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Abstract: Cellulose fiber is a tremendous natural resource that has broad application in 

various productions including the textile industry. The dyes, which are commonly used for 

cellulose printing, are “reactive dyes” because of their high wet fastness and brilliant colors. 

The interaction of various dyes with the cellulose fiber depends upon the physiochemical 

properties that are governed by specific features of the dye molecule. The binding pattern 

of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current 

study, the three dimensional quantitative structure property relationship  

(3D-QSPR) technique was applied to understand the red reactive dyes interactions with the 

cellulose by the Comparative Molecular Field Analysis (CoMFA) method. This method was 

successfully utilized to predict a reliable model. The predicted model gives satisfactory 

statistical results and in the light of these, it was further analyzed. Additionally, the 
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graphical outcomes (contour maps) help us to understand the modification pattern and to 

correlate the structural changes with respect to the absorptivity. Furthermore, the final 

selected model has potential to assist in understanding the charachteristics of the external 

test set. The study could be helpful to design new reactive dyes with better affinity and 

selectivity for the cellulose fiber. 

Keywords: 3D-QSPR; CoMFA; red reactive dye; cellulose fiber 

 

1. Introduction 

Cellulose/cotton fiber is the backbone of the textile industry. The most preferable dyes for printing 

the cellulose/cotton are reactive dyes. These dyes have been used for over fifty years on an industrial 

scale. Rattee and Stephens invented the first reactive dye in 1954 which became commercially 

available in 1956 [1–3]. Reactive dyes have complicated chemical structures which form covalent 

bonds between reactive groups of the cellulose and activated functional groups of the dye molecules. 

Reactive dyes are the most common dyes because of many advantages such as operating under mild 

conditions, stable structures and bright colors [4,5]. The main features of these dyes are to interact 

chemically with cellulosic fiber as well as maintain quality during washing, last on the fabric for a longer 

duration and preserve the fixation value. All these features play an important role for the superiority of a 

reactive dye towards other types of dyes [6,7]. These dyes contain a reactive group, either a  

halo-heterocyclic or an activated double bond-containing chromophoric group that allows them to react 

directly with the surface of the cellulose fiber in order to make a chemical bond. The quality of a good 

dye actually depends on the interaction of the chemically-bound functional groups, e.g., sulfonic, 

hydroxyl, azo, carbonyl, and chloro groups of the dye with the molecules of cellulose in normal 

conditions, staying bonded during washing and being resistant to being washed out from the fabric. 

Some reactive dyes have a low potential for cellulose as compared to the acid dyes while most of the 

dyes have high selectivity of direct dyes. Therefore, the alkaline condition is suitable for the reaction 

of red reactive dyes with cellulose as well as for the adsorption and diffusion process. 

Mechanism of Reactive Dyes: Reactive dyes are nitrogen-containing heterocyclic rings bearing 

halogen substituents, therefore, undergo nucleophilic substitution reaction with the cellulose fiber. The 

heteroatom activates the system for nucleophilic attack due to its electro-negativity. The attacking 

nucleophile can be either a cellulose anion or a hydroxyl ion. This leads to fixation on the fabric after 

hydrolysis occurs of the reactive dye as shown in Figure 1. In addition, it is also important for a dye 

molecule to have a high dye-fabric covalent fixation value (F). This value is helpful to measure the dye 

affinity at the substrate or the amount of dye removed after the “soaping off process”. A high fixation 

value is helpful to reduce the time limit which is required for the dyeing process and also has an effect 

on the cost [8]. Besides, it is a measure of the extent of covalent bonding with the cellulose [9]. Dye 

fixation to cellulose fabric is triggered by acid-binding agents such as sodium hydroxide (NaOH), 

potassium hydroxide (KOH), sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), potassium 

carbonate (K2CO3), sodium formate (HCOONa), sodiumdihydrogen phosphate (NaH2PO4) or 

disodium hydrogen phosphate (Na2HPO4). Higher fixation efficiency can be achieved by increasing 
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reactive sites at the dye molecule by introducing two or more activating groups which react with the 

fabric. In this way, unfixed dye concentrations will reduce in the dye bath after dyeing and it becomes 

more economical and environmentally friendly.  

