaffected. NDV is an oncolytic virus with the ability to induce 

tumor lysis through different mechanisms [12] and it appears to replicate and kill tumor cells but not 

normal human cells [13]. Development of biologically targeted agents that exploit differences between 

cancerous and normal cells and permit greater specificity for cancer cells with less damage to normal 

cells is still the ultimate goal in the field of antineoplastic drug discovery [14]. This study showed that 

NDV AF2240 and V4-UPM strains have the ability to induce cytolysis, apoptosis and anti-proliferation 

in (WEHI-3B) murine myelomoncytic leukemia cell line.  

Based on the MTT assay, treatment with both NDV strains resulted in concentration- and  

time-dependent cytolyitic effects on the WEHI-3B cells but not on mouse fibroblast (3T3), mouse 

spleen lymphocyte and peripheral blood lymphocyte cells, which were used as normal cells. These 

results complies with previous other studies [7,15–18] which stated that the effectiveness of  

NDV strains AF2240 and V4 UPM as an oncolytic agent was found on breast cancer cell lines  

(MCF-7 and MDA-231), leukemia cell lines (HL-60 and CEM-SS) and brain tumor cell line 

(DBTRG.5MG and U87MG). 

To further investigate the cytolytic effects of the virus, inhibition of WEHI-3B proliferation was 

determined using the bromodeoxyuridine (BrdU) cell proliferation assay, which is based on the DNA 

synthesis phase [19]. Inoculation of both NDV strains on the WEHI-3B cells with high titre showed 

that the growth rates of the cells decreased more than those inoculated with low titre. On the other 

hand, untreated WEHI-3B cells exhibited an increase in the growth rates. Therefore, both NDV strains 

were able to inhibit WEHI-3B cell proliferation.  

The trypan-blue exclusion test also showed that NDV has significant antiproliferative effects on 

WEHI-3B cells. This test is based on the principle that living cells possess intact cell membranes that 

exelude the dye, whereas dead cells do not [20].  

Apoptosis is particularly relevant to viral pathogenesis; it is a major mechanism for viral clearance 

by the mammalian immune system which induces apoptosis in infected cells. It is becoming 

increasingly apparent that many viruses have evolved proteins that are capable of attenuating  

apoptosis [21]. A number of methods have been used by researchers to distinguish between apoptosis 

and necrosis. In this study we reported that both NDV strains stimulate DNA fragmentation 

characteristic of apoptosis in WEHI-3B cell line at 24, 48 and 72 h post-inoculation. Internucleosomal 

cleavage of DNA is likely to be in the later phase of apoptotic process [22–24]. The DNA ladder assay 

is generally accepted as specific for apoptosis because it detects oligonucleosomal cleavage rather than 

artificial DNA cleavage or necrosis. To date, apoptosis has been characterized biochemically by the 
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production of 180–200 bp internucleosomal DNA fragments resulting from the activation of an 

endonuclease [23].  

Further confirmation of the mode of cell death was carried out by Flow cytometric analysis of cell 

cycle which is a rapid and quantitative measure on apoptotic changes cells by staining with DNA  

dyes [25]. This method is useful for quantitative estimates of the fractions of cells in the different 

phases of the cell cycle [26]. Untreated and treated WEHI-3B cell lines were evaluated for apoptosis 

by measuring the amount of apoptotic cells using of DNA flow cytometry (FCM). In the present study, 

we found that an apoptotic peak appeared before the G1 phase when WEHI-3B cells were treated with 

both NDV strains. Both NDV strains caused an increase in the subG1 region which increased of time. 

This time-dependent effect was significantly apparent upon the induction of apoptosis, with no 

induction of cell cycle arrest in any specific phase. The fluorescence histograms showed that there 

were less of treated WEHI-3B cells in all three phases of the cell cycle (G1, S and G2/M) accompanied 

by a large increase in the sub-G1 region (apoptosis peak).  

Caspases are effectors and executioners. The effector caspases can be activated by multiple pathways, 

some involving the mitochondria and others independent of this organelle. Once effector caspases 

become active, they cleave and activate the downstream executioner caspases. These downstream 

caspases then cleave and activate a series of molecules, which are involved in terminal apoptotic events. 

Without proper functioning caspases, the upstream tumor-suppressor genes may be unable to activate 

the apoptotic pathway. Therefore, caspases are an important indicator for tumor therapy. In this study, 

Caspase-8 was identified as an initiator caspase triggered by death receptors. So, the activation of 

caspase-8 suggested that NDV might induce apoptosis through the extrinsic death receptor-pathway. 

Death receptors are cell-surface cytokine receptors belonging to the tumor necrosis factor (TNF) 

receptor superfamily that trigger apoptosis after binding to a group of structurally related ligands or 

specific antibodies [27–29]. The activation of caspase-9 in NDV-treated WEHI-3B cells can be related 

with the involvement of mitochondria. Mitochondria act as important sensors of cellular damage. Any 

increase in the permeability of the outer mitochondrial membrane can allow certain proteins, such as 

cytochrome c, to be released from the mitochondrial intermembrane space into the cytosol and activate 

the apoptosome. Upon activation within the apoptosome, caspase-9 then propagates the caspase 

cascade through activation of caspases-3 and -7. Caspase-3 in turn activates caspases-2 and -6 and then 

promotes activation of the downstream caspases-8 and -10 [30]. Caspase-3 also participates in a 

feedback amplification loop to further process caspase-9 [31]. Thus, it is evident that once caspase-9 is 

activated within the apoptosome, there is a rapid amplification of the death signal through the 

activation of a panoply of other caspases . The executioner caspase include caspases-3, -6 and -7. 

Many studies have suggested that caspase-3 is the primary executioner caspase with relatively few 

physiological substrates for caspases-6 and -7 [32]. It is assumed that caspase-3 has a position as a 

central executioner caspase in mammals and the role of caspase-3 is supported by the convergence of 

both death-receptor and mitochondrial-mediated death pathways at caspase-3 activation as well as by 

the wide range of potential caspase-3 substrates [33,34].  

As a conclusion, we investigated the use of NDV strains AF2240 and V4-UPM as an oncolytic 

agent of WEHI-3B myelomoncytic leukemia cells. Our study suggests that the NDV have a potent 

effect on leukemia cells and that its cytotoxicity increases with increasing titers of the virus. NDV was 

also found to act by inducing apoptosis in the WEHI-3B leukemia cells. 
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