
Int. J. Mol. Sci. 2011, 12, 8797-8835; doi:10.3390/ijms12128797
OPEN ACCESS

International Journal of
Molecular Sciences

ISSN 1422-0067
www.mdpi.com/journal/ijms

Review

X-Ray Detected Magnetic Resonance: A Unique Probe of the
Precession Dynamics of Orbital Magnetization Components
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Abstract: X-ray Detected Magnetic Resonance (XDMR) is a novel spectroscopy in which
X-ray Magnetic Circular Dichroism (XMCD) is used to probe the resonant precession
of local magnetization components in a strong microwave pump field. We review the
conceptual bases of XDMR and recast them in the general framework of the linear and
nonlinear theories of ferromagnetic resonance (FMR). Emphasis is laid on the information
content of XDMR spectra which offer a unique opportunity to disentangle the precession
dynamics of spin and orbital magnetization components at given absorbing sites. For the
sake of illustration, we focus on selected examples in which marked differences were found
between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered
iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field
XDMR should allow us to probe the precession of orbital magnetization components
in paramagnetic organometallic complexes with large zero-field splitting. Even more
challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic
crystals for which orbital magnetism is most often ignored in the absence of any supporting
experimental evidence.
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1. Introduction

Orbital magnetism refers to a subtle interplay among several effects: Coulomb and spin-orbit
interactions, hybridization and crystal fields. No reliable simulation of these orbital effects can be
envisaged without an independent determination of the spin and orbital components of the magnetization
in magnetic materials. In the early nineties, X-ray Magnetic Circular Dichroism (XMCD) measurements
made this possible within the limits of validity of the magneto-optical sum-rules [1–3]. This immediately
boosted the development of sophisticated beamlines dedicated to static XMCD measurements in all
synchrotron radiation facilities around the world, especially at the European Synchrotron Radiation
Facility (ESRF) [4,5].

In 2005, X-ray Detected Magnetic Resonance (XDMR) emerged as a novel spectroscopy in which
XMCD was used to probe the resonant precession of either spin or orbital magnetization components in
a strong pump field typically oscillating at microwave frequencies. What stimulated our own interest
in XDMR was the unique possibility to learn something new about dynamical aspects of orbital
magnetism [6–10]. As a preamble, we like to show that much of the corresponding information is
hidden in conventional electron magnetic resonance spectroscopies.

Let us start with the important remark made by Kittel [11] and others [12] that the torque equation
J̇ = M×H, which correctly describes the precession of angular momenta of an isolated ion in the
magnetic field H, does not hold true in a crystalline environment. If J denotes the total angular
momentum per unit volume, then, magnetic dipole transitions are expected to induce a change
∆Jz = ∆Jspin

z + ∆Jorbit
z + ∆J lattice

z whereas the total magnetization a priori results from three
contributions: M = Mspin +Morbit +Mlattice . As suggested by Kittel, a major simplification arises if
∆Jorbit

z = −∆J lattice
z , e.g., due to a fast orbital relaxation process. Given that the lattice magnetization

Mlattice is usually negligible, the torque equation then reduces to

dJspin

dt
= (Mspin +Morbit)×H (1)

We are left here with an oversimplified picture in which essentially the spin part of the angular
momentum is precessing. Van Vleck [13] went to a similar picture using a microscopic theory that started
from the quantum mechanical equation of motion: ıh̄Ṡj = [HS,Sj] in which the spin Hamiltonian HS

was given the following form:

HS = gµBH
∑
j

Sz
j +

∑
k>j

JjkSj · Sk +
∑
k>j

Djk[Sj · Sk − 3r−2
jk (rjk · Sj)(rjk · Sk)]

+
∑
k>j

Ejk(rjk · Sj)
2(rjk · Sk)

2
(2)

in which g and µB are standard notations for the spectroscopic splitting factor and the Bohr magneton,
Jjk being the isotropic exchange coupling constant between sites j and k. Whereas the first and second
right-hand members of Equation 2 can readily be identified with the Zeeman and the isotropic Heisenberg
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exchange interactions respectively, the last two terms are analog to dipole-dipole and quadrupole
interactions except that Djk and Ejk can depart a lot from the expected values for dipolar/quadrupolar
couplings between spins located at the j, k sites. This is precisely where spin-orbit interaction and
orbital valence effects are taken into account to yield pseudo-dipolar (S = 1/2) or pseudo-quadrupolar
(S > 1/2) couplings [14]. These terms which are the main ingredients of the anisotropic exchange
coupling may substantially shift the resonance and alter the linewidth. Typically, the deviation of the
g-factor from 2 is often taken as the signature of a pseudo-dipolar coupling since (g−2) ≃ λ/∆E where
λ denotes the spin-orbit coupling factor and ∆E is the energy separation between the ground orbital level
and higher levels. The distortion of the electronic cloud along the spin direction should scale like (g−2)2

for a pseudo-dipolar (superexchange) interaction and (g− 2)4 for the pseudo-quadrupolar coupling [15].
Spin Hamiltonians have been extensively used for the analysis of electron magnetic resonance

spectra [16,17]. For orbitally degenerate systems, the concept of fictitious angular momentum operator
equivalents turned out to be most helpful. The strategy is to retain only a subset of low-lying electronic
states [12,16]:

(i) For crystal fields weak compared to spin-orbit coupling, J is a good quantum number and
the crystal field simply splits the relevant manifold according to site symmetry. Ions with
half-integral J’s always have a double Kramer’s degeneracy and fictitious spins take the
following values: S = 0, 1/2, 1 or 3/2.

(ii) If the crystal field is large compared to spin-orbit coupling, it splits the L-multiplet. If the lowest
state is a singlet, the (quenched) orbital moment has no first order contribution. Recall that an
orbitally threefold degenerate T-state mathematically is isomorphic to a P-state (L = 1): it can
be described with a fictitious angular momentum L which, in turn, couples to the spin angular
momentum to yield a fictitious-spin S .

As noted by Blume et al. [12], a fictitious operator should be proportional to the expectation value of
the true operator so-that one may write: ρSz = ⟨Sz⟩ in which ρ ̸= 1 is a constant factor. Ultimately, a
fictitious magnetization vector M can be defined which satisfies the equation of motion:

ıh̄
dM

dt
= [M,H] ≃ [M,M ·H] (3)

in which the Hamiltonian H reduces to a Zeeman term for EPR spectra whereas a compact formulation of
the fictitious magnetization can be given using commonly accepted tensor notations: Mα = −gααµBSα

with α = x, y, z. Concretely, the first or second order perturbations associated with orbital moments
and spin-orbit interactions essentially affect the resonance through the spectroscopic splitting factor g
which becomes a rank-2 tensor property. Recall that det [g] = gxxgyygzz determines the helicity of the
precession in the resonance field H [18]. Equation 3, however, does not tell us anything clear about the
precession of orbital magnetization components, in particular in excited states.

Orbital effects add much complexity in those systems where the ground state is orbitally degenerated
while magnetism is dominated by exchange interactions. Indeed the standard Heisenberg–Dirac form
of exchange is not anymore appropriate and additional terms should be considered [19] if one wishes to
describe the collective excitation of spin waves or study the magnetoelastic coupling effects which drive
the spin-lattice relaxation processes [20]. One should also bear in mind that superexchange interaction
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has a dynamic character since it is produced by virtual hoping of electrons [22]: this is why the admixture
of upper electronic states is often referred to as orbital fluctuations [21]. These fluctuations become most
critical in Jahn–Teller ions in which orbital ordering effects were predicted independently by Kugel and
Khomskii [23] and by Cyrot and Lyon-Caen [24]. In these recent years, there has been a renewed interest
for the corresponding (Jahn–Teller) dynamical processes in connection with the excitation of orbital
ordering waves (orbitons) [25]. The reality of such collective excitation processes seems to be well
established for several antiferromagnetic oxides (e.g., in rare earth titanates, manganites and cuprates).
Clearly, similar effects should take place in ferrimagnetic crystals as well.

It is the aim of the present paper to discuss the information content of XDMR spectra, emphasis being
laid on the forced precession of orbital magnetization components. In Section 2, we briefly review the
conceptual bases of XDMR and recast them in the framework of the linear and nonlinear theories of
spin waves developed for FMR. What makes the difference between XDMR and FMR is clearly the
element, edge and, in favorable cases, site selectivity of the XMCD probe. In Section 3, we focus on a
series of XDMR spectra recorded on ferrimagnetic iron garnet films or single crystals in order to unravel
various aspects of the precession dynamics of orbital magnetization components at the tetrahedral iron
sites. Finally, in Section 4, we discuss how far it may be possible to extend XDMR experiments to
paramagnetic complexes or antiferromagnetically (AFM) ordered materials.

2. Resonant Precession of Spin and Orbital Magnetization Components in Excited States

2.1. Specificity of the XMCD Probe

In XDMR, not only the frequency of the microwave pump field has to be adjusted in order to satisfy the
usual conditions of magnetic resonance, but also the energy of the monochromatic, circularly polarized
X-ray photons has to be carefully tuned in order to maximize the XMCD probe signal. This can happen
only in the close vicinity of one of the multiple absorption edges which characterizes the photoionization
of the core shells for a given absorbing element. In this respect, XDMR can be seen as an unusual double
resonance experiment since it combines microwave Zeeman spectroscopy with an atomic, core level
spectroscopy that is inherently element-selective. Recall that the X-ray absorption K-edge refers to the
photoionization of a 1s deep core level, L2,3-edges being similarly associated with the photoionization
of the spin-orbit split 2p core levels.

Edge-selectivity of XDMR measurements is a further advantage linked to the conservation of angular
momentum in the photoionization process of deep atomic core levels, e.g., the 1s electrons of a K-shell
or the 2p electrons of a L-shell. In the so-called two-step model [26], the angular momentum carried by
a circularly polarized X-ray photon (+h̄ for a right-handed circular polarization, −h̄ for a left-handed
circular polarization) is transferred to the excited photoelectron in a way that primarily depends on
spin-orbit coupling in the excited core level. For L2,3 absorption edges that are split by spin-orbit, the
Fano effect implies that part of the photon angular momentum is converted into spin via spin-orbit
coupling (ℓ + s at the L3 edge; ℓ − s at the L2 edge). No such conversion is possible at a K-edge (or
L1-edge) due to the absence of spin-orbit coupling in the core states and the photon angular momentum
is entirely converted into ±h̄ orbital moments. The magnetic properties of the sample drive the second
step: XMCD spectra simply reflect the difference in the density of final states that are allowed by the
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electric dipole (E1) or electric quadrupole (E2) selection rules owing to the symmetry of the initial core
state. It immediately appears that an XMCD signal measured at a K-edge can only be assigned to the
orbital polarization of the valence band. The interpretation of the XMCD spectra recorded at spin-orbit
split edges is more complicated since one has to disentangle the respective contributions of spin and
orbital polarizations. By summing up all integrated dichroisms of electrons originating from conjugated
sub-levels, one would again measure the orbital polarization of the final states; in contrast the difference
in the integrated dichroic intensities measured at the spin-orbit split L3 and L2 edges can only be caused
by a spin imbalance in the empty states because the orbital momentum transferred to the photoelectron
has implicitly the same sign at both edges. This is all the physical content of what is known as the
magneto-optical sum rules for XMCD [1,2,26].

