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Abstract: Polo-like kinase 1, an important enzyme with diverse biological actions in  

cell mitosis, is a promising target for developing novel anticancer drugs. A combined 

molecular docking, structure-based pharmacophore modeling and three-dimensional 

quantitative structure-activity relationship (3D-QSAR) study was performed on a set of 

4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as PLK1 inhibitors. The common 

substructure, molecular docking and pharmacophore-based alignment were used to develop 

different 3D-QSAR models. The comparative molecular field analysis (CoMFA) and 

comparative molecule similarity indices analysis (CoMSIA) models gave statistically 

significant results. These models showed good q2 and r2
pred values and revealed a good 

response to test set validation. All of the structural insights obtained from the 3D-QSAR 

contour maps are consistent with the available crystal structure of PLK1. The contour  
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maps obtained from the 3D-QSAR models in combination with the structure based 

pharmacophore model help to better interpret the structure-activity relationship. These 

satisfactory results may aid the design of novel PLK1 inhibitors. This is the first report on 

3D-QSAR study of PLK1 inhibitors. 

Keywords: PLK1; 3D-QSAR; pharmacophore; molecular docking 

 

1. Introduction 

Polo-like kinases (PLKs), a family of serine/threonine protein kinases, have attracted much 

attention as important elements that regulate cell cycle progression, particularly mitosis. In homo 

sapiens, four PLK homologs have been identified (PLK1, PLK2, PLK3 and PLK4) [1], and more 

recently, PLK5 has been identified. However, PLK5 is short of a kinase domain and may not function 

in cell cycle regulation [2]. They all share a highly conserved N-terminal catalytic kinase domain and a 

C-terminal region composed of “polo boxes” (only one in PLK4). PLK1 is the most investigated 

member of the family and has been widely considered as an anticancer target [3–5]. PLK1 is expressed 

primarily in dividing cells, which functions in mitosis entry, centrosome maturation, kinetochore 

assembly, bipolar spindle formation, cytokinesis and the exit of mitosis [6–13]. Knockdown or 

pharmacologic inhibition of PLK1 in tumor cells results in defects in centrosome maturation and 

separation, mitotic spindle formation and chromosome alignment, leading to disruption of cell mitosis 

and even apoptosis [14–16]. 

PLK1 is strongly associated with human malignancy due to its frequent over-expression in a variety 

of tumors with poor prognosis, such as breast cancer, ovarian cancer, pancreatic cancer, lung cancer, 

endometrial cancer, head and neck cancer, gastric cancer, prostatic cancer, etc. [4,17]. Given the 

oncogenic amplification and transforming potential of PLK1, there is a high level of interest and an 

increasing effort to inhibit its enzymatic activity with small-molecule compounds to the catalytic 

domain (ATP-binding site) for cancer therapy. Currently seven PLK1 inhibitors are in clinical trials 

and well tolerated in humans [18–20]. Recently, the 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline 

derivatives were reported as a novel class of PLK1 inhibitors, showing high potency at a nanomolar 

level [18,20,21]. Due to favorable biochemical profiles, high potency both in vivo and in vitro, and the 

acceptable oral bioavailability, two compounds of this class were subjected to clinical trials [18,20]. 

However, the study of type II PLK1 inhibitors is relatively slow. Only one case of potent type II 

inhibitors was reported by Keppner and coworkers in 2009 [22]. 

To date, there have not been any reports on 3D-QSAR studies of PLK1 inhibitors. Herein, we report 

the application of pharmacophore modeling, docking, comparative molecular field analysis (CoMFA) [23] 

and comparative molecular similarity analysis (CoMSIA) [24] 3D-QSAR methods to the 

4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives. This study was undertaken to gain insights 

into molecular mechanisms and structural requirements crucial for potential inhibition of PLK1, which 

could be useful in the design of novel PLK1 inhibitors. The CoMFA and CoMSIA analyses were 

conducted to investigate how the activity is influenced by steric, electrostatic, hydrophobic, and 

hydrogen bonding interactions. The 3D-QSAR models obtained from both the ligand- and 
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structure-based alignments were both found to be statistically valid in terms of the interpretation of 

interaction mode and the predictability to internal and external compounds. The contour plots obtained 

from the 3D-QSAR models correlated well, not only with the detailed interactions between the ligands 

and active-site residues in the crystal structures of PLK1, but also the pharmacophore features directly 

derived from the receptor-ligand interactions in crystal structures. The developed computational 

models are expected to help with better understanding of the QSAR of this class of compounds, as well 

as ensuring the researcher an in-depth analysis about the lead compounds for PLK1 inhibitor in further 

studies. To the best of our knowledge, this work will be the first 3D-QSAR study of PLK1  

inhibitors reported. 

2. Results and Discussion 

2.1. Multiple Structure Alignment Analyses 

The accuracy and reliability of the CoMFA and CoMSIA model is directly dependent on the 

structural alignment rule. Therefore, before PLS analyses to construct the 3D-QSAR models, we 

performed the structure and ligand based alignment to find the effective alignment to this dataset 

(Table 1). Because the alignments involved were actually based on the co-crystal structure of 

compound 73 with PLK1, a preliminary analysis on its binding mode was necessary. Figure 1 shows 

the co-crystal interaction mode of compound 73 with PLK1 (2YAC, resolution: 2.2 Å). The core of 

compound 73 is sandwiched between Phe183 at the bottom of the ATP binding pocket and Cys67 in 

the back of the G-loop. An aromatic ring stacking interaction is found between the Phe183 and 

compound 73, which has an important influence on the conformational equilibrium of the whole 

compound. The 4-methylpiperazinyl moiety penetrates to the solvent accessible region, which may be 

involved in hydrophilic interactions. The 2-hydroxyethyl group positions at the same place related to 

the ribose moiety of ATP, which is a site tolerant to the long chain substituent. In addition to two 

conservative hydrogen bonds formed with the hinge region residue Cys133, the amide moiety and the 

trifluoromethoxyl group are engaged in three and one hydrogen bonding interactions, respectively. The 

knowledge on binding mode will assist in the evaluation of compound alignments as well as QSAR analyses. 

Figure 1. The co-crystal binding mode of compound 73 with PLK1. The hydrogen bond is 

represented with red dotted line. 
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Table 1. Structures of 73 compounds. 