Figure 1. General mechanism of the reactive dye-cellulose interaction. 
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The main industrial problem with commercially available dyes is the left over dyes in dye baths 

which is harmful for the environment; this factor is measured by dye-bath exhaustion (E) phenomena. 

The higher the exhaustion value, the lower the free dye remaining in the effluent after completion of 

the dyeing process. Numerous reports have been published to avoid the hazardous environmental 

effect during cellulose printing [10,11]. Therefore, our aim is to select those dyes which do not have a 

harmful effluent for the environment [12–18]. An optimal dye structure has the ability to react 

quantitatively with the cellulose fiber resulting in a dye-free bath. The dimmer form of reactive dyes 

allows to achieve excellent exhaustion values for printing the cellulose fiber [19]. 

In this study, the reactive dyes consist of the category of red reactive dyes known as azo dyes [20]. 

Dyeing by reactive dyes does not cause as many environmental problems as others [6,21]. Reactive 

dyes give equivalent wet-fastness, excellent properties and are widely used in textile industry. 

However, it is important to obtain good color which shows an absorbance of known concentration  

i.e., an absorbtivity value (έ) of dm3/mol/cm × 104.  
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Computational analysis can play an important role in selecting the binding nature of dyes with  

the cellulose by applying different methods in a minimum time frame. Dye-fabric interactions and 

receptor-ligand interactions have more or less similar concept. One of the most useful approache for 

the prediction of different properties initiate from the molecular structural information is known as the 

three-dimensional quantitative structure property relationships (3D-QSPR) [22,23]. 3D-QSPR studies 

are certainly of great importance in different branches of chemistry including medicinal chemistry, 

pharmaceutical chemistry and drug discovery [24,25]. This technique leads to locate the close 

relationship between bulk properties of compounds and their molecular structure which provides 

connection between the macroscopic and the microscopic properties of matter. Once the model has 

been developed then it can be utilized to predict properties of unknown compounds. A major step in 

constructing a 3D-QSPR model is to find a set of molecular descriptors that represent variation in the 

structural properties of the molecules. So far, a wide variety of descriptors have been reported in 3D-

QSPR analysis [26–31] 

In this project for the first time 3D-QSPR studies were applied on red reactive dyes (two different 

datasets) by using CoMFA protocol [32]. Basically, the interactions of various dye including the red 

reactive dyes with a cellulose fabric is a complex physicochemical process governed by specific 

features and the nature of the dye molecule. In CoMFA the interaction of dye-cellulose is affected by 

various factors including electrostatic and steric fields and the available experimental data. The aim of 

this study is to develop a predictive CoMFA model that correlates the absorbtivity of dyes with the 

modification of molecular structures. 3D-QSPR modeling tools have been used over the last two 

decades and considered as a most reliable method to understand the structural requirements of any 

property with interacting properties. Absorbtivity is the property considered for the current work which 

demonstrates how much the dye interacts with the cellulose fiber with low dye-bath exhaustion (E) and 

a high fixation value. 

2. Computational Methodology 

2.1.  Molecular Modeling  

All molecular modeling methods were performed using Sybyl7.3 [33] on a Genuine Intel® Xeon 

(TM) 3.0 GHz dual core processor running under open SuSe Linux 11.0 environment. Initially, all 

structures were built by the Chem-Draw [34] and then converted into corresponding 3D structures 

using babel-2.1.1 [35]. 

2.2. Selection of Molecules 

2.2.1. Current Study Deals With The Two Different Data Sets 

Dataset I: A set of thirteen compounds were retrieved from the literature reported by the  

J Paluszkiewicz et al. (dye-codes JP-1 to JP-13). They synthesized red reactive dyes which are 

derivatives of 1-amine-8-hydroxynaphthalene-3, 6-disulfonic acid [36]. 

Dataset II: Another dataset containing thirteen compounds was  provided by Sitara et al. [37] with 

dye-codes (IS-14 to IS-26).  
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The complete dataset of twenty six compounds with their absorbtivity (ε) dm3/mol/cm are reported 

in Table 1. The selection of the training and test sets is based on random approach. Twenty-three (23) 

compounds were selected for the training set and the remaining three compounds were studied under 

the test set. 