In XDMR, it is more appropriate to use a differential formulation of the XMCD sum rules as proposed
by Strange [27] and others [28,29]. Ignoring first the contribution of electric quadrupole (E2) transitions,
one may write for a K-edge [7,10] :

[∆σ]K = 3Cp{
d

dE
⟨Lz⟩p}∆E = 3Cp⟨ℓz⟩p (4)

in which [∆σ]K is the difference in the absorption cross-sections of left- and right-circularly polarized
X-rays in the vicinity of the K-edge, Cp being a constant factor. Note that such a differential formulation
refers to a fixed energy of the photoelectron: ∆E = ERX + E0 − EF in which ERX , E0 and EF

respectively denote the energy of the X-ray photons, the binding energy and the reference Fermi level.
Whereas ⟨Lz⟩p is the expectation value of the orbital angular momentum operator integrated over all
excited states featuring p-type symmetry, ⟨ℓz⟩p defines the orbital polarization of p-projected densities of
states (DOS) at energy ∆E. Taking into account the weaker electric quadrupole (E2) transitions simply
results in mixing final states associated with atomic orbitals of different symmetry [7,10]:

⟨ℓz⟩ = {⟨ℓz⟩4p + ϵ⟨ℓz⟩3d} (5)

One could easily extend this result to molecular complexes where the final states are described
with molecular orbitals, e.g., when the absorbing atom is in a tetrahedral ligand field. In all cases,
however, K-edge XDMR experiments will refer to the forced precession of some energy-dependent
orbital magnetization component proportional to ⟨ℓz⟩. XMCD cross-sections at L2,3-edges can similarly
be related to differential operators involving spin and orbital magnetization DOS [7]:

[∆σ]L3 =
Cd

3Nb

d

d∆E
{⟨Lz⟩d +

2

3
⟨Sz⟩d +

7

3
⟨Tz⟩d}

=
Cd

3Nb

{⟨ℓz⟩d +
2

3
⟨sz⟩d +

7

3
⟨tz⟩d}

(6)

[∆σ]L2 =
Cd

3Nb

d

d∆E
{⟨Lz⟩d −

4

3
⟨Sz⟩d −

14

3
⟨Tz⟩d}

=
Cd

3Nb

{⟨ℓz⟩d −
4

3
⟨sz⟩d −

14

3
⟨tz⟩d}

(7)

in which Nb ≃ 2 is the statistical branching ratio. Two distinct operators (sz, tz) are now needed to
describe the spin dynamics. Recall that ⟨Tz⟩ and ⟨tz⟩ reflect (to the lowest order) the asphericity of the
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spin magnetization due either to spin-orbit interactions or anisotropic charge distributions [26,30,31].
Though Tz does not contribute to the Zeeman free energy, it contributes to the magnetocrystalline
anisotropy free energy as pointed out by Van der Laan [31]. As long as the spin-orbit splitting remains
small with respect to the crystal field splitting, T ≃ −2/7 Q · uS in which uS denotes the unit vector
along the direction of the spin moment, whereas Q = L2 − 1/3L2 is the electric quadrupole operator
which is a traceless spherical tensor of rank 2. In cubic crystals, Q vanishes so-that ⟨Tz⟩ can reliably be
neglected, especially for 3d transition elements. Anyhow, since the magnetocrystalline anisotropy free
energy of ferrimagnetic iron garnets is fairly small, one can hardly expect a large contribution of ⟨Tz⟩
and ⟨tz⟩ in these magnetic systems.

As opposed to electron magnetic resonance experiments which can be pumped with poorly energetic
photons (E ≤ 10 cm−1), XMCD measurements require highly energetic photons with wave numbers in
excess of 107 cm−1. Typically, the transition-time towards X-ray excited states is considerably shorter
than the time-scale of spin-orbit interactions and of collective magnetic excitations involving exchange
and dipole-dipole interactions. XMCD thus delivers a snapshot picture of the precession dynamics of
spin and orbital magnetization components in excited states in the immediate surrounding of the X-ray
absorbing atom.

2.2. Site-Selective Probe in Ferrimagnetic Iron Garnets

This has some interesting implications illustrated with Figure 1A in which we have reproduced ab
initio simulations of the spin-polarized DOS of yttrium iron garnet (YIG) in the ferrimagnetic state. The
latter simulations carried out with the PY-LMTO-LSDA code [32] show that the spin-polarized DOS
have the opposite sign at the (24d) and (16a) crystal sites in which the iron ions have slightly distorted
tetrahedral (S4) and octahedral (S6) coordination symmetry respectively. This is fully consistent with the
antiferromagnetic coupling of the Fe ions in (24d) and (16a) sites [33]. Let us draw attention, however,
onto the opposite sign of the spin polarized DOS in the filled states (∆E < 0) and in the excited states
(∆E > 0) which belong to the same irreducible representation of groups S4 or S6: this implies that the
corresponding magnetization components should precess with the opposite helicity in the ground and
excited states.

We have also reproduced in Figure 1B the XMCD spectra that can be deduced from the spin-polarized
DOS of Figure 1A for both electric dipole (E1) and quadrupole (E2) transitions. The site-resolved
XMCD spectra confirm the existence of a quite significant orbital magnetization component ⟨ℓz⟩ at the
tetrahedral iron sites: this is because E1 transitions are allowed from the 1s core level to final states which
belong to the same representations (b, e) of group S4 as the 4p atomic orbitals. In contrast, transitions
from the 1s core level to final states belonging to the ag or eg representations are allowed only by E2
transitions which have a much lower contribution to the XMCD cross-sections. In other terms, XDMR
spectra recorded at the maximum intensity of the Fe K-edge XMCD spectrum will benefit from a strong
site-selectivity favoring the S4 Fe sites: this is a considerable advantage over FMR. Recall, however,
that site-selectivity is lost if the XDMR spectra are collected at the L2,3 edges of iron since 2p → 3d

transitions are dipole allowed at both sites.



Int. J. Mol. Sci. 2011, 12 8803

Figure 1. (A) Ab initio simulations of the spin polarized DOS projected on the irreducible
representations of groups S4 and S6 at the Fe (24d) and Fe (16a) crystal sites in YIG: opposite
signs were expected due to the antiferromagnetic coupling of the Fe cations in (24d) and
(16a) sites; (B) Simulated XMCD spectra in the energy range of the Fe K-edge pre-peak.
Note that the XMCD signal due to electric dipole transitions (E1) is much stronger at the
tetrahedral (S4) than at the octahedral (S6) coordination sites. The contributions of electric
quadrupole transitions (E2) are one order of magnitude weaker.
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2.3. Steady-State, Uniform Mode of Precession

Let us associate a fictitious, local magnetization component M(ℓ,s) to ⟨ℓz⟩ and ⟨sz⟩ respectively.
The precession of M(ℓ,s) can indeed be described either by Equation 3 or a classical torque equation.
Regarding ferromagnetically ordered materials, the Landau–Lifshitz–Gilbert or the Bloch–Bloembergen
torque equations are most appropriate even though they are purely phenomenological. The
Landau–Lifshitz–Gilbert equation has a rather simple formulation for infinite thin films, i.e., slabs with
vanishing aspect ratio. Defining the local magnetization vector M by its polar and azimuthal angles (θ, ϕ)
and its norm M , one obtains the coupled equations [7]:

(1 + α2
G)
dθ

dt
= − γ

Ms

(
αG

∂F

∂θ
+

1

sin θ

∂F

∂ϕ

)
(8)

(1 + α2
G)
dϕ

dt
= +

γ

Ms

(
1

sin θ

∂F

∂θ
− αG

sin2 θ

∂F

∂ϕ

)
(9)

in which the magnetic free energy F encompasses the Zeeman term (FZ), the magnetocrystalline
anisotropy (FA) as well as the demagnetizing (FD) free energy responsible for the shape anisotropy.
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In equations 8 and 9, αG classically denotes the Gilbert damping parameter, γ = gµB/h̄, whereas Ms is
the length of the fictitious magnetization component at equilibrium. Since the norm of the magnetization
vector is not invariant in the Bloch–Bloembergen model, a third equation is needed [7]:

∂M

∂t
= −ωr[

Ms

Heq

∂F

∂M
−M ] (10)

in which ωr refers to a longitudinal relaxation frequency traditionally related to the spin-lattice relaxation
time T1. It will become clear later on that the transverse relaxation time T2 is affected by additional
relaxation processes involving a redistribution of the absorbed energy among all degrees of freedom of
the whole spin system.

As illustrated with Figure 2, XDMR spectra can be recorded in two distinct geometries:

- In the transverse geometry (TRD), the wavevector k⊥
RX of the incident, circularly polarized

X-rays is set perpendicular to both the static bias field B0 and the oscillating pump field bp:
the XMCD probe is then proportional to the transverse magnetization m⊥ which oscillates at
microwave frequency.

- In the longitudinal geometry (LOD), the X-ray wavevector k
∥
RX is set parallel to the static bias

field B0. If one assumes that Ms = |Meq|, then there is a steady-state change mz of the projection
of the magnetization along the Z axis and there should be a time-invariant XMCD signal ∝ mz.
Unfortunately, mz is only a second order effect with respect to the opening angle of precession (θ0)
and m⊥. Moreover, any information regarding the phase or helicity of the precession gets lost.

Figure 2. XDMR in transverse pumping mode with either longitudinal or transverse
detection geometries for near perpendicular magnetization. The precession cone angle θ0
never exceeds a few degrees and was exaggerated for clarity. As compared to m⊥, mz is
only a second order perturbation.
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For a ferromagnetic thin film with uniaxial anisotropy and perpendicular magnetization, the opening
angle of precession θ0 is a constant of motion that characterizes the precession dynamics: it can
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be determined by combining together XDMR and static XMCD cross-sections [7,10]. For XDMR
measurements in LOD geometry:

[∆σXDMR(k
∥
RX)]/[∆σXMCD(k

∥
RX)] ≃ −1/2 tan2 θ0 (11)

whereas in the TRD geometry:

[∆σXDMR(k
⊥
RX)]/[∆σXMCD(k

∥
RX)] ≃ tan θ0 sin[ωt+ ϕ0] (12)

The Landau–Lifshitz–Gilbert equations lead to the following resonance equations for θ0:

tan2 θ0 =
(γbcp)

2

P 2
0 + (Q0 cos θ0)2

(13)

in which bcp denotes the circular component of the microwave pump field and :

P0 = −ωp + γB0 + γ[Bu −
2

3
BA1(1−

7

4
sin2 θ0)] cos θ0

where Bu and BA1 refer to the uniaxial demagnetizing field and the cylindrical component of the
magnetocrystalline anisotropy respectively. On the other hand, Q0 = −αGωp in which the Gilbert’s
damping factor αG is of the order of 6×10−6 for high quality YIG films. Similarly, one would show that:

tanϕ0 =
Q0 cos θ0

P0

In the low microwave power limit, i.e., when cos θ0 → 1, the resonance condition P0 = 0 will
converge towards the usual Lorentzian lineshape whereas ϕ0 → π/2 if P0 → 0. However, for pumping
fields in excess of 100 mG or higher, Equation 13 yields a biquadratic equation in cos θ0 with multivalued
(unstable) solutions that characterizes the so-called foldover regime in which field-swept spectra exhibit
a strongly hysteretic shape with a large foldover jump. This is very often the case in XDMR experiments
carried out in LOD geometry because the pumping power has to be increased in order to get a chance to
detect the weak XDMR signal which is only a second order effect.

Clearly, in TRD geometry, the oscillating signal ∆σXDMR(k
⊥
RX) varies linearly with the microwave

pump field bp, whereas, in LOD geometry, the steady state signal ∆σXDMR(k
∥
RX) is proportional to

the incident microwave power ∝ b2p. At this stage, one should keep in mind that ∆σXDMR as well as
∆σXMCD are time-reversal odd observable properties which change their sign when the direction of
B0 is inverted, independently of the oscillating pump field. Indeed, the normalized ratios (11)–(12) are
time-reversal even: regarding the TRD geometry, this implies that, under time-reversal, the precession
helicity (as well as B0) should be inverted in order to keep the product ωt invariant.