N

N

N N
R1

O

R2

HN

R3

R4  

Compound R1 R2 R3 R4 

1 * NHMe Me H H 

2 * NHcyclopropyl Me H H 

3 NHcyclopentyl Me H H 

4 NHPh Me H H 

5 NH2 Me CF3 H 

6 NH2 Ph H H 

7 NH2 i-Pr H H 

8 NH2 1-methylpiperidine-4-yl H H 

9 NH2 2-(piperidin-1-yl)-ethyl H H 

10* NH2 Me H m-CF3 

11 NH2 Me H p-CF3 

12 NH2 Me Ac H 

13 NH2 Me H m-Ac 

14 NH2 Me OMe H 

15 NH2 Me H m-OMe 

16 NH2 Me H p-OMe 

17 NH2 Me NO2 H 

18 NH2 Me H m-NO2 

19 NH2 Me Me H 

20 * NH2 Me NHMe H 

21 NH2 Me i-Pr H 

22 * NH2 Me COOMe H 

23 * NH2 Me CONH2 H 

24 NH2 Me SO2NH2 H 

25 NH2 Me Ph H 

26 * NH2 Me OPh H 

27 NH2 Me benzyl H 

28 * NH2 Me NHPh H 

29 NH2 Me benzoyl H 

30 * NH2 Me SPh H 

31 NH2 Me Ac 3′-(4-methyl-piperazin-1-yl) 

32 * NH2 Me Ac 4′-(4-methyl-piperazin-1-yl) 

33 NH2 Me Ac 5′-(4-methyl-piperazin-1-yl) 

34 NH2 Me OMe 4′-(4-methyl-piperazin-1-yl) 

35 * NH2 Me OMe 5′-(4-methyl-piperazin-1-yl) 

36 OEt Me H H 

37 NH2 Me NH2 H 

38 NH2 Me NHAc H 
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Table 1. Cont. 

Compound R1 R2 R3 R4 
39 NH2 Me OCF3 H 

40 NH2 Me OCF3 5'

H
N

N

41 * NH2 Me OCF3 5'

H
N

N

42 NH2 Me OCF3 5' N N

43 NH2 Me OCF3 5'
N
H

NH

44 NH2 Me OCF3 5' N NH

45 NH2 Me OCF3 
5'

N
H

N N

O

NH

46 * NH2 Trityl OCF3 5' N N

47 NH2 H OCF3 5' N N

48 * NH2 2-Fluoro-ethyl OCF3 5' N N

49 NH2 Ethyl OCF3 5' N N

50 * NH2 2-Methoxy-ethyl OCF3 5' N N

51 NH2 2-Chloro-ethyl OCF3 5' N N

52 NH2 Vinyl OCF3 5' N N

53 * NH2 Me OCF3 5' N N

54 NH2 Me OCF3 5′-NH2 

55 NH2 Me OCF3 5' N
N

56 * NH2 Me OCF3 5' N N

57 NH2 Me OCF3 5'

H
N

N



Int. J. Mol. Sci. 2011, 12             

 

 

8718

Table 1. Cont. 

Compound R1 R2 R3 R4 

58 NH2 Me OCF3 5' N

59 NH2 Me OCF3 5' N

60 NH2 Me OCF3 
5' N N

OH

61 NH2 Me OCF3 
5' N N

OH

62 * NH2 Me OCF3 5' N N N

63 NH2 Me OCF3 5' N
N

64 * NH2 Me OCF3 
5'

N
H

N
N

65 NH2 Me OCF3 5'
N
H

N

66 * NH2 Me OCF3 5'
N
H

N
H  

67 NH2 Me OCF3 5'
N
H

O H
N

68 NH2 Me OCF3 5'
N
H

O

N

69 NH2 –(CH2)3–N–(CH3)2 OCF3 5' N N

70 * NH2 
O O

OCF3 5' N N
 

71 NH2 –(CH2)2–NH2 OCF3 5' N N

72 NH2 –(CH2)3–NH2 OCF3 5' N N

73 NH2 –(CH2)2–OH OCF3 5' N N

* Compounds in test set. 

As depicted in Figure 2, all 73 compounds were aligned well, using the common substructure based 

method. GLIDE performed quite well, as most conformations bind in a way analogous to the bound 

ligand of 2YAC, i.e., compound 73 (Figure 3). Thus, the alignment derived by GLIDE docking is 
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considered reasonable. Figure 4a,b illustrate two pharmacophore models deduced from the PLK1 

crystal structures 2YAC and 3KB7 by LigandScout. It is obvious that they share nearly identical 

features. To cover the most common features that may be required by PLK1 inhibitory potency, we 

clustered and subsequently merged them to a new pharmacophore model. This merged model  

(Figure 4c) consists of one hydrogen-bond acceptor, one hydrogen-bond donor, three hydrophobic and 

one ionizable positive, which is simplified by discarding three redundant hydrophobic features. Figure 4d 

shows the result of pharmacophore mapping of those compounds, which also suggests an  

excellent alignment. 

Figure 2. The common substructure based alignment. 

 

Figure 3. The resultant conformations from GLIDE docking. 
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Figure 4. (a) Pharmacophore model derived from 2YAC; (b) Pharmacophore model derived 

from 3KB7; (c) The merged model; (d) The compounds alignment based on the merged 

model. Features are color-coded with magenta for hydrogen-bond donor, green for 

hydrogen-bond acceptor, light-blue for hydrophobic, red for ionizable positive. 

  

  

Taken together, the results from common substructure and the merged pharmacophore based 

alignments, as well as GLIDE docking, proved to be reasonable and effective. It was difficult to judge 

which alignment would be more practicable, therefore, they were all subjected to the next step for 

model generation to further investigate their applicability and gain a more extensive insight to QSAR 

of pyrazoloquinazoline PLK1 inhibitors. 

2.2. CoMFA and CoMSIA Statistical Results 

Owing to the fact that common substructure, GLIDE docking and the pharmacophore methods all 

produced acceptable alignments of 73 known PLK1 inhibitors, the corresponding CoMFA and 

CoMSIA analyses were performed independently for further comparison. The statistical results of PLS 

analyses for CoMFA and CoMSIA studies are listed in Table 2. The pharmacophore based model 

yielded q2 = 0.628 and r2 = 0.941 for CoMFA, whereas the GLIDE docking and common substructure 

based model produced a lower q2 value of 0.283 and 0.578, and r2 value of 0.420 and 0.867 for 

CoMFA, respectively. Multiple CoMSIA models were derived based on three types of alignment, with 

various combinations of steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond 

acceptor fields. To get a clear view, only parameters of models whose q2 value are higher than those of 

other models derived from the same alignment were considered. It is obvious that CoMSIA models 
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from common substructure, GLIDE docking and pharmacophore based alignments showed 

comparable results. The inhibitory activities (pIC50), the predicted activities using the CoMFA and 

CoMSIA models, and the corresponding residual values for the training set compounds are listed in 

Tables 3 and 4. Graphic representations of experimental vs. predicted inhibitory activity of training set 

for pharmacophore-based CoMFA and typical CoMSIA models are shown in Figure 5. In all, the 

CoMFA and CoMSIA models we constructed possess high q2 and r2 value, indicating that they have 

good internal predictive ability and that results were not based on any chance correlation. To validate 

both the predictability and accuracy of the models for external compounds, the predictive correlation 

coefficient r2
pred was calculated for the test set. As shown in Tables 3 and 4, the r2

pred value of 

pharmacophore-based CoMFA model and CoMSIA models spans from 0.605 to 0.827 and most of the 

residual values are less than 1.0, revealing that the models are highly reliable and can be used to 

predict the biological activities of novel compounds; whereas, the r2
pred value of CoMFA models from 

GLIDE docking and common substructure based alignment is somehow lower, reflecting poor 

predictive ability. The plots of experimental vs. predicted inhibitory activity of test set for CoMFA and 

CoMSIA models are shown in Figure 5, showing that the predicted activities were in good agreement 

with the original data and the reliable CoMFA and CoMSIA models have a robust external predictive ability. 