Table 1. Red reactive dye structures and their absorbtivities (dm3/mol/cm × 104). 
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S. No. Dye Code Group “A ” Bridging Moiety “DA” 
Absorbtivity 

dm3/mol/cm × 104 

1 JP-1 Anthranilic acid 1,4-Phenylenediamine 3.47 

2 JP-2 Anthranilic acid 1,2-Phenylenediamine 5.37 

3 JP-3 Anthranilic acid 1,3 - Phenylen diamine 5.30 

4 JP-4 Anthranilic acid 
Diaminestilbene-2,2′-disulfonic 
acid 

4.29 

5 JP-5 Anthranilic acid 4,4′-Diaminebenzoanilide 3.74 

6 JP-6 Anthranilic acid Ethylene-1,2-diamine 4.94 

7 JP-7 
4-β-Sulphatoetyl-sulfonyl 
aniline 

1,4-Phenylenediamine 5.43 

8 JP-8 
4-β-Sulphatoetyl-sulfonyl 
aniline 

1,2-Phenylenediamine 6.21 

9 JP-9 
4- β-Sulphatoetyl-sulfonyl 
aniline 

1,3-Phenylenediamine 5.81 

10 JP-10 
4- β-Sulphatoetyl-sulfonyl 
aniline 

Diaminestilbene-2,2′-disulfonic 
acid 

5.49 

11 JP-11 
4-β-Sulphatoetyl-sulfonyl 
aniline 

4,4′-diaminebenzoanilide 4.95 

12 JP-12 
4-β-Sulphatoetyl-sulfonyl 
aniline 

Ethylene-1,2-diamine 6.32 

13 JP-13 Anrthanilic acid 1,4-Phenylenediamine 4.67 

14 IS-14 Aniline 
Diaminestilbene-2,2′-disulfonic 
acid 

2.95 

15 IS-15 
Benzene-m-aminosulfonic 
acid 

Diaminestilbene-2,2′-disulfonic 
acid 

1.85 

16 IS-16 
Benzene-m-aminosulfonic 
acid 

1,4-Phenylenediamine 0.71 

17 IS-17 
Benzene-p-aminosulfonic 
acid 

1,4-Phenylenediamine 1.95 
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Table 1. Cont. 

S. No. Dye Code Group “A ” Bridging Moiety “DA” 
Absorbtivity 

dm3/mol/cm × 104 

18 IS-18 Aniline 1,4-Phenylenediamine 0.37 

19 IS-19 p-Toluidine 1,4-Phenylenediamine 0.25 

20 IS-20 p-Toluidine 
Diaminestilbene-2,2′-disulfonic 
acid 

1.92 

21 IS-21 p-Toluidine 1,3-Phenylenediamine 0.47 

22 IS-22 p-Nitroaniline 1,4-Phenylenediamine 2.44 

23 IS-23 p-Nitroaniline 1,3 - Phenylenediamine 1.74 

24 IS-24 m-Toluidine 1,4 - Phenylenediamine 0.47 

25 IS-25 m-Toluidine 1,3-Phenylenediamine 1.40 

26 IS-26 m-Toluidine 
Diaminestilbene-2,2′-disulfonic 
acid 

2.32 

2.3. Dataset Preparation for the Alignment 

The 3D structures of dyes were corrected with the help of Sybyl7.3 and the compound properties 

checked by Filter package of OpenEye. The geometry of all the compounds was minimized by the 

conjugate gradient method using Tripos force field [38] with 1000 iteration. After minimization, the 

maximum conformations were generated by Omega and the best conformation of each compound was 

selected for further work strategy. Gasteiger Hückel [39], am1bcc [40] and [41] charge methods were 

utilized for the calculation and these charges were applied on the whole dataset by molcharge utility of 

the OpenEye Quacpac program [42].  

2.4. Structural Alignment  

Alignment is one of the most significant steps for CoMFA studies. The 3D structures of the reactive 

dye molecules were aligned according to a suitable conformational template which showed higher 

interactive ability with the cellulose. In this case there are no previously reported data available for 

these reactive dyes which indicate the higher potency of structure within the dataset. Therefore, highest 

absorbtivity compound was considered as a template molecule. For the current work JP-12 was 

considered as a most reactive dye showed highest absorbtivity 6.32 dm3/mol/cm × 104 at 515.5 λmax. 