2.4. Precession Eigen Modes and Spin Waves

In magnetically ordered systems, the precession is driven by non-uniform, time-dependent fields
h(r, t) which do not simply reduce to the external pump field. This causes a number of orthogonal
eigen modes to be excited in which all spins precess with the same frequency (ω) but not with the
same phase. In this respect, dipole-dipole interactions -which are responsible for the demagnetizing
field- open a whole band of magnons and make the degeneration of the uniform mode possible [38]. Let
us emphasize that orbital magnetization components M (ℓ) directly experience dipole-dipole interactions.
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2.4.1. Magnetostatic Walker’s Modes

In this regime, h(r, t) follows Maxwell’s equations in the magnetostatic limit which means that the
time-dependence of the electric field can be neglected [34]: ∇ × h = 0 ; ∇ · [µ̄]h = 0. The first
equation yields: h = −∇ψ(r, t) and the second: ∇ · µ̄∇ψ(r, t) = 0. These are Walker’s Equations.
For a plane wave such as: ψ ∝ exp[ik · r], the Landau–Lifshitz–Gilbert and Walker’s Equations can
be solved simultaneously only if a dispersion relation is satisfied [34]. For an infinite ferromagnetic
medium:

ω∥ ≤ ωk = [ωH · (ωH + ωM sin2 θk)]
1/2 ≤ ω⊥ (14)

in which ωH = γ(B0 − NzMs + BA1) and ωM = 4πgµBMs; here, Nz denotes the axial component
of Kittel’s demagnetizing tensor. Typically, ω∥ and ω⊥ are the resonance frequencies (ω) obtained for
θk = 0 or θk = π/2 respectively, i.e., when the wavevector k is either parallel or perpendicular to the
direction of the bias field B0. Note that Equation 14 does not depend on the magnitude of k = |k| and
thus, the group velocity vg = ∂ω/∂k is zero. This degeneracy is removed if one takes into account
either exchange interactions as discussed in the next section, or the sample finite boundaries. This is
crucial for thin films in which the film thickness is usually much smaller than the microwave wavelength.
Typically, for YIG thin films, the uniform mode exhibits a large number of sharp, discrete satellite
resonances mostly assigned to bulk magnetostatic standing waves commonly referred to as forward or
backward magnetostatic spin waves (MSW) depending whether vg is positive or negative [10]. The
theory predicts as well the propagation of surface magnetostatic waves, the existence of which has found
major applications in microwave technology.

We like to draw attention onto a further point. In addition to circularly polarized precession modes,
elliptically polarized modes can be excited as well for which vg ̸= 0. In such a case, magnetostatic
spin waves associated with wavevectors +k and −k have opposite helicity, the precessing moments
being associated with mk and m⋆

−k respectively. This is getting particularly important in magnetic
materials featuring a large magnetic anisotropy [35]. Since the microwave pump field is most often
linearly polarized, both Larmor and anti-Larmor precessions are co-excited, as confirmed by recent
FMR experiments which made use of an ultra-sensitive mechanical detection [36].

2.4.2. Exchange Spin Waves

It is preferable to reformulate the Landau–Lifshitz–Gilbert equations as a system of canonical
Hamiltonian equations for spin wave amplitudes (ck,c∗k). Such a classical formulation strictly
parallels the canonical transformations used by Holtstein and Primakoff in their quantum theory of
spin-waves [37–39]. The equation of motion for each spin-wave amplitude ck has the form [41]:

∂ck
∂t

+ ωrkck = −iδH(ck, c
∗
k)

δc∗k
(15)

in which the relaxation frequency (ωrk) for mode k can be easily converted into the spin-wave full
linewidth (∆Hk) using the relationship: ωrk = γ∆Hk/2. Notice that the right-hand member of Equation
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15 is expressed as a functional derivative of the Hamiltonian function H. Usually, spin-wave excitations
in ferromagnets are sufficiently small that H can be expanded in a Taylor series in powers of ck and c∗k:

H(ck, c
∗
k) =

∑
k

ωkckc
∗
k +Hp1 +Hp2 +Hint (16)

The first term in the right-hand side of Equation 16 is often denoted H2 but it corresponds to the linear
theory of spin waves: it yields the energy of non-interacting modes with the dispersion law : ωk =

[A2
k − |Bk|2]1/2 in which:

Ak = ωH + ηexωMk
2 + |Bk| (17)

Bk =
1

2
ωM sin2 θkexp(2iϕk) (18)

where ηex is the exchange stiffness constant. Moreover, θk and ϕk refer to the polar and azimuthal angles
of the wavevector k in spherical coordinates, taking the z axis parallel to the direction of the equilibrium
magnetization Meq. Recall that a precession mode becomes elliptical as soon as |Bk| ̸= 0 [20].

The next terms refer to the perturbation induced by the microwave pump field. The first one (Hp1)
arises from the Zeeman interaction with the transverse field component b⊥:

Hp1 = h̄(γb⊥){
MsV

2gµB

}1/2(c0e−iωpt + h.c.) (19)

which causes the resonant excitation of the uniform mode (k = 0) in FMR. The nonlinear term Hp2 is
responsible for the spin wave instability in parallel pumping [43]:

Hp2 ≃ h̄(γb∥)e
−iωpt

∑
k

Bk

4ωk

ckc−k + h.c. (20)

It causes the parametric excitation of a pair of spin waves satisfying the conservation laws: ωp = ω1+ω2

and k1 = −k2 = k.
All information about the interaction of spin-waves between themselves is contained in the

perturbation term Hint = H3 +H4 with [39]:

H3 =
∑

k1,k2,k3

[Sk2,k3,k1c1c
∗
2c

∗
3 + S∗

k2,k3,k1
c∗1c2c3]× δ(k1 − k2 − k3) (21)

H4 =
∑

k1,k2,k3,k4

[Sk3,k4,k1,k2c1c2c
∗
3c

∗
4 + h.c.]× δ(k1 + k2 − k3 − k4) (22)

In the quasi-particle language of second quantification, H3 and H4 describe three- and four-magnon
interactions respectively. Three-magnon processes, in either the confluent or splitting modes, arise not
only from long range dipole-dipole interactions as first recognized by Akhiezer [40], but also from short
range pseudo-dipolar interactions [14]. Energy conservation implies that: ω1 = ω2 + ω3 for a 3-magnon
splitting process, whereas (ω1 + ω2) = (ω3 + ω4) in a 4-magnon scattering process. Even though H4

refers to a higher order perturbation, the 4-magnon scattering process is the corner stone of all nonlinear
theories of spin waves [41] because exchange may largely dominate over dipole-dipole interactions in
this term [39]. Given that the exchange part is ∝ (k1 · k2)2, it immediately appears, however, that
the exchange cross section is zero if either k1 or k2 is zero: in other terms, exchange cannot relax the
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uniform mode (k = 0). As pointed out by Keffer [39], this is consistent with the well known result
(see for instance [42]) that the Heisenberg exchange Hamiltonian commutes with all vector components
of the total spin operator: S =

∑
i Si so-that: [Hex,Sx] = [Hex,Sy] = [Hex,Sz] = 0. In particular,

this implies that the Heisenberg exchange Hamiltonian should also commute with the longitudinal (z)
component of the magnetization: [H,Mz] = 0.

There is no doubt that the local spin magnetization components M (s) probed by XDMR are directly
affected by collective excitations of exchange spin waves. Even though exchange interactions should
have no direct effect on orbital magnetization components M (ℓ), one should not forget that M (ℓ) and
M (s) are dynamically coupled by spin-orbit interactions at a time-scale much shorter than the time-scale
of precession. Let us insist, however, that it cannot be taken yet as firmly established that M (ℓ) couple to
exchange spin waves.

2.4.3. Mode Conversion in Relaxation Processes

Recognizing that dipolar interactions open a band of degenerate magnons is the clue to understand
the relaxation mechanisms in FMR [38], since a uniform magnon (k = 0) can be annihilated
with the simultaneous creation of one or more nonuniform magnons (k ̸= 0): the latter scattering
process was identified as the critical step controlling transverse relaxation processes, i.e., T2 in the
Bloch–Bloembergen model.

Statistical thermodynamics led to a pair of important equations which proved to be very helpful in
discussing the relevance of various relaxation processes:

Mz =Ms − gµBV
−1

∑
k

nk (23)

|M | ∼= Ms − gµBV
−1

∑
k ̸=0

nk (24)

where nk is the number of magnons with wavevector k in volume V, including thermal magnons.
Equation 23 implies that all types of magnons—including uniform ones—decrease Mz; Equation 24
states that all spin waves but the uniform mode decrease |M |. Equations 23 and 24 are valid either for
exchange or magnetostatic spin waves [20,38,39]. Clearly, the excitation of spin waves redistributes
much of the microwave pumped energy within all internal degrees of freedom of the whole spin system
before this energy is ultimately transferred to the lattice phonons.

2.5. Pseudo-Spin and Orbital Ordering Waves

Let us make a distinction between two different processes: (i) spin-orbit and dipole-dipole interactions
can be strong enough to let the local orbital magnetization components M (ℓ) couple to spin waves;
(ii) energy can be redistributed within additional degrees of freedoms involving orbital ordering (Oord) in
orbitally degenerate systems. In the first case we shall speak of pseudo-spin waves or pseudo-magnons.
In the second, we have to deal with true orbital ordering waves or orbitons which can be best described
using a formalism that was recently reviewed by Khaliullin [25].

The starting consideration is that both spin exchange and charge motion strongly depend on the orbital
state in chemical bonding. One may easily admit that the interaction energy can hardly be optimized
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simultaneously for all bonds: this leads to peculiar frustrations, oscillations and quantum resonances
among orbital bonds. Let us consider first the superexchange term of the Hamiltonian of a magnetic
system which would be orbitally degenerate:

Hex =
∑
i>j

[(Si · Sj +
1

4
)Jγ

ij +
1

2
Kγ

ij] (25)

For simplicity, we deliberately neglected Hund’s coupling in Equation 25. Orbital ordering effects are
described by the operators Jγ

ij andKγ
ij . Their formulation depends on the crystal structure and is different

for doubly degenerate (E or Eg) or triply degenerate states (T2 or T2g). The effects are most spectacular
in the case of Eg-states in a cubic crystal in which:

Jγ
ij = J(τ γi · τ γj − 1

2
τ γi − 1

2
τ γj +

1

4
) (26)

whereas: Kγ
ij = 0. In Equation 26, J = 4t2h/U , th and U denoting respectively the hopping integral and

the on-site Coulomb repulsion in the Hubbard model for two-fold degenerate states Eg. The index γ of
the operators τ γ specifies the orientation of the bond rij relative to the cubic axes a, b and c. Following
Kugel and Khomskii [23]:

τa,bi =
1

4
(−σz

i ±
√
3σx

i ) (27)

τ ci =
1

2
σz
i (28)

where σx and σz are Pauli matrices. According to usual conventions, σz = 1 corresponds to orbital
3dx2−y2 , whereas σz = −1 refers to orbital 3d3z2−r2 . Equations 25–28 therefore let us expect a strong
interplay between spin and orbital degrees of freedom.

Regarding triply degenerate states (e.g., T2g) we shall again follow Kugel and Khomskii and replace
the operators τi with linear combinations of quadratic terms: [(ℓz)

2
i − 2/3], [(ℓx)

2
i − (ℓy)

2
i ] and

[(ℓxℓy)i + (ℓyℓx)i], in which ℓx, ℓy and ℓz are the components of a fictitious orbital angular momentum
built up from the 3dxz, 3dyz and 3dxy transition metal orbitals. The superexchange Hamiltonian Hex is
modulated by an operator HOord which looks like the orbital quadrupole-quadrupole interaction (HQQ)
between sites i and j, i.e., the higher-order terms in the Van Vleck anisotropic exchange interaction.
Note that HQQ also appears in the theory of the Jahn–Teller effect.