It can be concluded easily that the best model for CoMFA was obtained from the 

pharmacophore-based method (model 2) while it was difficult to distinguish the best CoMSIA model 

because there is no significant difference between PLS statistical results. Hence, we have paid 

attention to all CoMSIA models (models 4, 5 and 6), considering the representation of different fields, 

the satisfactory internal and external predictive ability in terms of q2 and r2
pred value, respectively. 

Table 2. Statistics summary of CoMFA and CoMSIA models. 

Alignment Method 
CoMFA Model CoMSIA Model 

GD a PH b CS c GD PH CS 

No. 1 2 3 4 5 6 

q2 0.283 0.628 0.578 0.574 0.532 0.588 

r2 0.42 0.941 0.867 0.97 0.859 0.834 

SEE d 0.818 0.268 0.404 0.198 0.411 0.447 

F e 36.929 192.635 78.313 207.094 99.622 81.965 

ONC f 1 4 4 7 3 3 

Field analysis       

Steric 0.663 0.619 0.698 0.177 0.224 0.263 

Electrostatic 0.337 0.381 0.618 0.52 0.407 0.459 

Hydrophobic - - - - - - 

H-bond donor - - - 0.303 0.369 0.277 

H-bond acceptor - - - - - - 

Test set       

r2
pred 

g 0.405 0.785 0.752 0.605 0.695 0.749 
a Glide docking; b Pharmacophore; c Common substructure; d Standard estimated error; e Fisher value;  
f Optimal number of components; g Predictive correlation coefficient for test set. 
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Table 3. The experimental pIC50, predicted pIC50 and residual values of all compounds 

derived from the CoMFA models. 

Compound pIC50 
Model 1 Model 2 Model 3 

Prediction Residue Prediction Residue Prediction Residue

1 * 5.375 5.848 −0.473 5.227 0.148 5.380 −0.005 
2 * 5.000 5.934 −0.934 5.406 −0.406 5.063 −0.063 
3 5.000 5.824 −0.824 5.228 −0.228 4.778 0.222 
4 5.000 5.724 −0.724 4.795 0.205 5.298 −0.298 
5 6.365 6.544 −0.180 6.382 −0.018 6.282 0.082 
6 5.000 6.101 −1.101 5.591 −0.591 5.653 −0.653 
7 6.367 6.074 0.293 5.935 0.432 5.765 0.602 
8 5.000 6.394 −1.394 5.096 −0.096 4.798 0.202 
9 5.000 6.543 −1.543 4.966 0.034 5.060 −0.060 

10 * 7.292 6.249 1.043 7.358 −0.066 6.423 0.869 
11 6.060 5.547 0.513 6.153 −0.093 6.165 −0.106 
12 6.461 6.536 −0.075 6.401 0.060 6.286 0.175 
13 7.000 5.914 1.086 7.105 −0.105 6.575 0.425 
14 7.377 6.378 0.999 7.359 0.018 7.120 0.257 
15 6.870 6.068 0.802 6.798 0.072 6.649 0.221 
16 6.592 5.970 0.622 6.402 0.190 6.886 −0.294 
17 6.312 6.354 −0.042 6.395 −0.083 6.125 0.187 
18 5.000 5.892 −0.892 5.074 −0.074 6.189 −1.189 
19 7.824 6.040 1.784 7.420 0.404 6.858 0.966 

20 * 6.959 6.260 0.699 6.240 0.719 7.193 −0.234 
21 6.438 6.216 0.222 6.485 −0.047 6.749 −0.311 

22 * 5.952 6.490 −0.538 6.844 −0.892 6.745 −0.793 
23 * 5.683 6.250 −0.567 5.481 0.202 6.781 −1.098 
24 5.428 6.150 −0.722 5.564 −0.136 6.110 −0.682 
25 5.806 6.316 −0.511 6.198 −0.393 6.044 −0.238 

26 * 6.556 6.624 −0.068 6.279 0.277 6.216 0.340 
27 6.026 6.216 −0.191 6.005 0.021 6.035 −0.010 

28 * 6.023 6.609 −0.586 6.150 −0.127 6.212 −0.189 
29 5.706 6.380 −0.674 5.686 0.020 5.724 −0.018 

30 * 5.692 6.772 −1.080 6.168 −0.476 6.094 −0.402 
31 5.688 5.964 −0.276 5.904 −0.216 5.913 −0.225 

32 * 6.334 6.768 −0.435 5.746 0.587 7.694 −1.361 
33 6.963 7.711 −0.748 7.152 −0.189 6.698 0.265 
34 7.398 6.327 1.071 7.573 −0.175 7.330 0.068 

35 * 8.155 7.441 0.714 8.503 −0.348 8.226 −0.071 
36 5.000 5.874 −0.874 5.070 −0.070 5.195 −0.195 
37 6.824 6.153 0.671 6.920 −0.096 6.796 0.028 
38 5.598 5.973 −0.375 5.145 0.453 5.588 0.010 
39 6.932 6.387 0.545 6.681 0.251 6.716 0.216 
40 6.016 7.373 −1.357 6.026 −0.010 5.755 0.261 

41 * 6.910 7.384 −0.474 6.320 0.590 7.188 −0.278 
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Table 3. Cont. 