2.5.  Comparative Molecular Field Analyses (CoMFA) Study 

All Comparative Molecular Field Analyses (CoMFA) [43–46] was performed using Sybyl7.3. 

Compounds were placed at the 3D lattice by following default setting of the CoMFA procedure with a 

2.0 Å grid spacing. A sp3 carbon atom with +1 charge was employed to probe the steric (Lennard-Jones) 

and electrostatic (Coulombic) field energies. The cutoff interaction energy ± 30 kcal/mol was applied 



Int. J. Mol. Sci. 2011, 12 8868 

 

on both the CoMFA fields. These fields were generated automatically and scaled by the CoMFA-STD 

method. An attenuation factor of 0.1 was used.  

2.6.  Partial Least Square Analysis (PLS) 

The Partial Least Squares (PLS) method [47–49] was used to construct and validate the 3D-QSPR 

model. The CoMFA descriptors served as independent variables and property values as dependant 

variables in PLS. This expresses the absorbtivity in terms of linear combinations of the CoMFA model 

generated as steric and electrostatic field.  

The predicative potential of the CoMFA protocol was analyzed by the “leave-one-out” (LOO) [50] 

cross-validated analysis method, in which one compound is excluded systematically from the dataset 

and its property predicted using the model derived from the rest of the compounds. Column filtering 

was set at 2.0 kcal/mol for analysis which reduced the noise level. The cross-validated q2 value that 

resulted in a minimal number of components and the lowest standard error of prediction (SEP) was 

accepted for further study. The results obtained from the leave-one-out procedure yields an optimal 

number of components (ONC) which is associated by the non-validation PLS analysis. The PLS 

analysis was repeated for the non cross validation with the ONC to get the final model. In the end, the 

CoMFA results were graphically interpreted by field contribution maps using the field type 

“stdev.coeff'”. 

3. Results and Discussion 

From the literature survey it is quite clear that 3D-QSPR predicted a reliable model which could 

help to design new reactive dyes according to the modification of the developed features. In the current 

study we reported the application of the CoMFA modeling on red reactive dyes. CoMFA has been 

applied to derive the relationship between the structural modification and absorbtivity which give the 

direct indication of the influence on the dimmer form of red reactive dyes binding on cellulose. The 

work flow strategy is represented in Figure 2. 

3.1. Selectivity Profile 

The current work deals with dimmers of red reactive dyes. The reason for the selection of the 

dimmer form is that the monomer has low affinity with low soluble potential with cellulose fabric, as 

well as a less interactive functional group. However, on replacement of the dimmer forms, drastic 

changes were observed in the affinity of the reactive dyes with the cellulose structure. Therefore, we 

selected the dimmer series of the reactive dyes for the 3D-QSPR studies to predict the model which 

could help us to modify their structures. Finally, the results demonstrate that the outstanding modified 

structural features help to get more interaction of reactive dyes with the cellulose fiber. 

3.2. Alignment Protocol with Different Charges 

The common skeleton shown in Figure 3 was selected for the alignment and the rest of the 

molecules were aligned on the selected core structure, using the data base alignment method of 

Sybyl7.3. The aligned compounds were depicted in Figure 4. To get the best CoMFA model, three 
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different charges methods were applied. After unsuccessful results by Gasteiger Hückel and am1bcc 

charge methods (data not shown), we considered another method for the study, known as MMFF94. 

By applying the MMFF94 charges and shuffling protocol on the training and test sets, we obtained 

good statistical results, as shown in Table 2.  

Figure 2. Work Flow Scheme for CoMFA Modeling. 
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Figure 3. The most active dye molecule JP-12 is used as a template and the selected atom 

involved in the alignment is shown by the asteric (*). 

HN

SO3H

OH

N

HO3S

N
A N

NN

N

NN

NH OH

N

HO3S

N

A

ClCl

SO3H

NHN
DA* *

H

 

Figure 4. Structural alignment of all red reactive dyes by the database alignment method 

using the most active compound JP-12 as template. 

 

Table 2. Actual and predicted absorbtivity of red reactive dyes of training and test sets. 