Collective excitations of the orbital ordering degrees of freedom were first envisaged by Cyrot and
Lyon-Caen [24] who pointed out the marked similarity between the structure of HOord and that of the
spin wave Hamiltonian for antiferromagnetic interactions. In order to solve the superexchange problem
of Equation 25, Khaliullin [25] proposed to split Hex in three terms:

Hspin =
∑
i>j

⟨Jγ
ij⟩(Si · Sj +

1

4
) (29)

Horb =
∑
i>j

⟨(Si · Sj +
1

4
)⟩δ(Jγ

ij) (30)

Hint =
∑
i>j

δ(Si · Sj)δ(J
γ
ij) (31)
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in which δJ = J − ⟨J⟩. Spin waves representations were systematically used for Si in Equation 29 and,
similarly, orbital waves were introduced for τi in Equation 30. From a mathematical point of view, the
easiest strategy to take into account the interaction Hamiltonian of Equation 31 is by exploiting diagram
methods. Restricting ourselves here to three-bosons interactions, one may anticipate that an (excited)
magnon could couple to an intermediate state containing one magnon plus one orbiton, whereas an
orbital excitation (orbiton) could decay by a splitting into two magnons.

Regarding magnetic systems with orbitally degenerate ground states, Khaliullin went to the following
conclusions: (i) fluctuations are enhanced in both spin and orbit subspaces; (ii) given the strong magnetic
anisotropy of bonds, quasi 1-D orbital order is favored; (iii) joint spin-orbital fluctuations should
significantly lower the ground state as first predicted by Cyrot and Lyon-Caen [24].

Figure 3. (A) First- and (B) second-order instability processes resulting in a conversion of
uniform magnons into degenerated non-uniform magnons in transverse pumping geometry;
(C) Parallel pumping geometry: direct excitation of a pair of non-uniform magnons
with opposite wavevectors (k,−k) and opposite helicities. This non-linear, 2nd order
process may contribute to a non-vanishing XDMR signal only in the longitudinal detection
geometry (LOD).
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2.6. Spin Wave Instability Regime at High Pumping Power

2.6.1. Transverse Pumping Geometry (bp ⊥ B0)

Already in the late fifties, Suhl realized that a parametric amplification of spin-waves could cause
a saturation of the precession cone angle (θ0) when the microwave pump field exceeded some critical



Int. J. Mol. Sci. 2011, 12 8811

threshold field bth [44,45]. He also pointed out that, under such conditions, the FMR lineshape would
exhibit a foldover-like distortion [46]. Obviously, such effects should impact XDMR spectra as well.

There are two nonlinear processes by which the uniform precession mode can couple to degenerate
spin waves. In the three-magnon process of Figure 3A, one uniform magnon splits into two magnons
of lower energy but satisfying the conservation laws: ω2 = ω3 = ωp/2 and k2 = −k3 = k. In the
four-wave scattering process of Figure 3B, two uniform magnons (k3 = k4 = 0) are destroyed whereas
two degenerate magnons are created such that: ω1 = ω2 = ω3 = ω4 = ωp and k2 = −k1 = k. There
is another difference between the first- and second-order processes: in the 3-magnon process, the pair
of split magnons (+k,−k) propagates at ca. 45◦ from the bias field B0, whereas the pair of degenerate
magnons created in a 4-magnon scattering process propagates along the direction ofB0, i.e., with θk ≃ 0.
The three-magnon process was shown to explain the subsidiary microwave absorption discovered by
Damon and Bloembergen [48] at ca. B0 = ωp/2γ. Such an off-resonance process, however, cannot
affect the XDMR spectra recorded on perpendicularly magnetized thin films because it is forbidden by
energy conservation. The second order process that involves four magnons at the pumping frequency is
always allowed and causes the main resonance to saturate at high microwave pumping power [20].

Instability arises when the rate of creation of a pair of degenerate spin-waves (+k,−k) exceeds their
damping rate. For the 4-magnon process, growth and decay rates are given by [49]:

[ṅk]growth =
16π

h̄
|S0,0,k,−k|2n2

0nkδ(ϵf − ϵi) (32)

[ṅk]decay = −2× nk

T2k
= −nk(γ∆Hk) (33)

in which S0,0,k,−k is the scattering factor introduced in Equation 22, n0 and nk being the number of
uniform and nonuniform magnons with wavevector 0 and k respectively. Recall that the δ-function
arises from the integral over the time-dependence of the initial (i) and final (f ) spin states so that [39]:

δ(ϵf − ϵi) =
γ(∆Hk)/h̄

π[(2ω − 2ωk)2 + (γ∆Hk)2]
(34)

Thus, one may predict the number of degenerate magnon pairs to grow exponentially when:

[n0]
2 ≥ { h̄

2[(2ω − 2ωk)
2 + (2ωrk)

2]

16|S0,0,k,−k|2
}min (35)

whereas:

n0 =
MV

2h̄γ

(γbcp)
2

(ω − ω0)2 + ω2
r0

(36)

Here ωr0 and ωrk denote the relaxation frequencies of the uniform and nonuniform modes respectively.
Combining Equations 35 and 36 allows one to derive a threshold field (bcp)th−2 beyond which one
should enter into the spin wave instability regime, provided that some useful expression of S0,0,k,−k

is available. Restricting ourselves to the magnetic dipole-dipole (dd) part of H4, one finally obtains for
a perpendicularly magnetized thin film [20]:

[bcp]th−2 ≃

√
ωrk [(ωp − ω0)2 + ω2

r0
]

γ2ξk
(37)
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in which ξk is defined as:

ξk = ξ−k =
ωk + Ak

4ωk

[ωM cos2 θk + ηexωMk
2]

It immediately appears that Sdd
0,0,k,−k is maximum for θk = 0: spin waves propagating along the normal

to the film have therefore the lowest saturation threshold [20,39]. Clearly, one would like to raise the
Suhl’s instability thresholds in order to increase the precession cone angle θ0. In practice, there are tricks
to suppress the subsidiary absorption, but there is no way to remove the second-order instability [39].

2.6.2. Parallel Pumping Geometry (bp ∥ B0)

As pointed out by Schlömann [43], spin-waves can be directly excited in the parallel pumping
geometry illustrated with Figure 3C if there is a non-vanishing contribution of Hp2 defined in Equation
20. This requires spin waves with elliptic precession of the magnetization vector, as expected for
tangentially magnetized films. The onset of this parametric process is obtained for a threshold field
given by:

bzth ≃ ωp∆Hk

ωM sin2 θk
(38)

in which ∆Hk = 2ωrk/γ is the full linewidth of mode k. Measuring bzth is an elegant way to determine
the relaxation frequency (ωrk) of a selected mode [38]. Interestingly, nonuniform modes often exhibit
much longer relaxation times than the uniform mode, i.e., ∆Hk ≪ ∆H0. As far as ∆Hk does not depend
on k or θk, then bzth gets lower the closer θk is to π/2.

Let us emphasize that the two magnons that are simultaneously excited have the same energy (1/2h̄ωp)
but opposite helicity. Unfortunately, the XMCD signals due to the magnetization components m⊥(k)

and m⊥(−k) cancel out since they are out of phase: this precludes the detection of the relevant XDMR
spectra in a transverse detection geometry (TRD). Nevertheless, as illustrated with Figure 3C, a weak
XDMR signal may well be detected in the longitudinal detection geometry (LOD) as it will be confirmed
in Section 3.5: this is because mz (like σXMCD) is a time-reversal odd observable but which remains
unaffected by the helicity of the wavevectors ±k.

2.7. Instrumentation Constraints in XDMR Experiments

2.7.1. Soft-XMCD versus Hard-XMCD Probes

One has to be aware that a specific beamline design and a fairly different instrumentation are required
to carry out XMCD measurements with “soft” X-rays (E < 2 keV) as opposed to “hard” X-rays
(E ≥ 2 keV). Recall that soft-XMCD measurements are most often performed at the L-edges of 3d

transition metals or at the M-edges of rare earths, and with some more difficulty, at the K-edge of
oxygen. The wider energy range of hard X-rays (2–20 keV) makes it possible to record XMCD spectra
at the K-edges of all transition metals, at the L-edges of rare-earths or 4d and 5d transition metals and
at the M-edges of actinides. Unfortunately, the XMCD signal measured at K-edges of a 3d transitions
metal is one or two orders of magnitude weaker than the XMCD signal measured at the corresponding
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L-edges with soft X-rays. This may well explain why many more attempts were made to record XDMR
spectra in the soft X-ray range [50–60] than in the hard X-ray range [6–10].

Other considerations also come into play. In magnetic materials that suffer from large conductive
losses (e.g., intermetallics or metallic multilayers with large magnetoresistance), the penetration of the
microwave pump field is restricted to the skin depth which hardly exceeds 1 µm. XDMR measurements
will then suffer from a dramatic loss of sensitivity unless the penetration depth of the X-rays is made
comparable with the skin depth. This is precisely the case with soft X-rays which are near-surface
sensitive. Quite to the contrary, hard X-rays that are bulk sensitive, look more appropriate to probe
insulators such as iron garnets and ferrites, or paramagnetic complexes.

2.7.2. Combining Time and Frequency Domain Signals

As a preamble, let us mention that, regarding XMCD experiments carried out with hard X-rays, we
do not measure directly the absorption cross-section but rather the total X-ray fluorescence yield caused
by the photoionization of the deep core level. Let us stress, however, that there is no X-ray fluorescence
detector that can measure a small dichroic signal oscillating at microwave frequencies as expected in the
transverse detection geometry (TRD). At the ESRF, high quality XDMR spectra were recorded in the
TRD geometry using a novel heterodyne detection [8,10]. The underlying concept can be easily catched
by converting into the frequency domain the time-structure of the synchrotron radiation. Typically, the
excited X-ray fluorescence intensity (If (t)) consists of a series of discrete bunches, with a periodicity
∆T = 1/RF = 2.839 ns defined by the RF frequency (352.202 MHz) of the storage ring. Let us admit
that all bunches have a gaussian shape with an average FWHM length of ca. 50 ps:

If (t) = If0
∑
n

δ(t− n∆T )⊗ 1

σ
√
2π

exp− t2

2σ2
(39)

On Fourier-transforming If (t), one obtains in the frequency domain a Gaussian envelope of harmonics
of the RF frequency:

Hf (F ) = If0RF
∑
n

δ(F − nRF ) exp−2(πσF )2 (40)

One may easily check that the half-width at half maximum of the gaussian envelope: ∆F1/2 ≃
25 × RF = 8.79 GHz falls in the microwave X-band. Since the ESRF storage ring directly provides
us with a microwave local oscillator at a frequency close to the XDMR pumping frequency, we found
it attractive to detect their low-frequency beating signal. A further gain in sensitivity was obtained
by using a super-heterodyne detection scheme which exploits a 180◦ bi-phase modulation technique
(bpsk: “bi-phase shift keying”) [10]. Defining the XDMR pumping frequency as Fp = N × RF + IF ,
the superheterodyne detection consists in catching the modulation satellites at frequencies IF ± Fbpsk.
Nearly all XDMR spectra recorded so far at the ESRF were measured in the X-band using as reference
frequency FN = 24 × RF = 8452.856 MHz, but our equipment can still be operated with N ≤ 54

(i.e., FN = 19018.927 MHz).
The ESRF heterodyne (or superheterodyne) detection scheme falls in the group of time-average

measurement methods. Arena, Bailey et al. [50–55] preferred a time-resolved approach in which the
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pumping frequency is directly a low-order harmonics of the RF signal at the Advanced Photon Source at
Argonne National Laboratory (USA). The XMCD signal is then sampled stroboscopically by the X-ray
pulses. This method suits remarkably well to soft-XDMR experiments on metallic multilayers for which
the pumping frequency (Fp < 4 GHz) is restricted by skin depth considerations.