Compound pIC50 
Model 1 Model 2 Model 3 

Prediction Residue Prediction Residue Prediction Residue

42 8.097 7.501 0.596 8.130 −0.033 8.653 −0.556 
43 7.114 7.318 −0.204 7.163 −0.050 7.056 0.058 
44 8.699 7.428 1.271 8.567 0.132 8.275 0.424 
45 7.456 7.522 −0.066 7.163 0.293 7.905 −0.449 

46 * 5.000 7.379 −2.379 5.528 −0.528 4.123 0.877 
47 8.398 7.156 1.242 8.361 0.037 8.363 0.035 

48 * 8.398 7.276 1.122 7.868 0.530 8.064 0.334 
49 8.222 7.609 0.613 7.959 0.263 8.069 0.153 

50 * 7.824 7.300 0.524 7.527 0.297 7.675 0.149 
51 8.155 7.316 0.839 8.152 0.003 7.918 0.237 
52 8.222 7.518 0.704 8.339 −0.117 8.073 0.149 

53 * 8.523 7.555 0.968 8.221 0.302 8.579 −0.056 
54 7.222 6.432 0.790 7.500 −0.278 7.182 0.040 
55 7.602 7.416 0.186 7.967 −0.365 7.685 −0.083 

56 * 7.482 7.453 0.028 6.750 0.732 8.656 −1.175 
57 6.699 7.505 −0.806 7.303 −0.604 6.568 0.131 
58 8.523 7.497 1.026 8.082 0.441 8.499 0.024 
59 8.222 7.333 0.889 8.070 0.152 8.018 0.204 
60 6.813 7.516 −0.704 6.580 0.233 7.415 −0.603 
61 6.697 7.502 −0.805 6.439 0.258 7.358 −0.661 

62 * 7.377 7.417 −0.040 7.465 −0.088 7.735 −0.358 
63 7.222 7.129 0.093 7.568 −0.346 6.608 0.614 

64 * 6.975 7.354 −0.379 6.220 0.755 7.077 −0.102 
65 6.827 7.660 −0.833 6.591 0.236 7.034 −0.207 

66 * 7.081 7.358 −0.277 6.546 0.535 6.968 0.113 
67 7.357 7.555 −0.199 7.285 0.071 6.833 0.523 
68 6.650 7.634 −0.984 6.181 0.469 6.117 0.533 
69 6.554 7.291 −0.737 6.763 −0.209 6.665 −0.111 

70 * 7.367 7.521 −0.155 6.587 0.780 7.756 −0.390 
71 7.482 7.562 −0.081 8.013 −0.532 7.765 −0.284 
72 7.284 7.647 −0.363 7.332 −0.048 7.703 −0.419 
73 8.699 7.541 1.158 8.292 0.407 8.235 0.464 

* Test set compounds. 
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Figure 5. Plot of predicted vs. experimental values of (a) CoMFA model 2 and (b) CoMSIA 

models 4, 5 and 6. 
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Table 4. The experimental pIC50, predicted pIC50 and residual values of all compounds 

derived from the CoMSIA models. 

Compound pIC50
Model 4 Model 5 Model 6 

Prediction Residue Prediction Residue Prediction Residue

1 * 5.375 5.171 0.204 5.208 0.167 4.833 0.542 
2 * 5.000 5.524 −0.524 5.168 −0.168 4.781 0.219 
3 5.000 5.037 −0.037 5.159 −0.159 4.620 0.380 
4 5.000 5.099 −0.099 5.024 −0.024 5.314 −0.314 
5 6.365 6.248 0.116 6.307 0.057 6.225 0.140 
6 5.000 4.967 0.033 5.446 −0.446 5.907 −0.907 
7 6.367 6.230 0.137 5.931 0.436 5.911 0.456 
8 5.000 5.102 −0.102 5.189 −0.189 4.950 0.050 
9 5.000 5.239 −0.239 5.014 −0.014 5.194 −0.194 

10 * 7.292 6.092 1.200 6.508 0.784 6.233 1.059 
11 6.060 6.063 −0.003 5.964 0.095 6.148 −0.088 
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Table 4. Cont. 

Compound pIC50 
Model 4 Model 5 Model 6 

Prediction Residue Prediction Residue Prediction Residue 

12 6.461 6.453 0.008 6.401 0.060 6.052 0.409 
13 7.000 7.012 −0.012 6.302 0.698 6.818 0.182 
14 7.377 7.070 0.307 7.380 −0.003 6.911 0.466 
15 6.870 7.040 −0.170 6.452 0.418 6.517 0.353 
16 6.592 6.660 −0.068 6.576 0.016 6.926 −0.334 
17 6.312 6.395 −0.083 6.653 −0.341 6.169 0.143 
18 5.000 5.062 −0.062 5.449 −0.449 5.846 −0.846 
19 7.824 7.011 0.813 6.951 0.873 6.576 1.248 

20 * 6.959 6.528 0.431 5.916 1.043 6.666 0.293 
21 6.438 6.699 −0.261 6.742 −0.304 6.645 −0.207 

22 * 5.952 6.461 −0.509 6.993 −1.041 6.700 −0.748 
23 * 5.683 5.490 0.193 5.590 0.093 6.630 −0.947 
24 5.428 5.327 0.101 5.574 −0.146 5.521 −0.093 
25 5.806 5.896 −0.090 6.583 −0.778 6.265 −0.459 

26 * 6.556 5.894 0.662 6.111 0.445 6.740 −0.184 
27 6.026 5.814 0.212 6.347 −0.322 6.295 −0.270 

28 * 6.023 5.744 0.279 6.477 −0.454 6.749 −0.726 
29 5.706 5.708 −0.002 5.322 0.384 6.148 −0.442 

30 * 5.692 6.086 −0.394 6.111 −0.419 6.328 −0.636 
31 5.688 5.601 0.087 6.117 −0.429 6.026 −0.338 

32 * 6.334 8.044 −1.711 6.289 0.045 7.253 −0.920 
33 6.963 6.937 0.026 6.742 0.221 6.561 0.402 
34 7.398 7.349 0.049 7.880 −0.482 7.183 0.215 

35 * 8.155 7.191 0.964 7.979 0.176 8.207 −0.052 
36 5.000 5.047 −0.047 4.871 0.129 5.260 −0.260 
37 6.824 6.803 0.021 6.603 0.221 7.167 −0.343 
38 5.598 5.651 −0.053 5.731 −0.133 5.382 0.216 
39 6.932 7.623 −0.691 6.973 −0.041 6.569 0.363 
40 6.016 6.033 −0.017 6.427 −0.411 5.770 0.246 

41 * 6.910 6.012 0.898 6.753 0.157 7.180 −0.270 
42 8.097 8.147 −0.050 8.069 0.028 8.308 −0.211 
43 7.114 7.115 −0.002 6.944 0.170 6.619 0.495 
44 8.699 8.774 −0.075 8.472 0.227 8.358 0.341 
45 7.456 7.337 0.119 6.944 0.512 7.701 −0.245 

46 * 5.000 5.778 −0.778 5.855 −0.855 4.419 0.581 
47 8.398 8.364 0.034 8.644 −0.246 8.514 −0.116 

48 * 8.398 8.319 0.079 8.168 0.230 7.910 0.488 
49 8.222 8.041 0.181 7.951 0.271 7.944 0.278 

50 * 7.824 7.912 −0.088 7.834 −0.010 7.619 0.205 
51 8.155 8.241 −0.086 7.889 0.266 7.766 0.389 
52 8.222 8.378 −0.156 8.125 0.097 7.931 0.291 

53 * 8.523 8.002 0.521 8.126 0.397 8.239 0.284 
54 7.222 7.369 −0.147 7.428 −0.206 7.069 0.153 
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Table 4. Cont. 