Compounds Experimental absorbtivity Predicted absorbtivity by CoMFA 

Training set 

JP-02 5.37 5.38

JP-03 5.30 5.46

JP-04 4.29 4.18

JP-05 3.74 3.67

JP-06 4.94 4.91

JP-07 5.43 5.66

JP-08 6.21 6.24

JP-09 5.81 5.85

JP-10 5.49 5.37

JP-12 6.32 6.51

JP-13 4.67 4.35

IS-14 2.95 2.52

IS-15 1.85 1.95

IS-16 0.71 0.67
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Table 2. Cont. 

Compounds Experimental absorbtivity Predicted absorbtivity by CoMFA 

Training set  

IS-17 1.95 2.02

IS-18 0.37 0.43

IS-19 0.25 0.31

IS-20 1.92 1.35

IS-22 0.47 0.75

IS-23 2.44 2.41

IS-24 0.47 1.08

IS-25 1.4 1.39

Test set  

JP-01 3.47 5.40

JP-11 4.95 4.37

IS-21 0.47 2.18

3.3. Statistics of CoMFA Model  

Twenty three (23) compounds were selected for the training set out of the total twenty-six (26) 

compounds to develop the CoMFA model. The remaining three compounds were utilized as test set for 

the external validation of the CoMFA model. The PLS method gives satisfactory results in term of q2 

and r2 values, exhibiting the robustness of the developed model. The outcome of the PLS analysis is 

depicted in Table 3. The results indicated that leave one out cross validated q2 = 0.529 and the non 

cross validated r2 = 0.989. The electrostatic field contribution is assumed to be to some extent 

dominant as compared to the steric field, but in the broad spectrum, both fields have similar level of 

strength in field contribution. 

Table 3. Statistical results for red reactive dyes extracted by CoMFA analysis. 

Parameters CoMFA 
aq2 0.509 

bONC 03 
cSEP 1.567 
dSEE 0.257 

F-test ratio 591.27 
 er2 0.989 

fr2
pred 0.797 

Field contribution Percentage (%) 
Steric 49.7 

Electrostatic 50.3 
a Cross-validated correlation coefficient (q2); bOptimum number of components (ONC); c Standard 
error of prediction (SEP); d Standard error of estimate (SEE); e Conventional correlation coefficient 
(r2); f Correlation coefficient (r2

pred). 
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3.4. 3D Analysis of the CoMFA 

One of the most interesting and informative features of the CoMFA modeling is the visualization of 

the results as 3D coefficient contour plots. The contour maps were generated as scalar products of 

coefficients associated with each CoMFA column. The regions of having scaled coefficients greater 

than 80% (favored) or less than 20% (disfavored). The two fields of CoMFA models for the analysis 

based on the database alignment were presented as contour plots. The colored polyhedral in the map 

surrounded all lattice points where the 3D-QSPR is strongly associated with the changes occurred in 

the compounds field values with respect to absorbtivity potential. 

Figure 5 (a and b) depict the steric and electrostatic contour maps of CoMFA (StDev*Coeff) model. 

The contour maps of electrostatic and steric contributions show useful potential in the design of new 

reactive dyes. To aid in the visualization, contour maps surround the template molecule JP-12 as a 

reference compound due to highest absorbtivity which indicates high affinity with the cotton fabric.  

Figure 5. (a) CoMFA stDev*Coeff contour map based on the most active compound  

JP-12 (Graphical representation of compound is displayed in sticks, carbon atom in gray 

with default elemental color). Steric fields: Favored for bulky groups (green) and 

disfavored for bulky group (yellow); (b) CoMFA stDev*Coeff contour map based on the 

most active compound JP-12 (Graphical representation of the compound is displayed in 

sticks, carbon atom in gray with default elemental color). Electrostatic fields: Favored for 

negative group (red) and disfavored for negative group (blue). 
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3.5. Steric Fields 