3. XDMR in Ferrimagnetic Iron Garnets

3.1. Selected Samples

With excellent insulator properties and no detectable magnetic disorder, yttrium iron garnet (YIG)
has played a historical role in the promotion and understanding of FMR. It has a cubic structure (space
group:Ia3̄d; group N◦230), each unit cell consisting of eight formula units Y3[Fe2](Fe3)O12 [61]. This
formulation emphasizes the role of the tetrahedral (S4) and octahedral (S6) iron sites. Below the magnetic
ordering temperature (Tc ≃ 550 K), the two Fe sublattices get magnetized antiparallel one to each
other, with an unbalanced magnetization (ca. 5 µB) in favor of the tetrahedral sites. The ferrimagnetic
order is caused by a strong superexchange interaction between the two iron sublattices, the rather large
Fe(16a)−O−Fe(24d) angles (126.6◦) giving a clear indication that the wavefunctions of oxygen and
iron have a substantial overlap. YIG is the generic term for a rich family of iron garnets in which yttrium
can be substituted with rare earths in variable proportions.

In Section 3, we shall reproduce XDMR spectra collected essentially on two iron garnet films
that were grown by liquid phase epitaxy on oriented gadolinium gallium garnet (GGG) substrates:
1 = Y3Fe5O12 (YIG # 520); 2 = [Y1.3La0.47Lu1.3]Fe4.84O12 (Y-La-LuIG). Note that in film 2,
“diamagnetic” (1S0) rare earth cations (La3+, Lu3+) substitute for Y3+. In Section 3.4, we shall also
briefly discuss XDMR spectra recorded with a thin, polished platelet of gadolinium iron garnet (GdIG)
single crystal.

3.2. XDMR Spectra of a YIG Thin Film Recorded in Transverse Detection Geometry

We like first to show that XDMR spectra of unprecedented quality can now be recorded in the
transverse detection geometry (TRD) on YIG and related thin films, thanks to our superheterodyne
detection scheme that relies on the powerful concepts of either bpsk or qpsk (bi- or quadrature phase
shift keying) used in satellite telecommunications. A vector detection scheme also allows us to recover
the phase information that is preserved in a TRD geometry. This is illustrated with Figure 4A in which
the absorptive (χ′′) and dispersive (χ′) XDMR components of film 1 can be identified with the real
and imaginary parts of the vector detection scheme. A small (instrumentation dependent) phase-shift
(∆Φ ≃ 2◦) was added in order to let χ′ pass through zero when χ′′ is maximum as well as |XDMR|.
In this experiment, the energy of the circularly polarized X-ray photons was tuned to the maximum of
the Fe K-edge XMCD spectrum (E1 = 7113.91 eV) and the film was rotated by βY ≃ 420 in order to
minimize the demagnetizing field anisotropy. We checked that the XDMR peak intensity varied linearly
with the square root of the pumping power up to ca. 10 mW.

Arrows in Figure 4A point to weak satellite resonances assigned to either backward (BMSW) or
forward (FMSW) magnetostatic spin waves [10]. This is a clear indication that, locally, the orbital
magnetization components M (ℓ) couple to non uniform magnetostatic spin waves through dipole-dipole
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interactions. Note that forward/backward MSW seem to have different phases. At this stage, one
should realize that there is no chance to excite and detect standing waves resonances associated with
magnetostatic modes unless there is a net transverse magnetization component interacting with both the
microwave pump field and the circularly polarized X-rays: in the YIG thin film 1, this can be envisaged
only for standing waves of rather low order and featuring an odd number of semiperiods [62]. In this
respect, we already discussed elsewhere [10] the reasons which let us expect the relative amplitude of
the forward/backward MSW satellites to be much weaker in XDMR than in conventional FMR spectra.

Figure 4. (A) Complex vector XDMR spectrum of film 1 recorded in transverse detection
geometry (TRD) with a pumping power of 10 mW. Arrows point to weak satellite resonances
assigned to magnetostatic modes; (B) Comparison of FMR and XDMR PSD spectra that
were simultaneously recorded again in TRD geometry but with a pumping power of only
1 mW. Note the fairly different lineshapes of the main resonances assigned to the uniform
mode. Moreover, there is only a very weak contribution of the magnetostatic modes (BMSW)
satellites in XDMR.
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In Figure 4B, we compare the FMR and XDMR power spectral density (PSD) spectra that were
recorded simultaneously under a pumping power of only 1 mW. It immediately appears that the two
PSD spectra do not peak at the same resonance field whereas the intensity of the sharp BMSW modes
are considerably more intense in the FMR spectrum. Also the XDMR linewidth is definitely broader.
Unfortunately, by the time of these early experiments, the limited number of channels in our vector
spectrum analyzer prevented us from simultaneously recording both the FMR and XDMR spectra in a
fully coherent vector mode. This technical problem was recently solved but no beamtime was allocated
as yet to further tests.
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3.3. Element Resolved XDMR of the Y-La-LuIG Film in Longitudinal Detection Geometry

Long before we started the XDMR experiments reported below, a static XMCD study of film 2
had revealed the presence of large induced spin components ⟨sz⟩ at the location of the “diamagnetic”
trivalent cations La3+, Lu3+, Y3+ [33]. Technical arguments (e.g., circular polarization rates, X-ray
fluorescence yields . . . ) convinced us that XDMR experiments carried out at the La L2,3-edges would
be less beamtime-consuming than similar experiments at the low-energy Y L2,3-edges. Preliminary
test experiments carried out on film 2 in longitudinal detection geometry (LOD) led to the rather
unexpected result that, under perpendicular magnetization, the apparent precession cone angle of the
orbital magnetization component M (ℓ) measured at the Fe K-edge, i.e., θ(ℓ)0 [Fe] = 13 − 19◦, was much
larger than the apparent precession cone angle of the spin magnetization component M (s) measured at
the La L2,3-edges, i.e., θ(s)0 [La] = 4.7◦. Even more puzzling was the large precession cone angle θ(ℓ)0 [Fe]

measured for film 2, especially if we compare it to the opening angle (θ(ℓ)0 [Fe] = 7.2◦) measured for the
YIG film 1 under identical experimental conditions. In contrast, θ(s)0 [La] was found to be slightly smaller
than the cone angle measured at the Y L-edges in film 1 (i.e., θ(s)0 [Y ] = 5.9◦).

We compare in Figures 5A the XDMR and FMR PSD spectra recorded simultaneously with the
Y-La-LuIG film 2 under high pumping power (630 mW). The XDMR spectrum was again recorded in the
longitudinal detection geometry (k∥RX ∥ B0). The FMR and XDMR spectra both exhibit strong foldover
distortions resulting into broad lineshapes (∆H0 ≥ 400 Oe). Most intriguing to us was the very sharp
increase of the XDMR signal just before the foldover jump in the downfield scan, in a range where the
FMR absorption spectrum seems to saturate. Even far from the foldover jump, the precession cone angle
(θ(ℓ)0 [Fe] ≃ 13◦) is much too large to be realistic: this definitively ruled out the crude assumption that
the length of the precessing moment (|M (ℓ)|) was invariant and convinced us to envisage the parametric
excitation of nonuniform modes.

From Equation 24, one would expect the annihilation of two uniform magnons and the creation of
two degenerate magnons to shorten the length of the magnetization vector |M(ℓ)| and to increase the
transverse relaxation rate 1/T2. Regarding Equation 23, one would guess that the four-magnon scattering
process of Figure 3B should leave M (ℓ)

z unaffected since two uniform magnons are replaced by two
degenerate magnons, so that the total number of magnons is left unchanged. This, however, does not
hold true if the life-times of uniform and degenerate magnons are different. Schlömann [64] was the first
to point out that, in the four-wave interaction process of Figure 3B, the damping rate of the spin waves
(+k,−k) was artificially decreased. Typically, he introduced an effective damping rate:

ω̃rk = (ω2
rk
− |S0,0,k,−k|2|b0|4)1/2 (41)

in which the amplitude of the uniform mode |b0|2 directly depends on the incident microwave power.
Clearly, the higher the microwave power, the longer should be the lifetime of the pair of degenerate
magnons. Equation 23 then predicts a rapid decrease of M (ℓ)

z , i.e., a sharp raise of m(ℓ)
z exactly as

observed in Figure 5A. We still need to understand why this effect is so spectacular with film 2 but does
not show up with film 1, and why it does not affect in the same way the magnetization components probed
at the iron or lanthanum sites. It is our interpretation that this has to do with a relaxation mechanism
that selectively affect the orbital magnetization component ⟨ℓz⟩ at the iron S4 site in the Y-La-LuIG
film. Owing to the fact that the orbital magnetization components ⟨ℓz⟩ are heavily quenched at the rare
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earth sites [33], no significant relaxation anomaly can be detected at the La or Lu L-edges. This nicely
illustrates the different nature of the relaxation mechanisms at different magnetic sites.

Figure 5. (A) Foldover distorted XDMR and FMR spectra of film 2 showing hysteretic
profiles when the bias field is scanned up and down; the XDMR spectrum was recorded
in longitudinal detection geometry (LOD) under a pumping power of 630 mW. Note the
very sharp increase of the XDMR signal just before the foldover jump whereas the FMR
spectrum seems to saturate; (B) Modified Kasuya–LeCraw relaxation mechanisms involving
an orbiton either in a 3-boson de-excitation (a) or excitation (b) process.
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Relaxation Processes

In the Kasuya–LeCraw process which is regarded as the dominant spin-lattice relaxation process in
YIG [20,63], it is postulated that the confluent scattering of a small k degenerate magnon with a phonon
q can produce an excited magnon of much higher energy: the latter may decay through a cascade of
three-magnon splitting processes now allowed by energy conservation. Since the net result is an increase
of the total number of magnons, Equation 23 let us expect Mz to decrease or mz to increase: of course,
it would be totally erroneous to assign this effect to an (improbable) increase of the precession cone
angle of the uniform mode in Figure 2. We have sketched in Figure 5B. two modified Kasuya–LeCraw
mechanisms in which a cascade of two consecutive 3-boson processes may involve one orbiton either in
a de-excitation process (a) or in the excitation process (b).

Mechanism (5B.b) deserves more attention in a context where valence or orbital fluctuations may
cause a dynamical replacement of Fe3+ cations in either tetrahedral or octahedral sites with short living
Jahn–Teller cations (Fe4+, Fe2+) that had unquenched orbital moments. Such valence fluctuations could
be initiated or enhanced by the presence of small amounts of impurities (e.g., Pb2+) introduced during
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the growth of the film by liquid phase epitaxy. In other terms, the 6S5/2 configuration for iron may not
be time-invariant. Recall that the effects induced by Fe4+, Fe2+ or other Jahn–Teller ions in doped YIG
films have fed long debates that are not closed. In the case of film 2, strong perturbations stem from
the large size of the La3+ cations and of the small size of the Lu3+ cations which allow lutetium to
partly replace iron in the octahedral sites. The non-uniform distribution of the rare earth cations induces
fluctuations in the lattice parameter, i.e., dynamical strains and stresses resulting in the excitation of
magneto-elastic waves. This is supported by the much larger growth anisotropy of film 2 as compared to
film 1. Nevertheless, it would be desirable to lay deeper foundations to the mechanisms of Figure 5B. In
particular, we are interested in establishing the link between this mechanism and the slow longitudinal
relaxation theory pioneered in the early sixties by Van Vleck and others [66,67].

3.4. Anomalous Saturation of the Fe K-Edge XDMR Spectra of GdIG

The replacement of all Y3+ ions with Gd3+ (8S7/2) in the dodecahedral (24c) sites results in a more
severe perturbation than that caused by the pseudo-diamagnetic cations La3+ or Lu3+. Even though YIG
and GdIG have identical crystal structures and nearly the same Curie temperatures (TC = 551–556 K),
their magnetic properties are fairly different due to the contribution of the weakly coupled Gd sublattice,
the Gd spins getting fully ordered only below a low ordering temperature (TB ≃ 67 K) [68]. Above
TB, the Gd magnetization can be described as a temperature-dependent Brillouin function for spin 7/2
in a field proportional to the net magnetization of the strongly coupled ferric ions. The most spectacular
consequence is the existence of a compensation point, i.e., a temperature (Tcp = 286 K) at which the
spontaneous magnetization of GdIG passes through zero [61]. Considerable changes in the FMR spectra
take place at the compensation point. One of them is the inversion of the Larmor precession helicity on
passing through the compensation point [69]. This prompted us to check whether this could be seen in
the Fe K-edge XDMR spectra of GdIG.