Compound pIC50 
Model 4 Model 5 Model 6 

Prediction Residue Prediction Residue Prediction Residue 

55 7.602 7.615 −0.013 8.039 −0.437 7.530 0.072 
56 * 7.482 7.503 −0.022 7.064 0.418 8.246 −0.765 
57 6.699 6.573 0.126 6.999 −0.300 6.315 0.384 
58 8.523 8.441 0.082 7.866 0.657 8.501 0.022 
59 8.222 8.102 0.120 8.128 0.094 7.886 0.336 
60 6.813 6.696 0.117 6.928 −0.116 7.765 −0.953 
61 6.697 6.888 −0.191 6.960 −0.263 7.513 −0.816 

62 * 7.377 7.339 0.038 7.754 −0.377 7.886 −0.509 
63 7.222 7.253 −0.031 7.863 −0.641 6.816 0.406 

64 * 6.975 6.454 0.521 5.790 1.185 7.407 −0.432 
65 6.827 6.790 0.037 6.234 0.593 7.473 −0.646 

66 * 7.081 6.289 0.792 6.296 0.785 7.145 −0.064 
67 7.357 7.293 0.063 6.725 0.632 6.899 0.458 
68 6.650 6.515 0.135 6.238 0.412 6.724 −0.074 
69 6.554 6.540 0.014 7.249 −0.695 7.200 −0.646 

70 * 7.367 6.809 0.558 6.531 0.836 7.257 0.110 
71 7.482 7.571 −0.090 7.993 −0.512 7.728 −0.247 
72 7.284 7.357 −0.073 7.314 −0.030 7.624 −0.340 
73 8.699 8.680 0.019 7.805 0.894 8.294 0.405 

* Test set compounds. 

2.3. CoMFA Contour Maps 

The results of CoMFA analyses from pharmacophore-based alignment (model 2) are displayed as 

color-coded contours, allowing visual inspection of regions responsible for favorable or unfavorable 

interactions with PLK1. The green contours indicate regions where bulky substitution enhances 

binding affinity, and the yellow contours suggest regions where bulky substitution reduces the binding 

affinity. In the electrostatic interaction map, the blue contours indicate regions where more positively 

charged substituents are favored and the red contours suggest regions where more negatively charged 

substituents are favored. The favorable and unfavorable contributions of both fields were plotted as 

default proportion (80:20). Since the QSAR models were developed based on the information from 

receptor (docking, structure-based pharmacophore and common substructure from crystal bound 

conformation), the contour maps produced by CoMFA and CoMSIA could be superimposed onto the 

PLK1 structure. Thus, to get a straightforward insight into the steric and electrostatic interaction 

between compounds and PLK1, we introduced the van der waals surface or electrostatic potential 

surface of protein as background. 

The steric and electrostatic fields contribute to 61.9% and 38.1% of the variance, respectively. The 

steric contour map is shown in Figure 6a with one of the most potent inhibitors, i.e., compound 73 as a 

reference. A moderate green contour is seen in proximity to the o-trifluoromethoxyl group of phenyl 

ring, but sandwiched by the protein surface, suggesting that only the medium-sized substituent is 

favored at this position such as methoxyl, trifluoromethoxyl, and methyl. The large green contours are 
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found around the 4-methylpiperazinyl moiety at 5′ position of the phenyl ring, which penetrate to the 

solvent accessible region. This indicates that diverse substituents with bulky size at 5′ position of the 

phenyl ring are favorable to activity and their orientations are tolerable in space, except those 

extending to the upper side. Those situations for steric favorable substituents are the same for 

compounds 35, 42, 44, 47, 48, 51, 53, 58 and 59, all of which show better activity (below 10 nM) and 

have moderate and bulky groups at 3′ and 5′ positions of the phenyl ring. However, compounds that 

have only one steric favorable site show only moderate binding affinity, e.g., compounds 5, 12, 14, 15, 

22, 25, 28, 29, 38 and 33, demonstrating that both sites are indispensable. The emergence of yellow 

contours in the front of 2-hydroxyethyl group suggests that a more bulky substituent at position 1 of 

pyrazole ring would lower the activity. For example, replacement of 2-hydroxyethyl group with longer 

substituents (compounds 69, 70 and 72) led to a significant reduction of potency. Another yellow 

contour over the phenyl ring shows that a bulky substituent in this area is not favorable; but when the 

phenyl ring is flipped vertically by ~90 °, this area can also be occupied by substituents, such as 

compounds 11, 16, 21, 27, 30 and so on. In all, there is a definite requirement of an appropriate shape 

to exhibit high potency when designing novel PLK1 inhibitors, and thus it is important to pay attention 

to the steric characteristics. 

Figure 6. The CoMFA contour map of model 2 combined with compound 73. (a) Steric 

field distribution on the background of protein surface; and (b) electrostatic field distribution 

on the background of electrostatic potential surface colored from purple to red owing to the 

increase of electron density. Green contours indicate regions where bulky groups increase 

activity, whereas yellow contours indicate regions where bulky groups decrease activity. 

Red contours suggest negative charge favoring activity, whereas blue contours suggest 

positive charge favoring activity. 

  

Electrostatic contour maps are also shown with compound 73 as a reference (Figure 6b). In general, 

red contour maps are close to heteroatoms such as nitrogen and oxygen, whose partial atomic charges 

are highly negative. Two main red contours are found close to 4-methylpiperazinyl moiety, of which N 

atoms bear negative charges, indicating negative potential is preferred in these areas. This trend can be 

reflected in the activities of compounds 35, 44, 47, 48, 49, 51, 52, 53, 58, 59 and 73, which all have 

tertiary amine substructures. Confusingly, the simple replacements of 4-methylpiperazinyl moiety with 

other tertiary amines for compound 53, either open-chain or cyclic, result in decreased potency against 

PLK1 from 10-fold to more than 300-fold, for compounds 40, 41, 43, 56, 57, 60, 61, 62, 63, 64, 65 and 68. 

ba 
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This can be explained by taking the steric factor into account, that an unfavorable steric contour exists 

over the 4-methylpiperazinyl moiety as illustrated in Figure 6a. With respect to the favorable positive 

potential, the blue contours are distributed around the o-trifluoromethoxyl group, 2-hydroxyethyl 

group and amide moiety, where the negative charge of protein surface is concentrated, suggesting that 

positive charged groups such as substituents with electron-withdrawing atoms increase the activity 

compared to the hydrogen atom. This is consistent with the increase of potency for compound 53 as 

compared to compound 35, due to the replacement of hydrogen atom with fluorine atom. A similar 

situation can be observed between compounds 71 and 73, for which the replacement of nitrogen atom 

with oxygen atom leads to increased activity. Besides, two small blue regions close to the amide 

moiety also represent the preferred electrostatic interaction around there, indicating that decreasing the 

electron-withdrawing effect would cause a reduction of binding affinity, such as compounds 1, 2, 3, 4 

and 36. Collectively, the distribution of electrostatic contours is well corroborated with the electrostatic 

potential information of the PLK1 active site, demonstrating its rationality. 