The CoMFA contour plots in Figure 5(a) shows favorable regions in green color where increased 

steric function is associated with enhanced property function level and yellow region is dis-favorable 

and points out the increased steric bulk which is associated with decreased affinity of the dye molecule 

with cellulose. One large green polyhedron covers most of the bridging area “DA” of the reference 

compound. The “DA” group of the reference compound is an ethyl residue which has close contact 

with the green isopleths indicating that if a more bulky alkyl chain attaches, it could be beneficial in 

increasing the significant dye-cellulose interaction. If we compare JP-12 with JP-6, the molar 

absorbtivity is decreased, while both dyes have the same “DA” group. The reason for this lower value 

might be due to the “A” groups. In JP-12 a sulfonic group is attached which is responsible for better 

interaction with the positive part of the cellulose structure. A similar phenomenon occurs for JP-10 and 

IS-15: the absorbtivity decreases although both have the same bridging moiety and are depicted with 

green isopleths; here the side chain moieties play an important role for increasing the property profile 

level. Dye structures JP-8, JP-9, JP-11 and IS-17 have a sulfonic side chain “A” group; based on this 

group they have a high potency towards the interaction of cellulose fiber with these reactive dyes. 

Several regions of yellow contours were found near the “A” groups, especially at the phenyl-based 

bridging residues with different attachments at different positions (ortho, para and meta) which 

indicates the significant decrease in the adsorption values of these dyes structures. Therefore, dye 

structures JP-1, JP-5, IS-18-19, IS-21 and IS-26 have a low activity profile. If we compare the 

compound IS-19 with IS-16, an increase in activity is observed, although both have a phenyl group at 

the “DA” moiety, so, ultimately our hypothesis of the sulfonic group is supported here.  

3.6. Electrostatic Fields 

The CoMFA electrostatic contour plot is displayed in Figure 5(b) with a 50.3% field contribution; it 

holds an important position in the current predicted model by CoMFA. Blue contour indicates the 

region where the negative potential is unfavorable for the increment in absorbtivity of the dye structure, 

whereas the red areas have a negative potential that are favorable for the improvement of the affinity 

of the dyes with cellulose. Electropositive favored and disfavored charge cut-off energies were also 

pinched at 90% and 10% of the dye structure. 

The three large blue isopleths encompass the red reactive dye due to the nitrogen moiety which 

means that these regions are interacting well with the negative part of the cellulose. In the current work, 

the presence of nitrogen is conserved for all the molecules which is necessary for the dye structure, 

therefore, the red contour demonstrates better suggestions for the variation in the dataset. 

Several red contours were found near the negative charge moieties mainly because of the hydroxyl 

and sulfonic groups. The compounds bearing the sulfonic group have the higher absorbtivity as 

compared to the rest of the groups, and as a result, JP-7, JP-9, JP-12, IS-15 and IS-16 show good 

absorbtivity values.  
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3.7. Validation of the 3D-QSPR Model 

Three selected compounds were used as the test set to verify the constructed CoMFA model. The 

calculated results are listed in Table 2. The predicted absorbtivity for the CoMFA model are in good 

agreement with the experimental data, and in a statistically tolerable range, with the correlation 

coefficient of r2 = 0.797. The test results indicated that the CoMFA model is reliable and has good 

predictive ability. 

4. Conclusion 

In this study, the computational technique 3D-QSPR was applied to find the effects of structural 

modification of red reactive dyes and the binding mechanism with the cellulose fiber. Our study 

demonstrated that the CoMFA method is suitable and reliable for the prediction of the relation between 

structural features of red reactive dye and its absorbtivity. A robust CoMFA model was obtained with 

a high predictive performance for the red reactive dye.  

Electrostatic and steric interactions are the most important features in reactive red dye-cellulose 

binding interaction. According to our results both fields play important roles for the current set of dyes. 

The steric field has drawn our attention towards the bulkiness; if we could increase the alkyl chain of 

the bridging moiety then it would give a more significant interaction. CoMFA studies concerned with 

the contribution of electrostatic fields, demonstrate that the positive charges in the dye molecule favor 

the dye adsorption on cellulose. Those molecules which have sulfonic groups, have high absorbtivity 

values because this moiety helps to solubilize the dye molecule inside the fabric. The information 

obtained from the 3D-QSPR model may provide a tool for predicting the affinity of unknown 

structures prior to its synthesis, which could be optimal for cellulose fiber as well as being non-toxic 

for the environment. 
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