We have reproduced in Figure 6 complex vector XDMR spectra of a thin disk of GdIG cut parallel to
the (110) planes. These Fe K-edge XDMR spectra were recorded in transverse detection geometry
(TRD). Since the normal to the disk was rotated by 45◦ with respect to the direction of B0, the
contribution of the uniaxial anisotropy was heavily reduced. In Figure 6A, we display the XDMR spectra
measured at T ≃ 150 K, i.e., at an intermediate temperature well above the ordering temperature TB but
below the compensation temperature Tcp; in Figure 6B, the XDMR spectra of the same sample were
measured at T = 450 K, i.e., at a temperature now well above Tcp. We kept strictly the same microwave
pumping power (475 mW) for both experiments whereas the X-ray photon energy (E1 ≃ 7114 eV) was
left unchanged. The phase-shifts (∆Φ) were determined according to the same criteria: the dispersive
part of XDMR spectrum had to pass through zero at resonance whereas the absorptive part had to
be positive over the whole resonance spectral range. Whereas ∆Φ varies from +15◦ to −177◦, it
immediately appears that something unexpected did happen to the absorptive part which caused heavy
distortions of the modulus (|XDMR|) and of the PSD spectra. In contrast, no anomaly did appear in the
FMR PSD spectrum which was recorded simultaneously at T = 450 K.
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Figure 6. Complex vector XDMR spectra recorded in transverse detection geometry (TRD)
with a thin single crystal platelet of GdIG cut parallel to the (110) plane: (A) Below the
compensation point, i.e., at T ≃ 150 K < Tcp = 286 K; (B) Above the compensation point,
at T = 450 K > Tcp. Note the very weak intensity of the absorptive part (Re{XDMR})
and the heavily distorted lineshape of the modulus spectrum (|XDMR|); (C) Complex vector
XDMR spectra typically expected for two magnetization components precessing in phase
but with opposite helicity. Note that the absorptive part (Re{XDMR}) again tends to vanish
whereas the modulus spectrum (|XDMR|) exhibits a characteristic “dip” at resonance as also
observed in (B).
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For sure, the strong anomaly revealed by Figure 6B cannot be explained by a simple inversion in the
precession helicity of M (ℓ) at the S4 iron sites (24d). It is our interpretation that this anomaly is typical
of a destructive interference between two resonant modes precessing in opposite senses as illustrated (for
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example) with Figure 6C. In other terms, the polarization of the precession is getting strongly elliptical.
Complementary experiments revealed that this anomaly strongly depended on the pumping power and
decreased on increasing the temperature. This looks like a possible signature—in the transverse detection
geometry—of a 4-magnon scattering process in which the two scattered magnons with wavevectors
+k and −k had strictly opposite helicities. We suspect the destructive interference to be particularly
spectacular because the linewidth of the non uniform modes (±k) should be (again) much shorter than
the linewidth of the degenerate uniform mode.

As far as the proposed interpretation holds true, the clue to the present problem is in the scattering
amplitude |S0,0,k,−k|2 which depends mostly on dipole-dipole interactions. It is not totally clear as yet
why no similar anomaly did show up below the compensation temperature, i.e., in Figure 6A. It is
hard to anticipate what exact role the Gd spins play in the intermediate temperature range above the
ordering temperature TB and below Tcp. Note that 57Fe spin-echo NMR spectra recorded well below
TB have established that the Gd spins were coupled to the Fe spins in the tetrahedral (24d) sites, the
exchange integral Jdc amounting to only ≃ 12% of the exchange integral Jad describing the strong
ferrimagnetic coupling of the iron sites [70,71]. Further work is in progress in order to compare the
saturation properties of low temperature XDMR spectra recorded at the Fe K-edge and at the Gd L-edges.

3.5. Non-Linear Effects Associated With Elliptical Precession

For iron garnets, the shape anisotropy is very often regarded as the main cause for elliptical precession
in FMR: this is typically the case of YIG thin films when tangentially magnetized. Oblique magnetization
at 45◦ or near the magic angle (54.74◦) is a simple way to decrease the anisotropy fields and to minimize
the foldover lineshape distortions at high pumping power. Nevertheless, the two experiments reported
below unambiguously show that the precession still remains elliptical. It should be kept in mind,
however, that the precession ellipicity is a time-reversal even observable property [7]: this implies that it
can be measured only through very weak non-linear effects.

3.5.1. Second Harmonic XDMR Spectra in YIG Thin Films

Under the conditions of elliptical precession, the longitudinal component of the magnetization mz is
not anymore time-invariant since there is a weak additional term that is oscillating at twice the microwave
pumping frequency and which appears as a consequence of the nonlinear character of the Landau–
Lifshitz–Gilbert or Bloch–Bloembergen torque Equations [20]:

mz = m(0)
z +m(2)

z cos(2× ωpt+ ϕ(2)) (42)

Clearly, the detection of such a weak frequency-doubled XDMR signal was a critical test regarding
the sensitivity of the superheterodyne detection scheme. It is noteworthy that some phase information
can be recovered using a vector detection of the frequency doubled signal. It can be shown that m(2)

z as
well as m(0)

z are time-reversal odd observables that can perfectly be detected by XMCD as long as the
oscillating term preserves its time-even parity. This will obviously be the case if the precession helicity
is inverted in order to keep 2ωt invariant.

The 2 × F vector spectra of film 1 which are reproduced in Figure 7A were recorded in pumping
the sample in the microwave C-band (Fp = 4.226 GHz) and in detecting the weak XDMR signal at
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2 × F = 8.452 GHz using the 24th harmonics of the RF signal of the storage ring as local oscillator
reference. Superheterodyne detection turned out to be possible using a single side-band frequency
translator as modulator.

Figure 7. (A) Vector Components and PSD XDMR spectra of the YIG film 1 recorded
in the frequency doubling mode and longitudinal detection geometry (LOD); the pumping
frequency was 4.226 GHz but the XDMR signal was oscillating at 8.452 GHz. Note that
the 2 × F XDMR PSD spectrum does not reproduce the foldover lineshape of the FMR
PSD spectrum. Regarding the vector 2 × F XDMR spectra, it seems that resonance may
also take place at lower field; (B) Parallel pumping PSD XDMR spectrum of the Y-La-LuIG
film 2 recorded in LOD geometry under high pumping power at 8.452 GHz. Whereas the
microwave absorption spectrum due to the parametric excitation of exchange spin waves
extends down to very low fields, this is not the case for the XDMR spectrum which exhibits
only a sharp peak at Hmax.
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With a pumping power as high as 1.25 W, the foldover lineshape of the FMR PSD spectrum was not
unexpected. Rotating the film at the magic angle (θH ≃ 54.74◦), however, considerably reduced the
foldover linewidth (35 < ∆H < 50 Oe). Interestingly, the weak 2 × F XDMR PSD spectrum displayed
in Figure 7A does not reproduce the foldover lineshape of the FMR PSD spectrum; moreover, it looks
like it was peaking at a resonance field much lower than the foldover jump and closer to the resonance
field found in FMR experiments carried at low pumping power. Actually, the 2 × F XDMR spectra
shown in Figure 7A should not be compared with the PSD FMR spectrum but rather with the vector-type
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excitation spectrum obtained in measuring the radiated microwave intensity at frequency 2 × Fp. To the
best of our knowledge, no such FMR excitation spectra had ever been reported. Thanks to the recent
upgrade of our instrumentation, we should now be able to record simultaneously the 2 × F vector XDMR
and excitation FMR spectra and to compare them.

3.5.2. XDMR under Parallel Pumping Excitation

We have reproduced in Figure 7B the XDMR PSD spectrum of film 2 recorded in the parallel pump
and probe geometry (bp ∥ B0 ∥ kRX) illustrated with Figure 3C. In this geometry, some microwave
power is absorbed due to the direct excitation of a pair of spin waves with opposite helicities +k and −k

as predicted by Equation 20. Some more complication arose from the oblique pumping geometry with
respect to the film. This is because the equilibrium magnetization Meq is not aligned anymore along
the direction of the external bias field B0 but along the direction of some effective field Beff . A careful
analysis of the angular dependence of the FMR spectra made it possible to determine the polar angle
of Meq in the film coordinates: θeq ≃ 67◦ if θH0 = 54.74◦. Thus, in addition to a large component
(b∥p) parallel to Beff , the microwave pump field bp contributes to a weak transverse component (b⊥p)
that simultaneously excites the uniform precession mode at frequency ωp. This explains why a standard
FMR signal was systematically detected in this geometry [73].

We were primarily interested in the excitation of a pair of spin waves (±k) by the large component b∥p.
Equation 20 predicts a maximum intensity for spin waves propagating along a direction perpendicular to
Beff . In the film coordinates, the wavevectors ±k have a component along the normal to the film (±kσ)
as well as a component in-plane (±kπ). In an infinite thin film, the π-components refer to progressive
waves, whereas resonant standing waves develop along the normal to the film. In favorable cases, e.g., for
high quality YIG films, one may detect a rich pattern of discrete standing wave resonances at pumping
levels that exceed the threshold field defined by Equation 38 of Section 2.5. Unfortunately, this was
not the case for the Y-La-LuIG film 2 for which we observed at low resonance field only a fairly broad
absorption band that is reproduced in Figure 7B. It is quite noteworthy that the XDMR PSD spectrum
recorded in longitudinal detection geometry (LOD) does not reproduce such a broad band commonly
assigned to exchange spin wave resonances: there is a significant signal only at the onset of what is given
as the exchange magnon band, i.e., for k ≃ 0. In other terms, this experiment seems to indicate that, at
the iron sites, the orbital magnetization component M (ℓ) measured at the Fe K-edge does not couple to
exchange spin waves, at least to those featuring a large wavevector k. Further work should tell us how
far this conclusion can be granted as general, and whether there is any link between this observation and
the well known property of the exchange Hamiltonian to commute with either Mz or mz.

4. New Challenges for XDMR

So-far, we discussed XDMR spectra recorded only on ferrimagnetic films or crystals. In collaboration
with the research center for the development of the far infrared region (University of Fukui, Japan),
we are presently testing at the ESRF the feasibility of high-field XDMR experiments at sub-THz
pumping frequencies [74,75]. Our ultimate goal is to evaluate whether high-field X-ray detected
Electron Paramagnetic Resonance (EPR) spectra could be successfully recorded in longitudinal detection
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geometry (LOD). On the other hand, it will be shown below that high-field XDMR could also become a
unique tool to study orbital magnetism in AFM phases.

4.1. High-Field, X-Ray Detected Electron Paramagnetic Resonance

At the ESRF, quite a few proposals were concerned with static XMCD studies on paramagnetic
organometallic complexes. In practice, such experiments require low temperatures (T ≤ 20 K) and
a high magnetic field (B0 ≥ 5 T). We have reproduced in Figure 8A the cobalt K-edge X-ray
Absorption Near Edge (XANES) and XMCD spectra of a powdered pellet of the meso-(5,10,15,20)-
tetraphenylporphyrinato-Co(II) complex 3 = TPP:Co; we have also reproduced in Figure 8B the rhenium
L-edges XANES and XMCD spectra of a cyanometalate complex of Re(IV) (4 = [Re(CN)7](Bu4N)3).
Recall that 4 is a building block for the chemical synthesis of heterobinuclear molecular magnets [76] or
chemically switchable molecular magnet [77].