2.4. CoMSIA Contour Maps 

The CoMSIA contour maps of four models (models 4, 5 and 6), based on different alignment 

methods or combinations of various fields, are shown in Figure 7, which are depicted with compound 73 as 

the default from nearly the same viewpoint for a convenient comparison and analysis. The steric and 

electrostatic contours are colored identically with CoMFA contours map. In addition, the hydrophobic 

interactions are shown by yellow and white contours, whereas hydrogen bond donor interactions are 

represented by cyan and purple contours, indicating their favorable and unfavorable regions. The 

contributions of fields to the variance are listed in Table 2. It is evidenced that the electrostatic field 

contributes about 1.7–3 times more than the steric field, which is the opposite of corresponding 

relationships in the CoMFA models. As the alignment results are identical for CoMFA and CoMSIA 

models, this discrepancy may be explained by the different implementations of the fields for CoMFA 

and CoMSIA. Thus, we assume that both steric and electrostatic fields play important roles in the 

binding affinity and should be given equal attention. 

Since the steric and electrostatic interactions have been discussed above in detail, a critical eye has 

been given to the comparison of the contour distributions. As shown in Figure 7a–c, the green contours 

mainly concentrate around the 4-methylpiperazinyl moiety and the trifluoromethoxyl group, denoting 

that the bulky substituents are indeed favorable to these regions; a large yellow contour is constantly 

located between the 2-hydroxyethyl group and 4-methylpiperazinyl moiety, suggesting a potential 

steric clash may exist between those two substituents. However, there is a distinct difference in the 

steric contour above the 2-hydroxyethyl group as the green contour in model 4 is conversely yellow in 

model 6. It can be found that a small sub-pocket is positioned over the 2-hydroxyethyl group, which 

means bulky substituents are not acceptable, such as 2-(tetrahydro-2H-pyran-2-yloxy)-ethyl and 

3-aminopropyl groups, leading to lower binding affinities for compounds 70 and 72, respectively. 

Therefore, we conclude that a small yellow contour is more appropriate in that position. As for the 

electrostatic field, it can be observed that the contours of CoMSIA models are more concentrated 

around the 2-hydroxyethyl group and 4-methylpiperazinyl moiety (Figures 7d–f) in comparison with 

those of CoMFA model. In spite of this, common characteristics still exist. Commensurate with the 
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CoMFA model, in all three CoMSIA models, a blue contour and large red contour are close to the 

trifluoromethoxyl group and the 4-methylpiperazinyl moiety, respectively, denoting the electrostatic 

nature of those two positions are authentically reflected. In addition, a middle-sized blue contour is 

also proximate to 4-methylpiperazinyl moiety in the CoMSIA model derived from common 

substructure based method (model 6). Since the most frequently used substituents at position 5′ of 

phenyl ring are various tertiary amines, the blue contour may account for the electron-deficient 

methylenes. Therefore, the substituents at position 5′ of the phenyl ring should consist of the 

electron-withdrawing atom and the electron-deficient atom simultaneously rather than solely the 

electron-withdrawing atom, such as carbamoyl or sulfoamino group. This conclusion is supported by 

the fact that the position 5′ of phenyl ring is oriented to the solvent accessible region of PLK1 and the 

substituents with the ionizable groups at that position will be ionized in the solution, stabilizing 

interaction and enhancing potency. 

Areas favored by hydrogen bond donors are shown in cyan and magenta, respectively (Figures 7g–i). 

For all three CoMSIA models, two cyan contours are equidistant and close to the amino group of the 

amide moiety, mirroring the potency of two hydrogen atoms in the NH2 group to form hydrogen bonds 

with the residues of receptor in the corresponding orientations, such as Asp194. These contours can be 

associated with the increment in activity when the NH group of the amide moiety changes from 

ethoxyl and substituted amino groups in compounds 1, 2, 3, 4 and 36, implying the NH group plays a 

major role in binding to the PLK1 active sites. The purple contours are found in common around the 

4-methylpiperazinyl moiety, denoting the disadvantage of the hydrogen bond donor at this position for 

activity. This is corroborated with the distribution of electrostatic contours. A small purple contour is 

shown near the trifluoromethoxyl group that formed a hydrogen bond with the backbone NH group of 

Arg136 in our models and the guanidine NH group of Arg57 in PLK1 crystal structure (2YAC), 

respectively. Thus, the hydrogen bond acceptors at this position are favorable. A confusing purple 

contour is observed near the NH group of the amide moiety. As a crystal structure, and our models 

confirm the favor of the hydrogen bond donor at this area, this contour cannot be associated to the NH 

group. From a systematic investigation of the conformations superimposed with contours, we found 

the substituents at position 1 of pyrazole of compounds 69 and 72 might account for that purple 

contour, whose hydrogen bond donor groups reach this point due to the flexibility of the alkyl chain. 
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Figure 7. The CoMSIA contour map combined with compound 73. Steric field distribution 

for (a) model 4, (b) model 5 and (c) model 6, on the background of protein surface. 

Electrostatic field distribution for (d) model 4, (e) model 5, and (f) model 6, on the 

background of electrostatic potential surface colored from purple to red owing to the 

increase of electron density. Hydrogen bond donor field distribution for (g) model 4, 

(h) model 5 and (i) model 6. Green contours indicate regions where bulky groups increase 

activity, whereas yellow contours indicate regions where bulky groups decrease activity. 

Positive potential favored areas are in blue, and positive potential unfavored areas are in red. 

Cyan and purple contours indicate favorable and unfavorable hydrogen bond donor group. 

The hydrogen bond is represented with orange dotted line. 

  

  

  

fe 

dc 

ba 



Int. J. Mol. Sci. 2011, 12             

 

 

8731

Figure 7. Cont. 