Figure 8. (A) XANES and XMCD spectra recorded at the Co K-edge for a powdered pellet
of 3 = TPP:Co; (B) XANES and XMCD spectra recorded at the Re L2,3-edges for a powdered
pellet of 4 = [Re(CN)7](Bu4N)3. Note that the XMCD signal measured at the Re L-edges is
much stronger than at the Co K-edge.
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Interestingly, the XMCD spectra of complexes 3 and 4 are dominated by a strong contribution of
the orbital magnetization component ⟨ℓz⟩ in the X-ray excited final states. Since the integral of the
XMCD signal reproduced in Figure 8A does not average out to zero, the magneto-optical sum rules let
us anticipate the presence of a significant amount of unquenched orbital moment ⟨Lz⟩ located at the
cobalt sites. This is consistent with the commonly admitted electronic structure of 3 in which there
is a close lying (orbital) triplet 4T1 slightly above the Kramer’s ground state 4A2. The existence of a



Int. J. Mol. Sci. 2011, 12 8824

weak orbital moment is also supported by the rather large anisotropy of the EPR spectra: ∆g2 = g2∥ −
g2⊥ ≃ −7.8 [78]. This is at variance with the case of vanadyl porphyrin complexes since the XMCD
signals measured at the V K-edge were dramatically weak and close to the instrumental detection limit
although the corresponding XANES spectra did show quite strong pre-edge structures [79]. This may
look puzzling given that the EPR spectra of vanadyl complexes are known to be very intense and exhibit
fairly narrow lines with well resolved hyperfine structures due to the 51V7/2 nuclei. Actually, the very
weak anisotropy of the EPR spectra (∆g2 ≃ −0.098) provides us with a clear indication that the orbital
moment are heavily quenched in these compounds. Moreover, the weakness of the XMCD signal at the V
K-edge could also reflect a major delocalization of the unpaired electron far away from the vanadium site.

It immediately appears from Figure 8B that the XMCD signatures measurement at the Re L2,3 edges
are considerably more intense than in the previous case. Moreover, the XMCD spectra displayed in
Figure 8B are fairly unusual since the XMCD signal keeps the same sign at the L2,3-edges: according
to the magneto-optical sum rules, this is a typical signature of a large orbital moment ⟨Lz⟩ = 0.11 µB.
This is also fully consistent with the strong anisotropy of the EPR spectra (∆g2 ≃ 11) [76]. Much more
surprising was the very weak effective spin contribution with ⟨Sz⟩ − 7/2⟨Tz⟩ ≃ ±5.10−4 µB. Quite
the opposite situation was found when we measured the gadolinium L-edges XMCD spectra of cofacial
porphyrinato-Gd(III) complexes in which no significant orbital moment was detected [79].

Unfortunately, the XDMR spectra of the paramagnetic complexes 3 and 4 cannot be recorded in the
microwave X-band because the sensitivity of the XMCD probe is very poor at low bias field. A better
option would be to record high-field XDMR spectra pumped at sub-THz frequencies. Even under such
conditions, the Co K-edge XDMR signal may still be very weak. Nevertheless, one should not regard
such a challenging experiment as hopeless because much larger precession cone angles could a priori
be achieved in EPR: recall that pulsed EPR spectrometers require the magnetization to be rotated by 90◦

or even 180◦ in the rotating frame [80–83]. There is, unfortunately, a major difference with standard
EPR which is that XDMR spectra will have to be recorded on pure or highly concentrated samples.
Under such conditions, the X-ray detected electron paramagnetic resonance lines are expected to be
very broad because the exchange narrowing effect should be considerably weaker than in FMR [84,85].
From a technical point of view, there is also the further handicap that the superheterodyne detection
scheme discussed in Section 2.6 cannot be extended beyond Fp = 20 GHz: this implies that, as yet,
X-ray detected EPR spectra could be recorded at sub-THz frequencies only in the longitudinal detection
geometry (LOD) which suffers from a very poor sensitivity. This point justifies the need for a powerful
pumping source such as a gyrotron [74,75].

What stimulates us to invest time and efforts in this challenging project is the hope that high-field
X-ray detected EPR experiments should allow us to probe the precession dynamics of orbital
magnetization components in paramagnetic species with a significant zero-field splitting (zfs), e.g., high
spin complexes with integer spin that are EPR-silent at microwave pumping frequencies. Many examples
can be found in a long list of Mn(III) complexes [86], e.g., porphyrinato-Mn(III) complexes for which
preliminary XMCD measurements at the Mn K-edge already confirmed the existence of unquenched
orbital moments. Keeping in mind that zfs is caused by spin-orbit interactions, there should be a
correlation between a large zfs and the magnitude of M(ℓ) in the X-ray excited final states. In other
terms, spin-orbit is responsible for both the large zfs of Re(IV) complexes and the large contribution



Int. J. Mol. Sci. 2011, 12 8825

of ⟨Lz⟩ and ⟨ℓz⟩ in XMCD. Complexes involving 5d transition metal elements would thus appear as
excellent candidates to demonstrate the precession of orbital components in X-ray detected EPR.

The intriguing case of the Van Vleck paramagnetism still deserves a few comments here: it can be
best observed when the angular momentum J vanishes whereas L, S ̸= 0. If the ground state is singlet,
the first order perturbation due to the Zeeman interaction vanishes but the second order term yields the
Van Vleck susceptibility that becomes temperature independent at low temperatures (T < 20 K):

χV V = 2µ2
B(N/V )

∑
n ̸=0

⟨0|Lz + gSz|n⟩⟨n|Lz + gSz|0⟩
En − E0

(43)

Whereas Curie’s paramagnetism reflects the alignment of permanent moments, Van Vleck’s
paramagnetism refers to an electronic polarizability associated with induced moments. So far, van
Vleck’s paramagnetism was observed mostly in crystals containing non-Kramers RE ions that (again)
have an integer spin and a large zfs. What is required from the crystal field is to split the atomic ground
multiplet so as to produce a singlet ground state. A typical example is Eu3+ with its ground state 7F0

separated from the first excited state by ca. 300–400 cm−1 and for which a slow longitudinal relaxation
process was proposed by Van Vleck [67]. In NMR, there is also much interest in the Van Vleck
paramagnetism of thulium crystals which had an exceptional potentiality regarding dynamic nuclear
polarization (DNP-NMR) of 169Tm. One of the best characterized crystals is thulium ethylsulphate,
i.e., TmES = Tm(C2H5SO4)3.9H20 for which high-field EPR spectra have been reported at 1.2 K [87].
For the latter experiments, TmES was diluted in a diamagnetic crystal (LaES), the pumping frequency
being as high as 1–1.5 THz. Unfortunately, we have not yet the technical capability to manage XDMR
experiments under high pumping power at 1 THz while maintaining the sample temperature below 10 K.

4.2. High-Field XDMR in the AFMR Regime

Since no static XMCD signal can be measured on AFM materials with antiparallel ground states, it
is tempting to conclude that there is no hope to detect any XDMR signal as well. The situation may
not be as desperate if one looks at what happens under the conditions of antiferromagnetic resonance
(AFMR). For simplicity, let us consider a crystal with two AFM ordered sublattices and uniaxial
magnetic anisotropy directed along the c axis. As long as the antiparallel ground state is preserved,
the combined action of a parallel bias field (B0 ∥ c) and a perpendicular pumping field (bp ⊥ c) will
excite two precession modes illustrated with Figures 9A,B and which satisfy the resonance condition:

ω±

γ
≃ [2BE ·BA +B2

A]
1/2 ±B0 = BC2 ±B0 (44)

in which BE = |BE1| = |BE2 | is the modulus of the exchange fields of the coupled sublattices (1, 2),
whereas BA = |BA1 | = |BA2 | similarly refers to the length of the corresponding anisotropy fields.
Recall that Equation 44 is correct only at low temperatures (T ≪ TN ) and neglects all nonlinear terms.
Further corrections taking into account the Van Vleck paramagnetism are possible when the temperature
dependent susceptibility ratio χ∥/χ⊥ is predetermined [88].
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Figure 9. Precession modes in an antiferromagnet with an easy axis of anisotropy: (A) and
(B) refer to an antiparallel ground state; (C) is for a noncollinear ground state (spin-flop
mode). Since the precession cone angles θ1 and θ2 are unequal in configurations (A) and (B),
a weak XDMR signal may still be detectable in the transverse detection geometry (TRD).
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Anyhow, two distinct precession modes (ω+;ω−) are excited which have the opposite helicity.
Moreover, due to the existence of the anisotropy field (BA = BA1,2), the precession cone angles θ1
and θ2 are no longer identical for the two magnetization components M1 and M2. In the transverse
detection geometry (TRD) illustrated with Figure 9, one should then measure a difference XDMR signal
proportional to ∆m±

⊥ = m±
1 + m±

2 and which should oscillate at the resonant frequencies ω+ or ω−

with the following lineshape [20]:

∆m±
⊥ = m±

1 +m±
2 ≃ 2γ2BA

(ω+ − ω)(ω− − ω) + 2ıαGωBE

b(±)
cp (45)

in which b
(±)
cp is the relevant circularly polarized component of the pump field, αG being again a

dimensionless (Gilbert) damping parameter. There is, however, the considerable handicap that the
zero-field resonance frequency, i.e., ωC = γBC2 is most often expected to be in the sub-THz, if not in
the far-infrared range because the exchange fields (BE1 , BE2) are much stronger than the external bias
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field. Recall that there is, as yet, no X-ray detector that can measure a signal oscillating at sub-THz
frequencies, our superheterodyne detection scheme being restricted to Fp ≤ 20 GHz. This is where
high-field XDMR could circumvent this difficulty, assuming that the external field B0 can be strong
enough to shift the resonance frequency ω− down to the microwave range. Notice that, at the ESRF, the
static bias field applied at the sample location could now be increased up to 17 T.

When the external field B0 approaches the critical field BC1 = [2BEBA − B2
A]

1/2 < BC2 , the
magnetic system undergoes a first order transition (spin-flop) resulting in the new situation sketched in
Figure 9C and which is characterized by a noncollinear ground state [88]. It is well documented that, in
the spin-flop phase, a new resonance mode associated with the total magnetization M = M1 +M2 will
be pumped:

ω∥

γ
≃ [

2BEBE⊥

B2
∥

B2
0 − 2BE ·BA]

1/2 (46)

in which: BE∥ = 2BE − BA and BE⊥ = 2BE + BA, so-that BC1 = [BABE∥]
1/2 and

BC2 = [BABE⊥]
1/2. For completeness, it should be mentioned that there exists also a soft mode

(ω → 0) but the latter will be undetectable by XDMR since it cannot be excited by the external pump
field [20].

Given that the precession cone angles θ1 and θ2 are different, one may question whether a (very weak)
XDMR signal could be measured as well in the longitudinal detection geometry (LOD), i.e., in a regime
where non-linear terms would no longer be neglected. Since no fast detector is needed in LOD geometry,
this option could still be envisaged when BC2 is very large, i.e., when too large magnetic fields would
be required to shift ω− down into the microwave X-band. Unfortunately, one expects the XDMR signal
measured in LOD geometry to be much smaller than in FMR because ∆m±

z ∝ [tan θ0]
2 × (BC/BE)

2,
in which BC/BE does not exceed, at best, a few percents. This would bring us very close to (or below)
the detection limit.

For XDMR experiments, it may be preferable to select AFM crystals in which the exchange field BE

is not too strong, i.e crystals with a rather low Néel temperature (e.g., TN < 77 K). Regarding AFMR,
MnF2 (TN = 68 K) is a good example given that a very narrow linewidth (∆B = 5 G) was measured
at T = 4 K for the uniform precession mode (ω−) excited by a microwave pump field (Fp = 23 GHz) in a
bias field B0 ≃ 8.5 T [89] so that magnetostatic satellite resonances could be perfectly resolved. Narrow
AFMR lines (∆B = 15 G) were also obtained with epitaxial films grown on MgF2 substrates [90]. Note
that the AFMR linewidth rapidly increases in the sub-THz range since the damping term in Equation 45
is ∝ ωBE . Unfortunately, MnF2 may not be the ideal candidate for Mn K-edge XDMR experiments
due to the vanishing orbital moment ⟨Lz⟩ of Mn2+ ions in a high spin (6S) state. Recall, however, that
⟨ℓz⟩ may still be finite in excited states even though ⟨Lz⟩ vanishes in the ground state. There is the
further handicap that, in an octahedral crystal field with 6A1g ground term, only electric quadrupole (E2)
transitions contribute to the pre-edge structures assigned to final states involving magnetic 3d orbitals.

The case of KCuF3 (TN = 39 K) looks more attractive owing to the fact that this crystal is the
archetype of orbitally ordered systems [91]. In this crystal, the AFM spin order has an easy plane
of anisotropy with its normal parallel to the c axis. On the other hand, careful studies of the angular
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dependence of the EPR spectra of KCuF3 in the paramagnetic phase revealed the existence of a strong
contribution of the Dzyaloshinskii–Moriya antisymmetric exchange interaction:∑

k>j

djk · (Sj × Sk) (47)

with djk ⊥ c [92]. Moriya established that such an antisymmetric exchange interaction could be
identified with a second order perturbation which was bilinear in the spin-orbit coupling and exchange
interaction [93]. Then, the coupling field djk could be expressed in terms of transition orbital moments:

djk ≃
λ · Jj
∆Ej

⟨gj|Lj|ej⟩ −
λ · Jk
∆Ek

⟨gk|Lk|ek⟩ (48)

in which λ denotes the spin-orbit coupling factor, ∆Ej(k) are the energy separations between the ground
state orbital levels gj(k) and the relevant excited states ej(k), Jj(k) being the effective superexchange
constants at sites j and k respectively. Clearly, the coupling field vanishes if the two sites transform
into each other by inversion symmetry. It is well documented that a large antisymmetric exchange
interaction can cause a small canting effect of the AFM-ordered magnetization vectors resulting in a
weak ferromagnetism [39]. Typically, for B0 ⊥ c, KCuF3 should behave just like a weak ferromagnet
satisfying the resonance condition [20]:

ω⊥ = γB0[1 + BA/BE]
1/2 (49)

Under such conditions, one may reasonably expect a (weak) XDMR signal to be detectable at low
temperature in TRD geometry.

Among transition metal oxides for which the low frequency mode ω− could be excited at microwave
frequencies, single crystals of ilmenites (MTiO3, with M = Fe,Co) could also be good candidates
for XDMR: they had rather low Néel temperatures [88,94] and significant orbital moments ⟨Lz⟩ at the
sites of the Jahn–Teller cations [95]. With a much higher exchange field combined to a low anisotropy
field [88,96], the case of Cr2O3 (TN = 308 K) looks less favorable even though we already produced
definitive evidence of orbital magnetism in this crystal, at least in its magnetoelectric phase [97].
Although the spin-flop critical field of Cr2O3 is rather low (BC1 ≃ 5.9 T), it cannot be taken yet
for granted that ∆m(±)

⊥ will be large enough to yield a XDMR signal easily detectable at microwave
pumping frequencies.

Still very little is known regarding AFMR in crystals involving 5d transition elements and for which
much stronger XDMR signals could be expected at L-edges. Unfortunately, neither single crystals nor
epitaxial films of K2ReBr6 (TN = 15 K [39]) or ReO2 are easily available.

5. Conclusions

XDMR is a novel spectroscopy which is still in an early stage of development often dominated
by severe instrumentation problems. In this review, we tried to convince the reader that XDMR
could develop as a unique tool to study dynamical aspects of orbital magnetism including collective
excitations. For the first time, direct experimental evidence was produced of the forced, elliptical
precession of orbital magnetization componentsM (ℓ). There is no doubt left that locally,M (ℓ) can couple
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to magnetostatic spin waves through dipole-dipole interactions but there is no experimental result which
would definitively prove thatM (ℓ) could similarly couple to exchange spin-waves. On the other hand, we
pointed out strong anomalies in the XDMR spectra which support our view that orbitons may contribute
to new relaxation mechanisms. Several important questions were left aside, e.g., the question to know
whether, locally, the spin and orbital magnetization components M(s) and M(ℓ) do precess in or out of
phase and possibly around different effective axes. Also the whole problem of the magnetoelastic waves
resulting from the modulation of the spin-orbit interactions by the lattice phonons will be discussed
elsewhere. Nevertheless, in Section 4, we tried to anticipate over the emergence of XDMR as a parallel
method to study orbital magnetism in paramagnetic as well as in antiferromagnetic phases.
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72. Schlömann, E. Fine structure in the decline of the ferromagnetic resonance absorption with

increasing power level. Phys. Rev. 1959, 116, 828–837.
73. Goulon, J.; Rogalev. A.; Goujon, G.; Wilhelm, F.; Brouder, Ch. X-ray detected magnetic resonance

of YIG thin films under tangential and oblique parallel pumping. J. Magn. Magn. Mater. 2012, to
be submitted.

74. Goulon, J.; Rogalev, A.; Wilhelm, F.; Goujon, G.; Idehara, T. Sub-THz gyrotron optimized for
X-ray detected electron magnetic resonance. J. Plasma Fusion Res. 2008, 84, 909–911.

75. Rogalev, A.; Goulon, J.; Goujon, G.; Wilhelm, F.; Ogawa, I.; Idehara, T. X-ray Detected Magnetic
Resonance at Sub-THz frequencies using a high power gyrotron source. J. Infrared Milli. Terahz.
Waves 2012, in press.

76. Benett, M.V.; Long, J.R. New cyanometalate building units: Synthesis and characterization of
[Re(CN)7]3− and [Re(CN)8]3−. J. Am. Chem. Soc. 2003, 125, 2394–2395.

77. Freedman, D.E.; Jenkins, D.M.; Iavarone, A.T.; Long, J.R. A redox-switchable single-molecule
magnet incorporating [Re(CN)7]3−. J. Am. Chem. Soc. 2008, 130, 2884–2885.

78. Walker, F.A.V. Proton NMR and EPR Spectroscopy of Paramagnetic Metalloporphyrins. In The
Porphyrin Handbook; Kadish, K.M., Smith, K.M., Guilard, R., Eds.; Academic Press: New York,
NY, USA, 2000; Volume 6, Chapter 36, pp. 82–175.



Int. J. Mol. Sci. 2011, 12 8834

79. Goulon, J.; Goulon-Ginet, Ch.; Gotte, V. X-ray Absorption Spectroscopy Applied to Porphyrin
Chemistry. In The Porphyrin Handbook; Kadish, K.M., Smith, K.M., Guilard, R., Eds.; Academic
Press: New York, NY, USA, 2000; Volume 7, Chapter 49, pp. 79–166.

80. Bowman, M.K. Fourier Transform Electron Spin Resonance. In Modern Pulsed and
Continuous-Wave Electron Spin Resonance; Kevan, L., Bowman, M.K., Eds.; John Wiley & Sons
Inc.: New York, NY, USA, 1990; pp. 1–42.

81. Smith, G.M.; Riedi, P.C. Progress in High Field EPR. In Electron Paramagnetic Resonance; RSC
Publishing: Cambridge, UK, 2000; Volume 17, Chapter 6, pp. 164–204.

82. Morley, G.W.; Brunel, L.-C.; van Tol, J. A multifrequency high field pulsed electron paramagnetic
resonance/electron-nuclear double resonance spectrometer. Rev. Sci. Instrum. 2008, 79,
064703:1–064703:5.

83. Savitsky, A.; Moebius, K. High field EPR. Photosynth. Res. 2009, 102, 311–333.
84. Anderson, P.W.; Weiss, P.R. Exchange narrowing in paramagnetic resonance. Rev. Mod. Phys.

1953, 25, 269–276.
85. Cage, B.; Cevc, P.; Blinc, R.; Brunel, L.-C.; Dalal, N.S. 1–370 GHz EPR linewidths for K3CrO8:

A comprehensive test for the anderson-weiss model. J. Magn. Reson. 1998, 135, 178–184.
86. Krzystek, J.; Ozarowski, A.; Telser, J. Multi-frequency, high-field EPR as a powerful tool to

accurately determine zero-field splitting in high-spin transition metals coordination complexes.
Coord. Chem. Rev. 2006, 250, 2308–2324.

87. Tagirov, M.S.; Tayurskii, D.A. Insulating Van Vleck paramagnets at high magnetic fields (Review).
Low Temp. Phys. 2002, 28, 147–164.

88. Foner, S. Antiferromagnetic and Ferrimagnetic Resonance. In Magnetism; Suhl, H., Rado, G.T.,
Eds.; Academic Press Inc.: New York, NY, USA, 1963; Volume 1, Chapter 9, pp. 383–447.

89. Kotthaus, J.P.; Jaccarino, V. Antiferromagnetic-resonance linewidth in MnF2. Phys. Rev. Lett.
1972, 28, 1649–1652.

90. Lui, M.; King, A.R.; Kotthaus, J.P.; Hansma, P.K.; Jaccarino, V. Observation of antiferromagnetic
resonance in epitaxial films of MnF2. Phys. Rev. B 1986, 33, 7720–7723.

91. Pavarini, E.; Koch, E.; Lichtenstein, A.I. Mechanism for orbital ordering in KCuF3. Phys. Rev.
Lett. 2008, 101, 2666405:1–2666405:4.

92. Kato, N.; Yamada, I. Multi-sublattice magnetic structure of KCuF3 caused by the antisymmetric
exchange interaction: Antiferromagnetic resonance measurements. J. Phys. Soc. Jpn. 1994, 63,
289–297.

93. Moriya, T. Weak Ferromagnetism. In Magnetism; Suhl, H., Rado, G.T., Eds.; Academic Press Inc.:
New York, NY, USA, 1963; Volume 1, Chapter 3, pp. 85–125.

94. Stickler, J.J.; Kern, S.; Wold, A.; Heller, G.S. Magnetic resonance and susceptibility of several
ilmenite powders. Phys. Rev. 1967, 164, 765–767.

95. McDonald, P.F.; Parasiris, A.; Pandey, R.K.; Gries, B.L.; Kirk, W.P. Paramagnetic resonance and
susceptibility of ilmenite FeTiO3 crystal. J. Appl. Phys. 1991, 69, 1104–1106.



Int. J. Mol. Sci. 2011, 12 8835

96. Foner, S. High-field antiferromagnetic resonance in Cr2O3. Phys. Rev. 1963, 130, 183–197.
97. Goulon, J.; Rogalev, A.; Wilhelm, F.; Goulon-Ginet, C.; Carra, P.; Marri, I.; Brouder, C. X-ray

optical activity: Applications of sum rules. J. Exp. Theor. Phys. 2003, 97, 402–431.

c⃝ 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)


	Introduction
	Resonant Precession of Spin and Orbital Magnetization Components in Excited States 
	Specificity of the XMCD Probe
	Site-Selective Probe in Ferrimagnetic Iron Garnets
	Steady-State, Uniform Mode of Precession
	Precession Eigen Modes and Spin Waves
	Magnetostatic Walker's Modes
	Exchange Spin Waves
	Mode Conversion in Relaxation Processes

	Pseudo-Spin and Orbital Ordering Waves
	Spin Wave Instability Regime at High Pumping Power
	Transverse Pumping Geometry (bp B0)
	Parallel Pumping Geometry (bp B0)

	Instrumentation Constraints in XDMR Experiments
	Soft-XMCD versus Hard-XMCD Probes
	Combining Time and Frequency Domain Signals


	XDMR in Ferrimagnetic Iron Garnets
	Selected Samples
	XDMR Spectra of a YIG Thin Film Recorded in Transverse Detection Geometry
	Element Resolved XDMR of the Y-La-LuIG Film in Longitudinal Detection Geometry
	Anomalous Saturation of the Fe K-Edge XDMR Spectra of GdIG
	Non-Linear Effects Associated With Elliptical Precession
	Second Harmonic XDMR Spectra in YIG Thin Films
	XDMR under Parallel Pumping Excitation


	New Challenges for XDMR
	High-Field, X-Ray Detected Electron Paramagnetic Resonance
	High-Field XDMR in the AFMR Regime

	Conclusions