  

 

2.5. Comparison of Pharmacophore Model and CoMSIA Model 

Considering that the pharmacophore model we have constructed also consists of hydrogen bond 

related features and a hydrophobic feature, it would be significant to compare it with the CoMSIA 

models. Hence, the merged pharmacophore model was reproduced using Unity module in SYBYL 6.9 [25]. 

The graphical interpretation of the superimposition of the features and contours reflecting the 

hydrophobic and hydrogen bond donor fields is shown in Figure 8 with compound 73 as a reference. 

The contours reflect the corresponding fields of model 6 (derived from pharmacophore-based alignment). 

Two large green contours are close to two hydrophobic features located at the trifluoromethoxyl group 

and in the vicinity of the phenyl ring, suggesting bulky and hydrophobic substituents at these positions 

are favorable (Figure 8a). The ionizable positive feature is covered by the large red contour, indicating 

a hydrophilic characteristic is preferred here (Figure 8b). The hydrogen bond donor and acceptor 

features do not intersect with the contours related to the hydrogen bond donor field (Figure 8c). 

Despite only partial pharmacophore features overlapping well with corresponding contours, it is still 

considered reasonable because the features not overlapped with contours belong to the maximum 

common substructure of compounds or are conservative in most compounds used in this study, while 

the CoMSIA method mainly focuses on the variable parts for a class of compounds. In this sense, our 

3D-QSAR model and pharmacophore model complement each other well in elaborating the interaction 

mode of compound. 

i 

h g 
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Figure 8. The pharmacophore model superimposed with (a) steric; (b) electrostatic and  

(c) hydrogen bond donor and acceptor contours of model 6. The pharmacophore features 

are colored the same as in Figure 4. The contours are depicted as mesh. 

  

 

2.6. Structural Insights from 3D-QSAR and Pharmacophore Studies 

Our analyses found that the electrostatic, steric and hydrogen bond donor characteristics are highly 

desirable for potent inhibitory activity. The contour maps show that a moderate bulky substituent with 

hydrogen bond donor at position 3 of pyrazole ring (R1), a moderately bulky and hydrophobic group 

with electron-withdrawing heteroatom at position 2′ of phenyl ring (R3), and a bulky and amphoteric 

substituent with both hydrophilic and hydrophobic moieties at position 5′ of phenyl ring (R4), can play 

important roles in enhancing binding affinity. Moreover, the length of alkyl chain for the substituent at 

position 1 of pyrazole ring (R2) should be no more than three carbon atoms. In addition, two hydrogen 

bonds formed between compounds and Cys133 in hinge region are important which can induce the 

conformation of the whole compound in the ATP pocket. Thus, influencing these two hydrogen bonds 

should be avoided when changing substituents at other positions. These insights are consistent with the 

structural features of ATP pocket, further indicating that our 3D-QSAR models are reasonable. As 

depicted in Figure 9, R2 and R4 groups project into the solvent accessible region, thus allowing a larger 

extent of variability for the steric, electrostatic and other properties of substituents. Nevertheless, the 

steric clashes between R2 and R4 groups should be avoided. Moreover, R2 and R4 groups still have an 

impact on PLK1 selectivity. The reasonable combinations of substituents at these two positions can 

increase the selectivity of PLK1 against PLK2-3 up to 5000 times. Although R1 group can form 

hydrogen bonds with a water molecule, substituents that discard this interaction may also be positive to 

the enhancement of binding affinity and target selectivity. This is concluded from the study of 
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Fernandez and coworkers, which indicated that sculpting the shifting hydration patterns of the target 

would stabilize the protein surface and avoid disfavored induced fit [26]. 

Figure 9. Schematic representation for the SAR of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline 

derivatives as PLK1 inhibitors. R1: medium-sized substituent with hydrogen bond donor 

and acceptor; R2: open-chain alkyl group with less than three carbon atoms or 

unsubstituted hydrogen; R3: hydrophobic group with small size and strong 

electron-withdrawing atom, especially hydrogen bond acceptor; R4: bulky substituents 

simultaneously with hydrophobic and hydrophilic moiety. 
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3. Materials and Methods 

3.1. Dataset 

All compounds used in the present study were taken from the literature [18,20,21]. Of the 73 

compounds, 52 ones (unasterisked in Table 1) were selected randomly as training set for model 

construction and the remaining 21 ones (asterisked in Table 1) were used as test set for model 

validation, according to biological activity range and structural diversity. The IC50 values of all 

compounds for PLK1 inhibition were normalized and converted to the logarithm unit of molar grade 

(pIC50 = −log IC50), which spanned 4 orders of magnitude (5.00–8.70). The distribution of activity data 

and the number of compounds were shown in Figure 10 to confirm with the test set as a true 

representative of the training set. 
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Figure 10. Distribution of activities (pIC50) for the training set and the test set versus 

numbers of compounds. The training set and the test set are colored as red and blue, respectively. 
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The X-ray crystal structures of this class of compounds bound with PDK1 are available from the 

protein data bank (PDB). The bound conformation of compound 73 (PDB code: 2YAC) [18] was used 

as a template to build the 3D structures for both training and test set compounds. The partial charge 

was calculated with Gasteiger-Hückel method. The common structure was constraint for each compound 

and only the varying parts were energy minimized by using conjugate gradient method and Tripos 

force field until an energy gradient of 0.05 kcal/mol was reached. These works were all done  

in SYBYL 6.9. 

3.2. Conformational Alignment 

Structure alignment is considered as an important and critical step in CoMFA and CoMSIA 

analyses because this affects the reliability of the models. In order to avoid bias towards a particular 

alignment method, the structure-based and ligand-based alignments were both used in this study.  

It should be noted that a study that specifically seeks to understand the influence of alignment methods 

on the predictive performance of 3D-QSAR model is an important direction but extended in the work 

presented here. Herein, the common substructure, molecular docking and pharmacophore-based 

alignment were performed to build the 3D-QSAR models. Meanwhile, the docking and pharmacophore 

studies would also provide beneficial insight into ligand-receptor interactions to help better understand 

the structure-activity relationship. 

3.2.1. Common Substructure Based Alignment 

The key assumptions of CoMFA and CoMSIA are that compounds with common substructure 

always adopt a similar conformation when binding with the target and the common substructure in 

each compound contributes equally. Therefore, we selected the co-crystal structure of compound 73 

from 2YAC as the template to align the remaining compounds using the “align database” command in 

SYBYL 6.9. The common substructure used for the alignment is shown in Figure 11. 
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Figure 11. The most common substructure used in common substructure-based alignment. 
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3.2.2. Molecular Docking Based Alignment 

Molecular docking was carried out to obtain reasonable molecular alignments for developing 

receptor-based 3D-QSAR models. At the beginning, we tested the applicability of three well-known 

docking software, viz. CDOCKER [27,28] in Discovery Studio 2.5, GOLD 5.0 [29,30] and GLIDE 4.5 

[31,32] in Maestro 8.0, by checking if the conformation of the bound ligand in PLK1 crystal structure 

can be reproduced, and whether the common substructure of all compounds in both training and test 

sets can overlap well with each other in a way analogous to the bound ligand in PLK1 crystal structure. 

Docking conformations output by both CDOCKER and GOLD overlapped in a chaotic state, 

suggesting a failure of alignment. In contrast, GLIDE performed quite well. Thus, GLIDE was 

eventually selected as the docking tool. 

The 3D structure of PLK1 (2YAC) in docking study was downloaded from Protein Data Bank. For 

GLIDE, the PDB structure was prepared using the “protein prepare wizard” automatically and 

subsequently its grid file was generated in Maestro 8.0. The initial conformation of compound used 

was obtained by conformational search in water with force filed of OPLS_2005 based on mixed 

torsional/low-mode sampling method in Maestro 8.0. The binding site was defined by the co-crystal 

ligand (compound 73) itself for all three docking software. The XP mode (extra precision) was 

selected and post-docking minimization was conducted to penalize highly strained ligand geometries 

and eliminate poses with eclipsing interactions. Finally, other options not mentioned above were kept 

as default. 

3.2.3. Pharmacophore Based Alignment 

The structure based pharmacophore model can be derived directly from ligand-protein co-crystal 

structure and thus can reflect more reliable combination of the essential features required for the 

relating biological potency [33]. As the compounds used in 3D-QSAR analyses belong to the same 

class and the co-crystal structures of PLK1 are available, the structure-based pharmacophore was 

generated utilizing LigandScout 2.02 [34], which is based on a sophisticated ligand-protein complex 

interpretation algorithm. Two PLK1-ligand co-crystal structures (2YAC and 3KB7) [18,20] available 

were chosen. When creating pharmacophore model, the “Phase” mode was selected with waters and 

other heteroatom ignored due to their non-conservation in crystal circumstance. This produced two 

pharmacophore models. Considering that pharmacophore should contain the most common features 

and these two models indeed share some identical features, we compared and clustered them in 

Discovery Studio 2.5 to draw a new pharmacophore model. This model was eventually used to align 
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compounds in Discovery Studio 2.5, during which the conformations of compounds were generated 

with “best” option and the fitting method was “flexible” with the maximum omitted features of 3. 

3.3. CoMFA and CoMSIA Methodology 

The CoMFA and CoMSIA analyses were carried out with the RHEL 4.0 operating system using 

SYBYL 6.9. In CoMFA study, the aligned compounds were placed in the 3D cubic lattice with grid 

spacing of 2.0 Å. The standard CoMFA steric and electrostatic fields were calculated using a sp3 

carbon atom as steric probe and a +1 charge as electrostatic probe, with Lennard-Jones potential and 

the Coulombic potential, respectively. The cut off value for both fields was set to 30 kcal/mol and the 

minimum-sigma (column filtering) was set to be 2.0 kcal/mol to reduce the noise by omitting those 

lattice points. The five fields of CoMSIA (steric, electrostatic, hydrophobic, hydrogen bond donor and 

acceptor) were calculated for each lattice with a grid of 2 Å by employing a common probe atom with 

1 Å radius, +1 charge, and hydrophobic and hydrogen-bond property values of +1 [24]. The attenuation 

factor was set to the default value of 0.3 for the Gaussian function. 

3.4. Partial Least Squared (PLS) Analyses and Validation 

The relationship between the structures and the biological activities derived by the PLS algorithm. 

CoMFA and CoMSIA descriptors were used as independent variables and pIC50 values were used as 

dependent variables in PLS to generate corresponded 3D-QSAR model. The predictive ability of the 

models was evaluated by leave-one-out (LOO) algorithm, which gave the optimal number of 

component (ONC), the lowest standard error of prediction and cross-validation coefficient (q2), 

calculated with Equation 1, 

q2  
 







2
meanexp

2
 exppred

Y Y

Y Y
 1  (1)

where Ypred, Yexp and Ymean are the values (pIC50) of the predicted activity, experimental activity and 

mean activity for compounds in training set, respectively. 

The analysis of non-cross validation was performed to calculate the conventional r2 using the ONC 

obtained from the LOO analysis. Validation of the utility of the model as a predictive tool was carried 

out by predicting the activity of an external test set of 21 compounds. The predictive r2 (r2
pred), 

reflected the predictive power of the CoMFA and CoMSIA models, was calculated using Equation 2, 

 2predexp YY  PRESS  
 

 2meanexp YY  SD  
 

r2
pred

 SDPRESS1  

(2)

where SD is the sum of the squared deviations between the experimental activities of the compounds 

in the test set and the mean activity of the compounds in the training set, PRESS is the sum of the 

squared deviations between predicted and experimental activities for every compound in the test set. 
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4. Conclusions 

The 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives are a class of novel, potent, selective 

and orally bioavailable PLK1 inhibitors with reasonable SAR and strong quantitative correlations. The 

CoMFA and CoMSIA studies were performed on these compounds based on three different alignment 

methods to build 3D-QSAR models. Most of the models showed good q2 and r2
pred values and revealed 

a good response to the test set validation. The CoMFA model generated from the 

pharmacophore-based method was found to be superior (model 2, q2 = 0.628, r2
pred = 0.785) to those 

obtained from GLIDE docking-based and common substructure based methods. All the CoMSIA 

models derived from three different alignment methods gave good results, whose q2 and r2
pred values 

were greater than 0.5 and 0.6, respectively. The q2 value of the best CoMSIA model was only a little 

larger than that of other models. In view of that, three CoMSIA models were selected for further 

comparisons and analyses so that more valuable information for the structural requirements can be 

obtained. From our studies, it was found that the pharmacophore-based alignment produced the best 

model for CoMFA and the common structure-based alignment for CoMSIA. This indicated that the 

discovery of the optimal alignment method should depend on the statistical performances of 3D-QSAR 

models generated from the alignments based on those methods. In addition, suitable alignment 

methods for CoMFA and CoMSIA studies might be different. The comparative studies among the best 

CoMFA and the CoMSIA models were also demonstrated in the crystallographic environment of 

PLK1 and high consistency was found in steric, electrostatic and hydrogen bond donor fields. 

Furthermore, the contours of CoMSIA model 6 were compared with the structure-based 

pharmacophore model and the key factors related to binding affinity were reconfirmed. These 

satisfactory insights identified in the present study can be utilized to design and predict new potent 

compounds as PLK1 inhibitor candidates, and to discover compounds with novel scaffolds that can act 

as PLK1 inhibitors via similar mechanisms. 
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